fi
+{ $as_echo "$as_me:$LINENO: checking for library containing shm_open" >&5
+$as_echo_n "checking for library containing shm_open... " >&6; }
+if test "${ac_cv_search_shm_open+set}" = set; then
+ $as_echo_n "(cached) " >&6
+else
+ ac_func_search_save_LIBS=$LIBS
+cat >conftest.$ac_ext <<_ACEOF
+/* confdefs.h. */
+_ACEOF
+cat confdefs.h >>conftest.$ac_ext
+cat >>conftest.$ac_ext <<_ACEOF
+/* end confdefs.h. */
+
+/* Override any GCC internal prototype to avoid an error.
+ Use char because int might match the return type of a GCC
+ builtin and then its argument prototype would still apply. */
+#ifdef __cplusplus
+extern "C"
+#endif
+char shm_open ();
+int
+main ()
+{
+return shm_open ();
+ ;
+ return 0;
+}
+_ACEOF
+for ac_lib in '' rt; do
+ if test -z "$ac_lib"; then
+ ac_res="none required"
+ else
+ ac_res=-l$ac_lib
+ LIBS="-l$ac_lib $ac_func_search_save_LIBS"
+ fi
+ rm -f conftest.$ac_objext conftest$ac_exeext
+if { (ac_try="$ac_link"
+case "(($ac_try" in
+ *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
+ *) ac_try_echo=$ac_try;;
+esac
+eval ac_try_echo="\"\$as_me:$LINENO: $ac_try_echo\""
+$as_echo "$ac_try_echo") >&5
+ (eval "$ac_link") 2>conftest.er1
+ ac_status=$?
+ grep -v '^ *+' conftest.er1 >conftest.err
+ rm -f conftest.er1
+ cat conftest.err >&5
+ $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); } && {
+ test -z "$ac_c_werror_flag" ||
+ test ! -s conftest.err
+ } && test -s conftest$ac_exeext && {
+ test "$cross_compiling" = yes ||
+ $as_test_x conftest$ac_exeext
+ }; then
+ ac_cv_search_shm_open=$ac_res
+else
+ $as_echo "$as_me: failed program was:" >&5
+sed 's/^/| /' conftest.$ac_ext >&5
+
+
+fi
+
+rm -rf conftest.dSYM
+rm -f core conftest.err conftest.$ac_objext conftest_ipa8_conftest.oo \
+ conftest$ac_exeext
+ if test "${ac_cv_search_shm_open+set}" = set; then
+ break
+fi
+done
+if test "${ac_cv_search_shm_open+set}" = set; then
+ :
+else
+ ac_cv_search_shm_open=no
+fi
+rm conftest.$ac_ext
+LIBS=$ac_func_search_save_LIBS
+fi
+{ $as_echo "$as_me:$LINENO: result: $ac_cv_search_shm_open" >&5
+$as_echo "$ac_cv_search_shm_open" >&6; }
+ac_res=$ac_cv_search_shm_open
+if test "$ac_res" != no; then
+ test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"
+
+fi
+
+{ $as_echo "$as_me:$LINENO: checking for library containing shm_unlink" >&5
+$as_echo_n "checking for library containing shm_unlink... " >&6; }
+if test "${ac_cv_search_shm_unlink+set}" = set; then
+ $as_echo_n "(cached) " >&6
+else
+ ac_func_search_save_LIBS=$LIBS
+cat >conftest.$ac_ext <<_ACEOF
+/* confdefs.h. */
+_ACEOF
+cat confdefs.h >>conftest.$ac_ext
+cat >>conftest.$ac_ext <<_ACEOF
+/* end confdefs.h. */
+
+/* Override any GCC internal prototype to avoid an error.
+ Use char because int might match the return type of a GCC
+ builtin and then its argument prototype would still apply. */
+#ifdef __cplusplus
+extern "C"
+#endif
+char shm_unlink ();
+int
+main ()
+{
+return shm_unlink ();
+ ;
+ return 0;
+}
+_ACEOF
+for ac_lib in '' rt; do
+ if test -z "$ac_lib"; then
+ ac_res="none required"
+ else
+ ac_res=-l$ac_lib
+ LIBS="-l$ac_lib $ac_func_search_save_LIBS"
+ fi
+ rm -f conftest.$ac_objext conftest$ac_exeext
+if { (ac_try="$ac_link"
+case "(($ac_try" in
+ *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
+ *) ac_try_echo=$ac_try;;
+esac
+eval ac_try_echo="\"\$as_me:$LINENO: $ac_try_echo\""
+$as_echo "$ac_try_echo") >&5
+ (eval "$ac_link") 2>conftest.er1
+ ac_status=$?
+ grep -v '^ *+' conftest.er1 >conftest.err
+ rm -f conftest.er1
+ cat conftest.err >&5
+ $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); } && {
+ test -z "$ac_c_werror_flag" ||
+ test ! -s conftest.err
+ } && test -s conftest$ac_exeext && {
+ test "$cross_compiling" = yes ||
+ $as_test_x conftest$ac_exeext
+ }; then
+ ac_cv_search_shm_unlink=$ac_res
+else
+ $as_echo "$as_me: failed program was:" >&5
+sed 's/^/| /' conftest.$ac_ext >&5
+
+
+fi
+
+rm -rf conftest.dSYM
+rm -f core conftest.err conftest.$ac_objext conftest_ipa8_conftest.oo \
+ conftest$ac_exeext
+ if test "${ac_cv_search_shm_unlink+set}" = set; then
+ break
+fi
+done
+if test "${ac_cv_search_shm_unlink+set}" = set; then
+ :
+else
+ ac_cv_search_shm_unlink=no
+fi
+rm conftest.$ac_ext
+LIBS=$ac_func_search_save_LIBS
+fi
+{ $as_echo "$as_me:$LINENO: result: $ac_cv_search_shm_unlink" >&5
+$as_echo "$ac_cv_search_shm_unlink" >&6; }
+ac_res=$ac_cv_search_shm_unlink
+if test "$ac_res" != no; then
+ test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"
+
+fi
+
# Solaris:
{ $as_echo "$as_me:$LINENO: checking for library containing fdatasync" >&5
$as_echo_n "checking for library containing fdatasync... " >&6; }
-for ac_func in cbrt dlopen fdatasync getifaddrs getpeerucred getrlimit mbstowcs_l memmove poll pstat readlink setproctitle setsid sigprocmask symlink sync_file_range towlower utime utimes wcstombs wcstombs_l
+
+for ac_func in cbrt dlopen fdatasync getifaddrs getpeerucred getrlimit mbstowcs_l memmove poll pstat readlink setproctitle setsid shm_open sigprocmask symlink sync_file_range towlower utime utimes wcstombs wcstombs_l
do
as_ac_var=`$as_echo "ac_cv_func_$ac_func" | $as_tr_sh`
{ $as_echo "$as_me:$LINENO: checking for $ac_func" >&5
esac
AC_SEARCH_LIBS(getopt_long, [getopt gnugetopt])
AC_SEARCH_LIBS(crypt, crypt)
+AC_SEARCH_LIBS(shm_open, rt)
+AC_SEARCH_LIBS(shm_unlink, rt)
# Solaris:
AC_SEARCH_LIBS(fdatasync, [rt posix4])
# Required for thread_test.c on Solaris 2.5:
LIBS_including_readline="$LIBS"
LIBS=`echo "$LIBS" | sed -e 's/-ledit//g' -e 's/-lreadline//g'`
-AC_CHECK_FUNCS([cbrt dlopen fdatasync getifaddrs getpeerucred getrlimit mbstowcs_l memmove poll pstat readlink setproctitle setsid sigprocmask symlink sync_file_range towlower utime utimes wcstombs wcstombs_l])
+AC_CHECK_FUNCS([cbrt dlopen fdatasync getifaddrs getpeerucred getrlimit mbstowcs_l memmove poll pstat readlink setproctitle setsid shm_open sigprocmask symlink sync_file_range towlower utime utimes wcstombs wcstombs_l])
AC_REPLACE_FUNCS(fseeko)
case $host_os in
</listitem>
</varlistentry>
+ <varlistentry id="guc-dynamic-shared-memory-type" xreflabel="dynamic_shared_memory_type">
+ <term><varname>dynamic_shared_memory_type</varname> (<type>enum</type>)</term>
+ <indexterm>
+ <primary><varname>dynamic_shared_memory_type</> configuration parameter</primary>
+ </indexterm>
+ <listitem>
+ <para>
+ Specifies the dynamic shared memory implementation that the server
+ should use. Possible values are <literal>posix</> (for POSIX shared
+ memory allocated using <literal>shm_open</>), <literal>sysv</literal>
+ (for System V shared memory allocated via <literal>shmget</>),
+ <literal>windows</> (for Windows shared memory), <literal>mmap</>
+ (to simulate shared memory using memory-mapped files stored in the
+ data directory), and <literal>none</> (to disable this feature).
