--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * shm_toc.c
+ * shared memory segment table of contents
+ *
+ * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * src/include/storage/shm_toc.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include "storage/barrier.h"
+#include "storage/shm_toc.h"
+#include "storage/spin.h"
+
+typedef struct shm_toc_entry
+{
+ uint64 key; /* Arbitrary identifier */
+ uint64 offset; /* Bytes offset */
+} shm_toc_entry;
+
+struct shm_toc
+{
+ uint64 toc_magic; /* Magic number for this TOC */
+ slock_t toc_mutex; /* Spinlock for mutual exclusion */
+ Size toc_total_bytes; /* Bytes managed by this TOC */
+ Size toc_allocated_bytes; /* Bytes allocated of those managed */
+ Size toc_nentry; /* Number of entries in TOC */
+ shm_toc_entry toc_entry[FLEXIBLE_ARRAY_MEMBER];
+};
+
+/*
+ * Initialize a region of shared memory with a table of contents.
+ */
+shm_toc *
+shm_toc_create(uint64 magic, void *address, Size nbytes)
+{
+ shm_toc *toc = (shm_toc *) address;
+
+ Assert(nbytes > offsetof(shm_toc, toc_entry));
+ toc->toc_magic = magic;
+ SpinLockInit(&toc->toc_mutex);
+ toc->toc_total_bytes = nbytes;
+ toc->toc_allocated_bytes = 0;
+ toc->toc_nentry = 0;
+
+ return toc;
+}
+
+/*
+ * Attach to an existing table of contents. If the magic number found at
+ * the target address doesn't match our expectations, returns NULL.
+ */
+extern shm_toc *
+shm_toc_attach(uint64 magic, void *address)
+{
+ shm_toc *toc = (shm_toc *) address;
+
+ if (toc->toc_magic != magic)
+ return NULL;
+
+ Assert(toc->toc_total_bytes >= toc->toc_allocated_bytes);
+ Assert(toc->toc_total_bytes >= offsetof(shm_toc, toc_entry));
+
+ return toc;
+}
+
+/*
+ * Allocate shared memory from a segment managed by a table of contents.
+ *
+ * This is not a full-blown allocator; there's no way to free memory. It's
+ * just a way of dividing a single physical shared memory segment into logical
+ * chunks that may be used for different purposes.
+ *
+ * We allocated backwards from the end of the segment, so that the TOC entries
+ * can grow forward from the start of the segment.
+ */
+extern void *
+shm_toc_allocate(shm_toc *toc, Size nbytes)
+{
+ volatile shm_toc *vtoc = toc;
+ Size total_bytes;
+ Size allocated_bytes;
+ Size nentry;
+ Size toc_bytes;
+
+ /* Make sure request is well-aligned. */
+ nbytes = BUFFERALIGN(nbytes);
+
+ SpinLockAcquire(&toc->toc_mutex);
+
+ total_bytes = vtoc->toc_total_bytes;
+ allocated_bytes = vtoc->toc_allocated_bytes;
+ nentry = vtoc->toc_nentry;
+ toc_bytes = offsetof(shm_toc, toc_entry) + nentry * sizeof(shm_toc_entry)
+ + allocated_bytes;
+
+ /* Check for memory exhaustion and overflow. */
+ if (toc_bytes + nbytes > total_bytes || toc_bytes + nbytes < toc_bytes)
+ {
+ SpinLockRelease(&toc->toc_mutex);
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("out of shared memory")));
+ }
+ vtoc->toc_allocated_bytes += nbytes;
+
+ SpinLockRelease(&toc->toc_mutex);
+
+ return ((char *) toc) + (total_bytes - allocated_bytes - nbytes);
+}
+
+/*
+ * Return the number of bytes that can still be allocated.
+ */
+extern Size
+shm_toc_freespace(shm_toc *toc)
+{
+ volatile shm_toc *vtoc = toc;
+ Size total_bytes;
+ Size allocated_bytes;
+ Size nentry;
+ Size toc_bytes;
+
+ SpinLockAcquire(&toc->toc_mutex);
+ total_bytes = vtoc->toc_total_bytes;
+ allocated_bytes = vtoc->toc_allocated_bytes;
+ nentry = vtoc->toc_nentry;
+ SpinLockRelease(&toc->toc_mutex);
+
+ toc_bytes = offsetof(shm_toc, toc_entry) + nentry * sizeof(shm_toc_entry);
+ Assert(allocated_bytes + BUFFERALIGN(toc_bytes) <= total_bytes);
+ return total_bytes - (allocated_bytes + BUFFERALIGN(toc_bytes));
+}
+
+/*
+ * Insert a TOC entry.
+ *
+ * The idea here is that process setting up the shared memory segment will
+ * register the addresses of data structures within the segment using this
+ * function. Each data structure will be identified using a 64-bit key, which
+ * is assumed to be a well-known or discoverable integer. Other processes
+ * accessing the shared memory segment can pass the same key to
+ * shm_toc_lookup() to discover the addresses of those data structures.
+ *
+ * Since the shared memory segment may be mapped at different addresses within
+ * different backends, we store relative rather than absolute pointers.
+ *
+ * This won't scale well to a large number of keys. Hopefully, that isn't
+ * necessary; if it proves to be, we might need to provide a more sophisticated
+ * data structure here. But the real idea here is just to give someone mapping
+ * a dynamic shared memory the ability to find the bare minimum number of
+ * pointers that they need to bootstrap. If you're storing a lot of stuff in
+ * here, you're doing it wrong.