+ Not all values are supported on all platforms; the first supported
+ option is the default for that platform. The use of the
+ <literal>mmap</> option, which is not the default on any platform,
+ is generally discouraged because the operating system may write
+ modified pages back to disk repeatedly, increasing system I/O load;
+ however, it may be useful for debugging, when the
+ <literal>pg_dynshmem</> directory is stored on a RAM disk, or when
+ other shared memory facilities are not available.
+ </para>
+ </listitem>
+ </varlistentry>
+
</variablelist>
</sect2>
#endif
#include "miscadmin.h"
+#include "portability/mem.h"
#include "storage/ipc.h"
#include "storage/pg_shmem.h"
typedef key_t IpcMemoryKey; /* shared memory key passed to shmget(2) */
typedef int IpcMemoryId; /* shared memory ID returned by shmget(2) */
-#define IPCProtection (0600) /* access/modify by user only */
-
-#ifdef SHM_SHARE_MMU /* use intimate shared memory on Solaris */
-#define PG_SHMAT_FLAGS SHM_SHARE_MMU
-#else
-#define PG_SHMAT_FLAGS 0
-#endif
-
-/* Linux prefers MAP_ANONYMOUS, but the flag is called MAP_ANON on other systems. */
-#ifndef MAP_ANONYMOUS
-#define MAP_ANONYMOUS MAP_ANON
-#endif
-
-/* BSD-derived systems have MAP_HASSEMAPHORE, but it's not present (or needed) on Linux. */
-#ifndef MAP_HASSEMAPHORE
-#define MAP_HASSEMAPHORE 0
-#endif
-
-#define PG_MMAP_FLAGS (MAP_SHARED|MAP_ANONYMOUS|MAP_HASSEMAPHORE)
-
-/* Some really old systems don't define MAP_FAILED. */
-#ifndef MAP_FAILED
-#define MAP_FAILED ((void *) -1)
-#endif
-
unsigned long UsedShmemSegID = 0;
void *UsedShmemSegAddr = NULL;
endif
endif
-OBJS = ipc.o ipci.o pmsignal.o procarray.o procsignal.o shmem.o shmqueue.o \
- sinval.o sinvaladt.o standby.o
+OBJS = dsm_impl.o dsm.o ipc.o ipci.o pmsignal.o procarray.o procsignal.o \
+ shmem.o shmqueue.o sinval.o sinvaladt.o standby.o
include $(top_srcdir)/src/backend/common.mk
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * dsm.c
+ * manage dynamic shared memory segments
+ *
+ * This file provides a set of services to make programming with dynamic
+ * shared memory segments more convenient. Unlike the low-level
+ * facilities provided by dsm_impl.h and dsm_impl.c, mappings and segments
+ * created using this module will be cleaned up automatically. Mappings
+ * will be removed when the resource owner under which they were created
+ * is cleaned up, unless dsm_keep_mapping() is used, in which case they
+ * have session lifespan. Segments will be removed when there are no
+ * remaining mappings, or at postmaster shutdown in any case. After a
+ * hard postmaster crash, remaining segments will be removed, if they
+ * still exist, at the next postmaster startup.
+ *
+ * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/storage/ipc/dsm.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include <fcntl.h>
+#include <string.h>
+#include <unistd.h>
+#ifndef WIN32
+#include <sys/mman.h>
+#endif
+#include <sys/stat.h>
+
+#include "lib/ilist.h"
+#include "miscadmin.h"
+#include "storage/dsm.h"
+#include "storage/ipc.h"
+#include "storage/lwlock.h"
+#include "utils/guc.h"
+#include "utils/memutils.h"
+#include "utils/resowner_private.h"
+
+#define PG_DYNSHMEM_STATE_FILE PG_DYNSHMEM_DIR "/state"
+#define PG_DYNSHMEM_NEW_STATE_FILE PG_DYNSHMEM_DIR "/state.new"
+#define PG_DYNSHMEM_STATE_BUFSIZ 512
+#define PG_DYNSHMEM_CONTROL_MAGIC 0x9a503d32
+
+/*
+ * There's no point in getting too cheap here, because the minimum allocation
+ * is one OS page, which is probably at least 4KB and could easily be as high
+ * as 64KB. Each currently sizeof(dsm_control_item), currently 8 bytes.
+ */
+#define PG_DYNSHMEM_FIXED_SLOTS 64
+#define PG_DYNSHMEM_SLOTS_PER_BACKEND 2
+
+#define INVALID_CONTROL_SLOT ((uint32) -1)
+
+/* Backend-local state for a dynamic shared memory segment. */
+struct dsm_segment
+{
+ dlist_node node; /* List link in dsm_segment_list. */
+ ResourceOwner resowner; /* Resource owner. */
+ dsm_handle handle; /* Segment name. */
+ uint32 control_slot; /* Slot in control segment. */
+ void *impl_private; /* Implementation-specific private data. */
+ void *mapped_address; /* Mapping address, or NULL if unmapped. */
+ uint64 mapped_size; /* Size of our mapping. */
+};
+
+/* Shared-memory state for a dynamic shared memory segment. */
+typedef struct dsm_control_item
+{
+ dsm_handle handle;
+ uint32 refcnt; /* 2+ = active, 1 = moribund, 0 = gone */
+} dsm_control_item;
+
+/* Layout of the dynamic shared memory control segment. */
+typedef struct dsm_control_header
+{
+ uint32 magic;
+ uint32 nitems;
+ uint32 maxitems;
+ dsm_control_item item[FLEXIBLE_ARRAY_MEMBER];
+} dsm_control_header;
+
+static void dsm_cleanup_using_control_segment(void);
+static void dsm_cleanup_for_mmap(void);
+static bool dsm_read_state_file(dsm_handle *h);
+static void dsm_write_state_file(dsm_handle h);
+static void dsm_postmaster_shutdown(int code, Datum arg);
+static void dsm_backend_shutdown(int code, Datum arg);
+static dsm_segment *dsm_create_descriptor(void);
+static bool dsm_control_segment_sane(dsm_control_header *control,
+ uint64 mapped_size);
+static uint64 dsm_control_bytes_needed(uint32 nitems);
+
+/* Has this backend initialized the dynamic shared memory system yet? */
+static bool dsm_init_done = false;
+
+/*
+ * List of dynamic shared memory segments used by this backend.
+ *
+ * At process exit time, we must decrement the reference count of each
+ * segment we have attached; this list makes it possible to find all such
+ * segments.
+ *
+ * This list should always be empty in the postmaster. We could probably
+ * allow the postmaster to map dynamic shared memory segments before it
+ * begins to start child processes, provided that each process adjusted
+ * the reference counts for those segments in the control segment at
+ * startup time, but there's no obvious need for such a facility, which
+ * would also be complex to handle in the EXEC_BACKEND case. Once the
+ * postmaster has begun spawning children, there's an additional problem:
+ * each new mapping would require an update to the control segment,
+ * which requires locking, in which the postmaster must not be involved.
+ */
+static dlist_head dsm_segment_list = DLIST_STATIC_INIT(dsm_segment_list);
+
+/*
+ * Control segment information.
+ *
+ * Unlike ordinary shared memory segments, the control segment is not
+ * reference counted; instead, it lasts for the postmaster's entire
+ * life cycle. For simplicity, it doesn't have a dsm_segment object either.
+ */
+static dsm_handle dsm_control_handle;
+static dsm_control_header *dsm_control;
+static uint64 dsm_control_mapped_size = 0;
+static void *dsm_control_impl_private = NULL;
+
+/*
+ * Start up the dynamic shared memory system.
+ *
+ * This is called just once during each cluster lifetime, at postmaster
+ * startup time.
+ */
+void
+dsm_postmaster_startup(void)
+{
+ void *dsm_control_address = NULL;
+ uint32 maxitems;
+ uint64 segsize;
+
+ Assert(!IsUnderPostmaster);
+
+ /* If dynamic shared memory is disabled, there's nothing to do. */
+ if (dynamic_shared_memory_type == DSM_IMPL_NONE)
+ return;
+
+ /*
+ * Check for, and remove, shared memory segments left behind by a dead
+ * postmaster. This isn't necessary on Windows, which always removes them
+ * when the last reference is gone.
+ */
+ switch (dynamic_shared_memory_type)
+ {
+ case DSM_IMPL_POSIX:
+ case DSM_IMPL_SYSV:
+ dsm_cleanup_using_control_segment();
+ break;
+ case DSM_IMPL_MMAP:
+ dsm_cleanup_for_mmap();
+ break;
+ case DSM_IMPL_WINDOWS:
+ /* Nothing to do. */
+ break;
+ default:
+ elog(ERROR, "unknown dynamic shared memory type: %d",
+ dynamic_shared_memory_type);
+ }
+
+ /* Determine size for new control segment. */
+ maxitems = PG_DYNSHMEM_FIXED_SLOTS
+ + PG_DYNSHMEM_SLOTS_PER_BACKEND * MaxBackends;
+ elog(DEBUG2, "dynamic shared memory system will support %u segments",
+ maxitems);
+ segsize = dsm_control_bytes_needed(maxitems);
+
+ /* Loop until we find an unused identifier for the new control segment. */
+ for (;;)
+ {
+ Assert(dsm_control_address == NULL);
+ Assert(dsm_control_mapped_size == 0);
+ dsm_control_handle = random();
+ if (dsm_impl_op(DSM_OP_CREATE, dsm_control_handle, segsize,
+ &dsm_control_impl_private, &dsm_control_address,
+ &dsm_control_mapped_size, ERROR))
+ break;
+ }
+ dsm_control = dsm_control_address;
+ on_shmem_exit(dsm_postmaster_shutdown, 0);
+ elog(DEBUG2, "created dynamic shared memory control segment %u ("
+ UINT64_FORMAT " bytes)", dsm_control_handle, segsize);
+ dsm_write_state_file(dsm_control_handle);
+
+ /* Initialize control segment. */
+ dsm_control->magic = PG_DYNSHMEM_CONTROL_MAGIC;
+ dsm_control->nitems = 0;
+ dsm_control->maxitems = maxitems;
+}
+
+/*
+ * Determine whether the control segment from the previous postmaster
+ * invocation still exists. If so, remove the dynamic shared memory
+ * segments to which it refers, and then the control segment itself.
+ */
+static void
+dsm_cleanup_using_control_segment(void)
+{
+ void *mapped_address = NULL;
+ void *junk_mapped_address = NULL;
+ void *impl_private = NULL;
+ void *junk_impl_private = NULL;
+ uint64 mapped_size = 0;
+ uint64 junk_mapped_size = 0;
+ uint32 nitems;
+ uint32 i;
+ dsm_handle old_control_handle;
+ dsm_control_header *old_control;
+
+ /*
+ * Read the state file. If it doesn't exist or is empty, there's nothing
+ * more to do.
+ */
+ if (!dsm_read_state_file(&old_control_handle))
+ return;
+
+ /*
+ * Try to attach the segment. If this fails, it probably just means that
+ * the operating system has been rebooted and the segment no longer exists,
+ * or an unrelated proces has used the same shm ID. So just fall out
+ * quietly.
+ */
+ if (!dsm_impl_op(DSM_OP_ATTACH, old_control_handle, 0, &impl_private,
+ &mapped_address, &mapped_size, DEBUG1))
+ return;
+
+ /*
+ * We've managed to reattach it, but the contents might not be sane.
+ * If they aren't, we disregard the segment after all.
+ */
+ old_control = (dsm_control_header *) mapped_address;
+ if (!dsm_control_segment_sane(old_control, mapped_size))
+ {
+ dsm_impl_op(DSM_OP_DETACH, old_control_handle, 0, &impl_private,
+ &mapped_address, &mapped_size, LOG);
+ return;
+ }
+
+ /*
+ * OK, the control segment looks basically valid, so we can get use
+ * it to get a list of segments that need to be removed.
+ */
+ nitems = old_control->nitems;
+ for (i = 0; i < nitems; ++i)
+ {
+ dsm_handle handle;
+ uint32 refcnt;
+
+ /* If the reference count is 0, the slot is actually unused. */
+ refcnt = old_control->item[i].refcnt;
+ if (refcnt == 0)
+ continue;
+
+ /* Log debugging information. */
+ handle = old_control->item[i].handle;
+ elog(DEBUG2, "cleaning up orphaned dynamic shared memory with ID %u (reference count %u)",
+ handle, refcnt);
+
+ /* Destroy the referenced segment. */
+ dsm_impl_op(DSM_OP_DESTROY, handle, 0, &junk_impl_private,
+ &junk_mapped_address, &junk_mapped_size, LOG);
+ }
+
+ /* Destroy the old control segment, too. */
+ elog(DEBUG2,
+ "cleaning up dynamic shared memory control segment with ID %u",
+ old_control_handle);
+ dsm_impl_op(DSM_OP_DESTROY, old_control_handle, 0, &impl_private,
+ &mapped_address, &mapped_size, LOG);
+}
+
+/*
+ * When we're using the mmap shared memory implementation, "shared memory"
+ * segments might even manage to survive an operating system reboot.
+ * But there's no guarantee as to exactly what will survive: some segments
+ * may survive, and others may not, and the contents of some may be out
+ * of date. In particular, the control segment may be out of date, so we
+ * can't rely on it to figure out what to remove. However, since we know
+ * what directory contains the files we used as shared memory, we can simply
+ * scan the directory and blow everything away that shouldn't be there.
+ */
+static void
+dsm_cleanup_for_mmap(void)
+{
+ DIR *dir;
+ struct dirent *dent;
+
+ /* Open the directory; can't use AllocateDir in postmaster. */
+ if ((dir = opendir(PG_DYNSHMEM_DIR)) == NULL)
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not open directory \"%s\": %m",
+ PG_DYNSHMEM_DIR)));
+
+ /* Scan for something with a name of the correct format. */
+ while ((dent = readdir(dir)) != NULL)
+ {
+ if (strncmp(dent->d_name, PG_DYNSHMEM_MMAP_FILE_PREFIX,
+ strlen(PG_DYNSHMEM_MMAP_FILE_PREFIX)) == 0)
+ {
+ char buf[MAXPGPATH];
+ snprintf(buf, MAXPGPATH, PG_DYNSHMEM_DIR "/%s", dent->d_name);
+
+ elog(DEBUG2, "removing file \"%s\"", buf);
+
+ /* We found a matching file; so remove it. */
+ if (unlink(buf) != 0)
+ {
+ int save_errno;
+
+ save_errno = errno;
+ closedir(dir);
+ errno = save_errno;
+
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not remove file \"%s\": %m", buf)));
+ }
+ }
+ }
+
+ /* Cleanup complete. */
+ closedir(dir);
+}
+
+/*
+ * Read and parse the state file.
+ *
+ * If the state file is empty or the contents are garbled, it probably means
+ * that the operating system rebooted before the data written by the previous
+ * postmaster made it to disk. In that case, we can just ignore it; any shared
+ * memory from before the reboot should be gone anyway.
+ */
+static bool
+dsm_read_state_file(dsm_handle *h)
+{
+ int statefd;
+ char statebuf[PG_DYNSHMEM_STATE_BUFSIZ];
+ int nbytes = 0;
+ char *endptr,
+ *s;
+ dsm_handle handle;
+
+ /* Read the state file to get the ID of the old control segment. */
+ statefd = open(PG_DYNSHMEM_STATE_FILE, O_RDONLY | PG_BINARY, 0);
+ if (statefd < 0)
+ {
+ if (errno == ENOENT)
+ return false;
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not open file \"%s\": %m",
+ PG_DYNSHMEM_STATE_FILE)));
+ }
+ nbytes = read(statefd, statebuf, PG_DYNSHMEM_STATE_BUFSIZ - 1);
+ if (nbytes < 0)
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not read file \"%s\": %m",
+ PG_DYNSHMEM_STATE_FILE)));
+ /* make sure buffer is NUL terminated */
+ statebuf[nbytes] = '\0';
+ close(statefd);
+
+ /*
+ * We expect to find the handle of the old control segment here,
+ * on a line by itself.