+ */
+void
+shm_toc_insert(shm_toc *toc, uint64 key, void *address)
+{
+ volatile shm_toc *vtoc = toc;
+ uint64 total_bytes;
+ uint64 allocated_bytes;
+ uint64 nentry;
+ uint64 toc_bytes;
+ uint64 offset;
+
+ /* Relativize pointer. */
+ Assert(address > (void *) toc);
+ offset = ((char *) address) - (char *) toc;
+
+ SpinLockAcquire(&toc->toc_mutex);
+
+ total_bytes = vtoc->toc_total_bytes;
+ allocated_bytes = vtoc->toc_allocated_bytes;
+ nentry = vtoc->toc_nentry;
+ toc_bytes = offsetof(shm_toc, toc_entry) + nentry * sizeof(shm_toc_entry)
+ + allocated_bytes;
+
+ /* Check for memory exhaustion and overflow. */
+ if (toc_bytes + sizeof(shm_toc_entry) > total_bytes ||
+ toc_bytes + sizeof(shm_toc_entry) < toc_bytes)
+ {
+ SpinLockRelease(&toc->toc_mutex);
+ ereport(ERROR,
+ (errcode(ERRCODE_OUT_OF_MEMORY),
+ errmsg("out of shared memory")));
+ }
+
+ Assert(offset < total_bytes);
+ vtoc->toc_entry[nentry].key = key;
+ vtoc->toc_entry[nentry].offset = offset;
+
+ /*
+ * By placing a write barrier after filling in the entry and before
+ * updating the number of entries, we make it safe to read the TOC
+ * unlocked.
+ */
+ pg_write_barrier();
+
+ vtoc->toc_nentry++;
+
+ SpinLockRelease(&toc->toc_mutex);
+}
+
+/*
+ * Look up a TOC entry.
+ *
+ * Unlike the other functions in this file, this operation acquires no lock;
+ * it uses only barriers. It probably wouldn't hurt concurrency very much even
+ * if it did get a lock, but since it's reasonably likely that a group of
+ * worker processes could each read a series of entries from the same TOC
+ * right around the same time, there seems to be some value in avoiding it.
+ */
+void *
+shm_toc_lookup(shm_toc *toc, uint64 key)
+{
+ uint64 nentry;
+ uint64 i;
+
+ /* Read the number of entries before we examine any entry. */
+ nentry = toc->toc_nentry;
+ pg_read_barrier();
+
+ /* Now search for a matching entry. */
+ for (i = 0; i < nentry; ++i)
+ if (toc->toc_entry[i].key == key)
+ return ((char *) toc) + toc->toc_entry[i].offset;
+
+ /* No matching entry was found. */
+ return NULL;
+}
+
+/*
+ * Estimate how much shared memory will be required to store a TOC and its
+ * dependent data structures.
+ */
+Size
+shm_toc_estimate(shm_toc_estimator *e)
+{
+ return add_size(offsetof(shm_toc, toc_entry),
+ add_size(mul_size(e->number_of_keys, sizeof(shm_toc_entry)),
+ e->space_for_chunks));
+}
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * shm_toc.h
+ * shared memory segment table of contents
+ *
+ * This is intended to provide a simple way to divide a chunk of shared
+ * memory (probably dynamic shared memory allocated via dsm_create) into
+ * a number of regions and keep track of the addreses of those regions or
+ * key data structures within those regions. This is not intended to
+ * scale to a large number of keys and will perform poorly if used that
+ * way; if you need a large number of pointers, store them within some
+ * other data structure within the segment and only put the pointer to
+ * the data structure itself in the table of contents.
+ *
+ * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * src/include/storage/shm_toc.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef SHM_TOC_H
+#define SHM_TOC_H
+
+#include "storage/shmem.h"
+
+struct shm_toc;
+typedef struct shm_toc shm_toc;
+
+extern shm_toc *shm_toc_create(uint64 magic, void *address, Size nbytes);
+extern shm_toc *shm_toc_attach(uint64 magic, void *address);
+extern void *shm_toc_allocate(shm_toc *toc, Size nbytes);
+extern Size shm_toc_freespace(shm_toc *toc);
+extern void shm_toc_insert(shm_toc *toc, uint64 key, void *address);
+extern void *shm_toc_lookup(shm_toc *toc, uint64 key);
+
+/*
+ * Tools for estimating how large a chunk of shared memory will be needed
+ * to store a TOC and its dependent objects.
+ */
+typedef struct
+{
+ Size space_for_chunks;
+ Size number_of_keys;
+} shm_toc_estimator;
+
+#define shm_toc_initialize_estimator(e) \
+ ((e)->space_for_chunks = 0, (e)->number_of_keys = 0)
+#define shm_toc_estimate_chunk(e, sz) \
+ ((e)->space_for_chunks = add_size((e)->space_for_chunks, \
+ BUFFERALIGN((sz))))
+#define shm_toc_estimate_keys(e, cnt) \
+ ((e)->number_of_keys = add_size((e)->number_of_keys, (cnt)))
+
+extern Size shm_toc_estimate(shm_toc_estimator *);
+
+#endif /* SHM_TOC_H */