+ */
+ handle = strtoul(statebuf, &endptr, 10);
+ for (s = endptr; *s == ' ' || *s == '\t'; ++s)
+ ;
+ if (*s != '\n' && *s != '\0')
+ return false;
+
+ /* Looks good. */
+ *h = handle;
+ return true;
+}
+
+/*
+ * Write our control segment handle to the state file, so that if the
+ * postmaster is killed without running it's on_shmem_exit hooks, the
+ * next postmaster can clean things up after restart.
+ */
+static void
+dsm_write_state_file(dsm_handle h)
+{
+ int statefd;
+ char statebuf[PG_DYNSHMEM_STATE_BUFSIZ];
+ int nbytes;
+
+ /* Create or truncate the file. */
+ statefd = open(PG_DYNSHMEM_NEW_STATE_FILE,
+ O_RDWR | O_CREAT | O_TRUNC | PG_BINARY, 0600);
+ if (statefd < 0)
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not create file \"%s\": %m",
+ PG_DYNSHMEM_NEW_STATE_FILE)));
+
+ /* Write contents. */
+ snprintf(statebuf, PG_DYNSHMEM_STATE_BUFSIZ, "%u\n", dsm_control_handle);
+ nbytes = strlen(statebuf);
+ if (write(statefd, statebuf, nbytes) != nbytes)
+ {
+ if (errno == 0)
+ errno = ENOSPC; /* if no error signalled, assume no space */
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not write file \"%s\": %m",
+ PG_DYNSHMEM_NEW_STATE_FILE)));
+ }
+
+ /* Close file. */
+ close(statefd);
+
+ /*
+ * Atomically rename file into place, so that no one ever sees a partially
+ * written state file.
+ */
+ if (rename(PG_DYNSHMEM_NEW_STATE_FILE, PG_DYNSHMEM_STATE_FILE) < 0)
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("could not rename file \"%s\": %m",
+ PG_DYNSHMEM_NEW_STATE_FILE)));
+}
+
+/*
+ * At shutdown time, we iterate over the control segment and remove all
+ * remaining dynamic shared memory segments. We avoid throwing errors here;
+ * the postmaster is shutting down either way, and this is just non-critical
+ * resource cleanup.
+ */
+static void
+dsm_postmaster_shutdown(int code, Datum arg)
+{
+ uint32 nitems;
+ uint32 i;
+ void *dsm_control_address;
+ void *junk_mapped_address = NULL;
+ void *junk_impl_private = NULL;
+ uint64 junk_mapped_size = 0;
+
+ /*
+ * If some other backend exited uncleanly, it might have corrupted the
+ * control segment while it was dying. In that case, we warn and ignore
+ * the contents of the control segment. This may end up leaving behind
+ * stray shared memory segments, but there's not much we can do about
+ * that if the metadata is gone.
+ */
+ nitems = dsm_control->nitems;
+ if (!dsm_control_segment_sane(dsm_control, dsm_control_mapped_size))
+ {
+ ereport(LOG,
+ (errmsg("dynamic shared memory control segment is corrupt")));
+ return;
+ }
+
+ /* Remove any remaining segments. */
+ for (i = 0; i < nitems; ++i)
+ {
+ dsm_handle handle;
+
+ /* If the reference count is 0, the slot is actually unused. */
+ if (dsm_control->item[i].refcnt == 0)
+ continue;
+
+ /* Log debugging information. */
+ handle = dsm_control->item[i].handle;
+ elog(DEBUG2, "cleaning up orphaned dynamic shared memory with ID %u",
+ handle);
+
+ /* Destroy the segment. */
+ dsm_impl_op(DSM_OP_DESTROY, handle, 0, &junk_impl_private,
+ &junk_mapped_address, &junk_mapped_size, LOG);
+ }
+
+ /* Remove the control segment itself. */
+ elog(DEBUG2,
+ "cleaning up dynamic shared memory control segment with ID %u",
+ dsm_control_handle);
+ dsm_control_address = dsm_control;
+ dsm_impl_op(DSM_OP_DESTROY, dsm_control_handle, 0,
+ &dsm_control_impl_private, &dsm_control_address,
+ &dsm_control_mapped_size, LOG);
+ dsm_control = dsm_control_address;
+
+ /* And, finally, remove the state file. */
+ if (unlink(PG_DYNSHMEM_STATE_FILE) < 0)
+ ereport(LOG,
+ (errcode_for_file_access(),
+ errmsg("could not unlink file \"%s\": %m",
+ PG_DYNSHMEM_STATE_FILE)));
+}
+
+/*
+ * Prepare this backend for dynamic shared memory usage. Under EXEC_BACKEND,
+ * we must reread the state file and map the control segment; in other cases,
+ * we'll have inherited the postmaster's mapping and global variables.
+ */
+static void
+dsm_backend_startup(void)
+{
+ /* If dynamic shared memory is disabled, reject this. */
+ if (dynamic_shared_memory_type == DSM_IMPL_NONE)
+ ereport(ERROR,
+ (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
+ errmsg("dynamic shared memory is disabled"),
+ errhint("Set dynamic_shared_memory_type to a value other than \"none\".")));
+
+#ifdef EXEC_BACKEND
+ {
+ dsm_handle control_handle;
+ void *control_address = NULL;
+
+ /* Read the control segment information from the state file. */
+ if (!dsm_read_state_file(&control_handle))
+ ereport(ERROR,
+ (errcode(ERRCODE_INTERNAL_ERROR),
+ errmsg("could not parse dynamic shared memory state file")));
+
+ /* Attach control segment. */
+ dsm_impl_op(DSM_OP_ATTACH, control_handle, 0,
+ &dsm_control_impl_private, &control_address,
+ &dsm_control_mapped_size, ERROR);
+ dsm_control_handle = control_handle;
+ dsm_control = control_address;
+ /* If control segment doesn't look sane, something is badly wrong. */
+ if (!dsm_control_segment_sane(dsm_control, dsm_control_mapped_size))
+ {
+ dsm_impl_op(DSM_OP_DETACH, control_handle, 0,
+ &dsm_control_impl_private, &control_address,
+ &dsm_control_mapped_size, WARNING);
+ ereport(FATAL,
+ (errcode(ERRCODE_INTERNAL_ERROR),
+ errmsg("dynamic shared memory control segment is not valid")));
+ }
+ }
+#endif
+
+ /* Arrange to detach segments on exit. */
+ on_shmem_exit(dsm_backend_shutdown, 0);
+
+ dsm_init_done = true;
+}
+
+/*
+ * Create a new dynamic shared memory segment.
+ */
+dsm_segment *
+dsm_create(uint64 size)
+{
+ dsm_segment *seg = dsm_create_descriptor();
+ uint32 i;
+ uint32 nitems;
+
+ /* Unsafe in postmaster (and pointless in a stand-alone backend). */
+ Assert(IsUnderPostmaster);
+
+ if (!dsm_init_done)
+ dsm_backend_startup();
+
+ /* Loop until we find an unused segment identifier. */
+ for (;;)
+ {
+ Assert(seg->mapped_address == NULL && seg->mapped_size == 0);
+ seg->handle = random();
+ if (dsm_impl_op(DSM_OP_CREATE, seg->handle, size, &seg->impl_private,
+ &seg->mapped_address, &seg->mapped_size, ERROR))
+ break;
+ }
+
+ /* Lock the control segment so we can register the new segment. */
+ LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
+
+ /* Search the control segment for an unused slot. */
+ nitems = dsm_control->nitems;
+ for (i = 0; i < nitems; ++i)
+ {
+ if (dsm_control->item[i].refcnt == 0)
+ {
+ dsm_control->item[i].handle = seg->handle;
+ /* refcnt of 1 triggers destruction, so start at 2 */
+ dsm_control->item[i].refcnt = 2;
+ seg->control_slot = i;
+ LWLockRelease(DynamicSharedMemoryControlLock);
+ return seg;
+ }
+ }
+
+ /* Verify that we can support an additional mapping. */
+ if (nitems >= dsm_control->maxitems)
+ ereport(ERROR,
+ (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
+ errmsg("too many dynamic shared memory segments")));
+
+ /* Enter the handle into a new array slot. */
+ dsm_control->item[nitems].handle = seg->handle;
+ /* refcnt of 1 triggers destruction, so start at 2 */
+ dsm_control->item[nitems].refcnt = 2;
+ seg->control_slot = nitems;
+ dsm_control->nitems++;
+ LWLockRelease(DynamicSharedMemoryControlLock);
+
+ return seg;
+}
+
+/*
+ * Attach a dynamic shared memory segment.
+ *
+ * See comments for dsm_segment_handle() for an explanation of how this
+ * is intended to be used.
+ *
+ * This function will return NULL if the segment isn't known to the system.
+ * This can happen if we're asked to attach the segment, but then everyone
+ * else detaches it (causing it to be destroyed) before we get around to
+ * attaching it.
+ */
+dsm_segment *
+dsm_attach(dsm_handle h)
+{
+ dsm_segment *seg;
+ dlist_iter iter;
+ uint32 i;
+ uint32 nitems;
+
+ /* Unsafe in postmaster (and pointless in a stand-alone backend). */
+ Assert(IsUnderPostmaster);
+
+ if (!dsm_init_done)
+ dsm_backend_startup();
+
+ /*
+ * Since this is just a debugging cross-check, we could leave it out
+ * altogether, or include it only in assert-enabled builds. But since
+ * the list of attached segments should normally be very short, let's
+ * include it always for right now.
+ *
+ * If you're hitting this error, you probably want to attempt to
+ * find an existing mapping via dsm_find_mapping() before calling
+ * dsm_attach() to create a new one.
+ */
+ dlist_foreach(iter, &dsm_segment_list)
+ {
+ seg = dlist_container(dsm_segment, node, iter.cur);
+ if (seg->handle == h)
+ elog(ERROR, "can't attach the same segment more than once");
+ }
+
+ /* Create a new segment descriptor. */
+ seg = dsm_create_descriptor();
+ seg->handle = h;
+
+ /* Bump reference count for this segment in shared memory. */
+ LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
+ nitems = dsm_control->nitems;
+ for (i = 0; i < nitems; ++i)
+ {
+ /* If the reference count is 0, the slot is actually unused. */
+ if (dsm_control->item[i].refcnt == 0)
+ continue;
+
+ /*
+ * If the reference count is 1, the slot is still in use, but the
+ * segment is in the process of going away. Treat that as if we
+ * didn't find a match.
+ */
+ if (dsm_control->item[i].refcnt == 1)
+ break;
+
+ /* Otherwise, if the descriptor matches, we've found a match. */
+ if (dsm_control->item[i].handle == seg->handle)
+ {
+ dsm_control->item[i].refcnt++;
+ seg->control_slot = i;
+ break;
+ }
+ }
+ LWLockRelease(DynamicSharedMemoryControlLock);
+
+ /*
+ * If we didn't find the handle we're looking for in the control
+ * segment, it probably means that everyone else who had it mapped,
+ * including the original creator, died before we got to this point.
+ * It's up to the caller to decide what to do about that.
+ */
+ if (seg->control_slot == INVALID_CONTROL_SLOT)
+ {
+ dsm_detach(seg);
+ return NULL;
+ }
+
+ /* Here's where we actually try to map the segment. */
+ dsm_impl_op(DSM_OP_ATTACH, seg->handle, 0, &seg->impl_private,
+ &seg->mapped_address, &seg->mapped_size, ERROR);
+
+ return seg;
+}
+
+/*
+ * At backend shutdown time, detach any segments that are still attached.
+ */
+static void
+dsm_backend_shutdown(int code, Datum arg)
+{
+ while (!dlist_is_empty(&dsm_segment_list))
+ {
+ dsm_segment *seg;
+
+ seg = dlist_head_element(dsm_segment, node, &dsm_segment_list);
+ dsm_detach(seg);
+ }
+}
+
+/*
+ * Resize an existing shared memory segment.
+ *
+ * This may cause the shared memory segment to be remapped at a different
+ * address. For the caller's convenience, we return the mapped address.
+ */
+void *
+dsm_resize(dsm_segment *seg, uint64 size)
+{
+ Assert(seg->control_slot != INVALID_CONTROL_SLOT);
+ dsm_impl_op(DSM_OP_RESIZE, seg->handle, size, &seg->impl_private,
+ &seg->mapped_address, &seg->mapped_size, ERROR);
+ return seg->mapped_address;
+}
+
+/*
+ * Remap an existing shared memory segment.
+ *
+ * This is intended to be used when some other process has extended the
+ * mapping using dsm_resize(), but we've still only got the initial
+ * portion mapped. Since this might change the address at which the
+ * segment is mapped, we return the new mapped address.
+ */
+void *
+dsm_remap(dsm_segment *seg)
+{
+ dsm_impl_op(DSM_OP_ATTACH, seg->handle, 0, &seg->impl_private,
+ &seg->mapped_address, &seg->mapped_size, ERROR);
+
+ return seg->mapped_address;
+}
+
+/*
+ * Detach from a shared memory segment, destroying the segment if we
+ * remove the last reference.
+ *
+ * This function should never fail. It will often be invoked when aborting
+ * a transaction, and a further error won't serve any purpose. It's not a
+ * complete disaster if we fail to unmap or destroy the segment; it means a
+ * resource leak, but that doesn't necessarily preclude further operations.
+ */
+void
+dsm_detach(dsm_segment *seg)
+{
+ /*
+ * Try to remove the mapping, if one exists. Normally, there will be,
+ * but maybe not, if we failed partway through a create or attach
+ * operation. We remove the mapping before decrementing the reference
+ * count so that the process that sees a zero reference count can be
+ * certain that no remaining mappings exist. Even if this fails, we
+ * pretend that it works, because retrying is likely to fail in the
+ * same way.
+ */
+ if (seg->mapped_address != NULL)
+ {
+ dsm_impl_op(DSM_OP_DETACH, seg->handle, 0, &seg->impl_private,
+ &seg->mapped_address, &seg->mapped_size, WARNING);
+ seg->impl_private = NULL;
+ seg->mapped_address = NULL;
+ seg->mapped_size = 0;
+ }
+
+ /* Reduce reference count, if we previously increased it. */
+ if (seg->control_slot != INVALID_CONTROL_SLOT)
+ {
+ uint32 refcnt;
+ uint32 control_slot = seg->control_slot;
+
+ LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
+ Assert(dsm_control->item[control_slot].handle == seg->handle);
+ Assert(dsm_control->item[control_slot].refcnt > 1);
+ refcnt = --dsm_control->item[control_slot].refcnt;
+ seg->control_slot = INVALID_CONTROL_SLOT;
+ LWLockRelease(DynamicSharedMemoryControlLock);
+
+ /* If new reference count is 1, try to destroy the segment. */
+ if (refcnt == 1)
+ {
+ /*
+ * If we fail to destroy the segment here, or are killed before
+ * we finish doing so, the reference count will remain at 1, which
+ * will mean that nobody else can attach to the segment. At
+ * postmaster shutdown time, or when a new postmaster is started
+ * after a hard kill, another attempt will be made to remove the
+ * segment.
+ *
+ * The main case we're worried about here is being killed by
+ * a signal before we can finish removing the segment. In that
+ * case, it's important to be sure that the segment still gets
+ * removed. If we actually fail to remove the segment for some
+ * other reason, the postmaster may not have any better luck than
+ * we did. There's not much we can do about that, though.
+ */
+ if (dsm_impl_op(DSM_OP_DESTROY, seg->handle, 0, &seg->impl_private,
+ &seg->mapped_address, &seg->mapped_size, WARNING))
+ {
+ LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
+ Assert(dsm_control->item[control_slot].handle == seg->handle);
+ Assert(dsm_control->item[control_slot].refcnt == 1);
+ dsm_control->item[control_slot].refcnt = 0;
+ LWLockRelease(DynamicSharedMemoryControlLock);
+ }
+ }
+ }
+
+ /* Clean up our remaining backend-private data structures. */
+ if (seg->resowner != NULL)
+ ResourceOwnerForgetDSM(seg->resowner, seg);
+ dlist_delete(&seg->node);
+ pfree(seg);
+}
+
+/*
+ * Keep a dynamic shared memory mapping until end of session.
+ *
+ * By default, mappings are owned by the current resource owner, which
+ * typically means they stick around for the duration of the current query
+ * only.
+ */
+void
+dsm_keep_mapping(dsm_segment *seg)
+{
+ if (seg->resowner != NULL)
+ {
+ ResourceOwnerForgetDSM(seg->resowner, seg);
+ seg->resowner = NULL;
+ }
+}
+
+/*
+ * Find an existing mapping for a shared memory segment, if there is one.
+ */
+dsm_segment *
+dsm_find_mapping(dsm_handle h)
+{
+ dlist_iter iter;
+ dsm_segment *seg;
+
+ dlist_foreach(iter, &dsm_segment_list)
+ {
+ seg = dlist_container(dsm_segment, node, iter.cur);
+ if (seg->handle == h)
+ return seg;
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the address at which a dynamic shared memory segment is mapped.
+ */
+void *
+dsm_segment_address(dsm_segment *seg)
+{
+ Assert(seg->mapped_address != NULL);
+ return seg->mapped_address;
+}
+
+/*
+ * Get the size of a mapping.
+ */
+uint64
+dsm_segment_map_length(dsm_segment *seg)
+{
+ Assert(seg->mapped_address != NULL);
+ return seg->mapped_size;
+}
+
+/*
+ * Get a handle for a mapping.
+ *
+ * To establish communication via dynamic shared memory between two backends,
+ * one of them should first call dsm_create() to establish a new shared
+ * memory mapping. That process should then call dsm_segment_handle() to
+ * obtain a handle for the mapping, and pass that handle to the
+ * coordinating backend via some means (e.g. bgw_main_arg, or via the
+ * main shared memory segment). The recipient, once in position of the
+ * handle, should call dsm_attach().
+ */
+dsm_handle
+dsm_segment_handle(dsm_segment *seg)
+{
+ return seg->handle;
+}
+
+/*
+ * Create a segment descriptor.
+ */
+static dsm_segment *
+dsm_create_descriptor(void)
+{
+ dsm_segment *seg;
+
+ ResourceOwnerEnlargeDSMs(CurrentResourceOwner);
+
+ seg = MemoryContextAlloc(TopMemoryContext, sizeof(dsm_segment));
+ dlist_push_head(&dsm_segment_list, &seg->node);
+
+ /* seg->handle must be initialized by the caller */
+ seg->control_slot = INVALID_CONTROL_SLOT;
+ seg->impl_private = NULL;
+ seg->mapped_address = NULL;
+ seg->mapped_size = 0;
+
+ seg->resowner = CurrentResourceOwner;
+ ResourceOwnerRememberDSM(CurrentResourceOwner, seg);
+
+ return seg;
+}
+
+/*
+ * Sanity check a control segment.
+ *
+ * The goal here isn't to detect everything that could possibly be wrong with
+ * the control segment; there's not enough information for that. Rather, the
+ * goal is to make sure that someone can iterate over the items in the segment
+ * without overrunning the end of the mapping and crashing. We also check
+ * the magic number since, if that's messed up, this may not even be one of
+ * our segments at all.
+ */
+static bool
+dsm_control_segment_sane(dsm_control_header *control, uint64 mapped_size)
+{
+ if (mapped_size < offsetof(dsm_control_header, item))
+ return false; /* Mapped size too short to read header. */
+ if (control->magic != PG_DYNSHMEM_CONTROL_MAGIC)
+ return false; /* Magic number doesn't match. */
+ if (dsm_control_bytes_needed(control->maxitems) > mapped_size)
+ return false; /* Max item count won't fit in map. */
+ if (control->nitems > control->maxitems)
+ return false; /* Overfull. */
+ return true;
+}
+
+/*
+ * Compute the number of control-segment bytes needed to store a given
+ * number of items.
+ */
+static uint64
+dsm_control_bytes_needed(uint32 nitems)
+{
+ return offsetof(dsm_control_header, item)
+ + sizeof(dsm_control_item) * (uint64) nitems;
+}
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * dsm_impl.c
+ * manage dynamic shared memory segments
+ *
+ * This file provides low-level APIs for creating and destroying shared
+ * memory segments using several different possible techniques. We refer
+ * to these segments as dynamic because they can be created, altered, and
+ * destroyed at any point during the server life cycle. This is unlike
+ * the main shared memory segment, of which there is always exactly one
+ * and which is always mapped at a fixed address in every PostgreSQL
+ * background process.
+ *
+ * Because not all systems provide the same primitives in this area, nor
+ * do all primitives behave the same way on all systems, we provide
+ * several implementations of this facility. Many systems implement
+ * POSIX shared memory (shm_open etc.), which is well-suited to our needs
+ * in this area, with the exception that shared memory identifiers live
+ * in a flat system-wide namespace, raising the uncomfortable prospect of
+ * name collisions with other processes (including other copies of
+ * PostgreSQL) running on the same system. Some systems only support
+ * the older System V shared memory interface (shmget etc.) which is
+ * also usable; however, the default allocation limits are often quite
+ * small, and the namespace is even more restricted.
+ *
+ * We also provide an mmap-based shared memory implementation. This may
+ * be useful on systems that provide shared memory via a special-purpose
+ * filesystem; by opting for this implementation, the user can even
+ * control precisely where their shared memory segments are placed. It
+ * can also be used as a fallback for systems where shm_open and shmget
+ * are not available or can't be used for some reason. Of course,
+ * mapping a file residing on an actual spinning disk is a fairly poor
+ * approximation for shared memory because writeback may hurt performance
+ * substantially, but there should be few systems where we must make do
+ * with such poor tools.
+ *
+ * As ever, Windows requires its own implemetation.
+ *
+ * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/storage/ipc/dsm.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include <fcntl.h>
+#include <string.h>
+#include <unistd.h>
+#ifndef WIN32
+#include <sys/mman.h>
+#endif
+#include <sys/stat.h>
+#ifdef HAVE_SYS_IPC_H
+#include <sys/ipc.h>
+#endif
+#ifdef HAVE_SYS_SHM_H
+#include <sys/shm.h>
+#endif
+
+#include "portability/mem.h"
+#include "storage/dsm_impl.h"
+#include "storage/fd.h"
+#include "utils/guc.h"
+#include "utils/memutils.h"
+
+#ifdef USE_DSM_POSIX
+static bool dsm_impl_posix(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address,
+ uint64 *mapped_size, int elevel);
+#endif
+#ifdef USE_DSM_SYSV
+static bool dsm_impl_sysv(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address,
+ uint64 *mapped_size, int elevel);
+#endif
+#ifdef USE_DSM_WINDOWS
+static bool dsm_impl_windows(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address,
+ uint64 *mapped_size, int elevel);
+#endif
+#ifdef USE_DSM_MMAP
+static bool dsm_impl_mmap(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address,
+ uint64 *mapped_size, int elevel);
+#endif
+static int errcode_for_dynamic_shared_memory(void);
+
+const struct config_enum_entry dynamic_shared_memory_options[] = {
+#ifdef USE_DSM_POSIX
+ { "posix", DSM_IMPL_POSIX, false},
+#endif
+#ifdef USE_DSM_SYSV
+ { "sysv", DSM_IMPL_SYSV, false},
+#endif
+#ifdef USE_DSM_WINDOWS
+ { "windows", DSM_IMPL_WINDOWS, false},
+#endif
+#ifdef USE_DSM_MMAP
+ { "mmap", DSM_IMPL_MMAP, false},
+#endif
+ { "none", DSM_IMPL_NONE, false},
+ {NULL, 0, false}
+};
+
+/* Implementation selector. */
+int dynamic_shared_memory_type;
+
+/* Size of buffer to be used for zero-filling. */
+#define ZBUFFER_SIZE 8192
+
+/*------
+ * Perform a low-level shared memory operation in a platform-specific way,
+ * as dictated by the selected implementation. Each implementation is
+ * required to implement the following primitives.
+ *
+ * DSM_OP_CREATE. Create a segment whose size is the request_size and
+ * map it.
+ *
+ * DSM_OP_ATTACH. Map the segment, whose size must be the request_size.
+ * The segment may already be mapped; any existing mapping should be removed
+ * before creating a new one.
+ *
+ * DSM_OP_DETACH. Unmap the segment.
+ *
+ * DSM_OP_RESIZE. Resize the segment to the given request_size and
+ * remap the segment at that new size.
+ *
+ * DSM_OP_DESTROY. Unmap the segment, if it is mapped. Destroy the
+ * segment.
+ *
+ * Arguments:
+ * op: The operation to be performed.
+ * handle: The handle of an existing object, or for DSM_OP_CREATE, the
+ * a new handle the caller wants created.
+ * request_size: For DSM_OP_CREATE, the requested size. For DSM_OP_RESIZE,
+ * the new size. Otherwise, 0.
+ * impl_private: Private, implementation-specific data. Will be a pointer
+ * to NULL for the first operation on a shared memory segment within this
+ * backend; thereafter, it will point to the value to which it was set
+ * on the previous call.
+ * mapped_address: Pointer to start of current mapping; pointer to NULL
+ * if none. Updated with new mapping address.
+ * mapped_size: Pointer to size of current mapping; pointer to 0 if none.
+ * Updated with new mapped size.
+ * elevel: Level at which to log errors.
+ *
+ * Return value: true on success, false on failure. When false is returned,
+ * a message should first be logged at the specified elevel, except in the
+ * case where DSM_OP_CREATE experiences a name collision, which should
+ * silently return false.
+ *-----
+ */
+bool
+dsm_impl_op(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address, uint64 *mapped_size,
+ int elevel)
+{
+ Assert(op == DSM_OP_CREATE || op == DSM_OP_RESIZE || request_size == 0);
+ Assert((op != DSM_OP_CREATE && op != DSM_OP_ATTACH) ||
+ (*mapped_address == NULL && *mapped_size == 0));
+
+ if (request_size > (size_t) -1)
+ ereport(ERROR,
+ (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+ errmsg("requested shared memory size overflows size_t")));
+
+ switch (dynamic_shared_memory_type)
+ {
+#ifdef USE_DSM_POSIX
+ case DSM_IMPL_POSIX:
+ return dsm_impl_posix(op, handle, request_size, impl_private,
+ mapped_address, mapped_size, elevel);
+#endif
+#ifdef USE_DSM_SYSV
+ case DSM_IMPL_SYSV:
+ return dsm_impl_sysv(op, handle, request_size, impl_private,
+ mapped_address, mapped_size, elevel);
+#endif
+#ifdef USE_DSM_WINDOWS
+ case DSM_IMPL_WINDOWS:
+ return dsm_impl_windows(op, handle, request_size, impl_private,
+ mapped_address, mapped_size, elevel);
+#endif
+#ifdef USE_DSM_MMAP
+ case DSM_IMPL_MMAP:
+ return dsm_impl_mmap(op, handle, request_size, impl_private,
+ mapped_address, mapped_size, elevel);
+#endif
+ }
+ elog(ERROR, "unexpected dynamic shared memory type: %d",
+ dynamic_shared_memory_type);
+}
+
+/*
+ * Does the current dynamic shared memory implementation support resizing
+ * segments? (The answer here could be platform-dependent in the future,
+ * since AIX allows shmctl(shmid, SHM_RESIZE, &buffer), though you apparently
+ * can't resize segments to anything larger than 256MB that way. For now,
+ * we keep it simple.)
+ */
+bool
+dsm_impl_can_resize(void)
+{
+ switch (dynamic_shared_memory_type)
+ {
+ case DSM_IMPL_NONE:
+ return false;
+ case DSM_IMPL_POSIX:
+ return true;
+ case DSM_IMPL_SYSV:
+ return false;
+ case DSM_IMPL_WINDOWS:
+ return false;
+ case DSM_IMPL_MMAP:
+ return false;
+ default:
+ return false; /* should not happen */
+ }
+}
+
+#ifdef USE_DSM_POSIX
+/*
+ * Operating system primitives to support POSIX shared memory.
+ *
+ * POSIX shared memory segments are created and attached using shm_open()
+ * and shm_unlink(); other operations, such as sizing or mapping the
+ * segment, are performed as if the shared memory segments were files.
+ *
+ * Indeed, on some platforms, they may be implemented that way. While
+ * POSIX shared memory segments seem intended to exist in a flat namespace,
+ * some operating systems may implement them as files, even going so far
+ * to treat a request for /xyz as a request to create a file by that name
+ * in the root directory. Users of such broken platforms should select
+ * a different shared memory implementation.
+ */
+static bool
+dsm_impl_posix(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address, uint64 *mapped_size,
+ int elevel)
+{
+ char name[64];
+ int flags;
+ int fd;
+ char *address;
+
+ snprintf(name, 64, "/PostgreSQL.%u", handle);
+
+ /* Handle teardown cases. */
+ if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
+ {
+ if (*mapped_address != NULL
+ && munmap(*mapped_address, *mapped_size) != 0)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not unmap shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = NULL;
+ *mapped_size = 0;
+ if (op == DSM_OP_DESTROY && shm_unlink(name) != 0)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not remove shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ return true;
+ }
+
+ /*
+ * Create new segment or open an existing one for attach or resize.
+ *
+ * Even though we're not going through fd.c, we should be safe against
+ * running out of file descriptors, because of NUM_RESERVED_FDS. We're
+ * only opening one extra descriptor here, and we'll close it before
+ * returning.
+ */
+ flags = O_RDWR | (op == DSM_OP_CREATE ? O_CREAT | O_EXCL : 0);
+ if ((fd = shm_open(name, flags, 0600)) == -1)
+ {
+ if (errno != EEXIST)
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not open shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+
+ /*
+ * If we're attaching the segment, determine the current size; if we are
+ * creating or resizing the segment, set the size to the requested value.
+ */
+ if (op == DSM_OP_ATTACH)
+ {
+ struct stat st;
+
+ if (fstat(fd, &st) != 0)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ close(fd);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not stat shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ request_size = st.st_size;
+ }
+ else if (*mapped_size != request_size && ftruncate(fd, request_size))
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ close(fd);
+ if (op == DSM_OP_CREATE)
+ shm_unlink(name);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not resize shared memory segment %s to " UINT64_FORMAT " bytes: %m",
+ name, request_size)));
+ return false;
+ }
+
+ /*
+ * If we're reattaching or resizing, we must remove any existing mapping,
+ * unless we've already got the right thing mapped.
+ */
+ if (*mapped_address != NULL)
+ {
+ if (*mapped_size == request_size)
+ return true;
+ if (munmap(*mapped_address, *mapped_size) != 0)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ close(fd);
+ if (op == DSM_OP_CREATE)
+ shm_unlink(name);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not unmap shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = NULL;
+ *mapped_size = 0;
+ }
+
+ /* Map it. */
+ address = mmap(NULL, request_size, PROT_READ|PROT_WRITE,
+ MAP_SHARED|MAP_HASSEMAPHORE, fd, 0);
+ if (address == MAP_FAILED)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ close(fd);
+ if (op == DSM_OP_CREATE)
+ shm_unlink(name);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not map shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = address;
+ *mapped_size = request_size;
+ close(fd);
+
+ return true;
+}
+#endif
+
+#ifdef USE_DSM_SYSV
+/*
+ * Operating system primitives to support System V shared memory.
+ *
+ * System V shared memory segments are manipulated using shmget(), shmat(),
+ * shmdt(), and shmctl(). There's no portable way to resize such
+ * segments. As the default allocation limits for System V shared memory
+ * are usually quite low, the POSIX facilities may be preferable; but
+ * those are not supported everywhere.
+ */
+static bool
+dsm_impl_sysv(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address, uint64 *mapped_size,
+ int elevel)
+{
+ key_t key;
+ int ident;
+ char *address;
+ char name[64];
+ int *ident_cache;
+
+ /* Resize is not supported for System V shared memory. */
+ if (op == DSM_OP_RESIZE)
+ {
+ elog(elevel, "System V shared memory segments cannot be resized");
+ return false;
+ }
+
+ /* Since resize isn't supported, reattach is a no-op. */
+ if (op == DSM_OP_ATTACH && *mapped_address != NULL)
+ return true;
+
+ /*
+ * POSIX shared memory and mmap-based shared memory identify segments
+ * with names. To avoid needless error message variation, we use the
+ * handle as the name.
+ */
+ snprintf(name, 64, "%u", handle);
+
+ /*
+ * The System V shared memory namespace is very restricted; names are
+ * of type key_t, which is expected to be some sort of integer data type,
+ * but not necessarily the same one as dsm_handle. Since we use
+ * dsm_handle to identify shared memory segments across processes, this
+ * might seem like a problem, but it's really not. If dsm_handle is
+ * bigger than key_t, the cast below might truncate away some bits from
+ * the handle the user-provided, but it'll truncate exactly the same bits
+ * away in exactly the same fashion every time we use that handle, which
+ * is all that really matters. Conversely, if dsm_handle is smaller than
+ * key_t, we won't use the full range of available key space, but that's
+ * no big deal either.
+ *
+ * We do make sure that the key isn't negative, because that might not
+ * be portable.
+ */
+ key = (key_t) handle;
+ if (key < 1) /* avoid compiler warning if type is unsigned */
+ key = -key;
+
+ /*
+ * There's one special key, IPC_PRIVATE, which can't be used. If we end
+ * up with that value by chance during a create operation, just pretend
+ * it already exists, so that caller will retry. If we run into it
+ * anywhere else, the caller has passed a handle that doesn't correspond
+ * to anything we ever created, which should not happen.
+ */
+ if (key == IPC_PRIVATE)
+ {
+ if (op != DSM_OP_CREATE)
+ elog(DEBUG4, "System V shared memory key may not be IPC_PRIVATE");
+ errno = EEXIST;
+ return false;
+ }
+
+ /*
+ * Before we can do anything with a shared memory segment, we have to
+ * map the shared memory key to a shared memory identifier using shmget().
+ * To avoid repeated lookups, we store the key using impl_private.
+ */
+ if (*impl_private != NULL)
+ {
+ ident_cache = *impl_private;
+ ident = *ident_cache;
+ }
+ else
+ {
+ int flags = IPCProtection;
+ size_t segsize;
+
+ /*
+ * Allocate the memory BEFORE acquiring the resource, so that we don't
+ * leak the resource if memory allocation fails.
+ */
+ ident_cache = MemoryContextAlloc(TopMemoryContext, sizeof(int));
+
+ /*
+ * When using shmget to find an existing segment, we must pass the
+ * size as 0. Passing a non-zero size which is greater than the
+ * actual size will result in EINVAL.
+ */
+ segsize = 0;
+
+ if (op == DSM_OP_CREATE)
+ {
+ flags |= IPC_CREAT | IPC_EXCL;
+ segsize = request_size;
+ }
+
+ if ((ident = shmget(key, segsize, flags)) == -1)
+ {
+ if (errno != EEXIST)
+ {
+ int save_errno = errno;
+ pfree(ident_cache);
+ errno = save_errno;
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not get shared memory segment: %m")));
+ }
+ return false;
+ }
+
+ *ident_cache = ident;
+ *impl_private = ident_cache;
+ }
+
+ /* Handle teardown cases. */
+ if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
+ {
+ pfree(ident_cache);
+ *impl_private = NULL;
+ if (*mapped_address != NULL && shmdt(*mapped_address) != 0)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not unmap shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = NULL;
+ *mapped_size = 0;
+ if (op == DSM_OP_DESTROY && shmctl(ident, IPC_RMID, NULL) < 0)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not remove shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ return true;
+ }
+
+ /* If we're attaching it, we must use IPC_STAT to determine the size. */
+ if (op == DSM_OP_ATTACH)
+ {
+ struct shmid_ds shm;
+
+ if (shmctl(ident, IPC_STAT, &shm) != 0)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ if (op == DSM_OP_CREATE)
+ shmctl(ident, IPC_RMID, NULL);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not stat shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ request_size = shm.shm_segsz;
+ }
+
+ /* Map it. */
+ address = shmat(ident, NULL, PG_SHMAT_FLAGS);
+ if (address == (void *) -1)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ if (op == DSM_OP_CREATE)
+ shmctl(ident, IPC_RMID, NULL);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not map shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = address;
+ *mapped_size = request_size;
+
+ return true;
+}
+#endif
+
+#ifdef USE_DSM_WINDOWS
+/*
+ * Operating system primitives to support Windows shared memory.
+ *
+ * Windows shared memory implementation is done using file mapping
+ * which can be backed by either physical file or system paging file.
+ * Current implementation uses system paging file as other effects
+ * like performance are not clear for physical file and it is used in similar
+ * way for main shared memory in windows.
+ *
+ * A memory mapping object is a kernel object - they always get deleted when
+ * the last reference to them goes away, either explicitly via a CloseHandle or
+ * when the process containing the reference exits.
+ */
+static bool
+dsm_impl_windows(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address,
+ uint64 *mapped_size, int elevel)
+{
+ char *address;
+ HANDLE hmap;
+ char name[64];
+ MEMORY_BASIC_INFORMATION info;
+
+ /* Resize is not supported for Windows shared memory. */
+ if (op == DSM_OP_RESIZE)
+ {
+ elog(elevel, "Windows shared memory segments cannot be resized");
+ return false;
+ }
+
+ /* Since resize isn't supported, reattach is a no-op. */
+ if (op == DSM_OP_ATTACH && *mapped_address != NULL)
+ return true;
+
+ /*
+ * Storing the shared memory segment in the Global\ namespace, can
+ * allow any process running in any session to access that file
+ * mapping object provided that the caller has the required access rights.
+ * But to avoid issues faced in main shared memory, we are using the naming
+ * convention similar to main shared memory. We can change here once
+ * issue mentioned in GetSharedMemName is resolved.
+ */
+ snprintf(name, 64, "Global/PostgreSQL.%u", handle);
+
+ /*
+ * Handle teardown cases. Since Windows automatically destroys the object
+ * when no references reamin, we can treat it the same as detach.
+ */
+ if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
+ {
+ if (*mapped_address != NULL
+ && UnmapViewOfFile(*mapped_address) == 0)
+ {
+ _dosmaperr(GetLastError());
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not unmap shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ if (*impl_private != NULL
+ && CloseHandle(*impl_private) == 0)
+ {
+ _dosmaperr(GetLastError());
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not remove shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+
+ *impl_private = NULL;
+ *mapped_address = NULL;
+ *mapped_size = 0;
+ return true;
+ }
+
+ /* Create new segment or open an existing one for attach. */
+ if (op == DSM_OP_CREATE)
+ {
+ DWORD size_high = (DWORD) (request_size >> 32);
+ DWORD size_low = (DWORD) request_size;
+ hmap = CreateFileMapping(INVALID_HANDLE_VALUE, /* Use the pagefile */
+ NULL, /* Default security attrs */
+ PAGE_READWRITE, /* Memory is read/write */
+ size_high, /* Upper 32 bits of size */
+ size_low, /* Lower 32 bits of size */
+ name);
+ _dosmaperr(GetLastError());
+ if (errno == EEXIST)
+ {
+ /*
+ * On Windows, when the segment already exists, a handle for the
+ * existing segment is returned. We must close it before
+ * returning. We don't do _dosmaperr here, so errno won't be
+ * modified.
+ */
+ CloseHandle(hmap);
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not open shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ }
+ else
+ {
+ hmap = OpenFileMapping(FILE_MAP_WRITE | FILE_MAP_READ,
+ FALSE, /* do not inherit the name */
+ name); /* name of mapping object */
+ _dosmaperr(GetLastError());
+ }
+
+ if (!hmap)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not open shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+
+ /* Map it. */
+ address = MapViewOfFile(hmap, FILE_MAP_WRITE | FILE_MAP_READ,
+ 0, 0, 0);
+ if (!address)
+ {
+ int save_errno;
+
+ _dosmaperr(GetLastError());
+ /* Back out what's already been done. */
+ save_errno = errno;
+ CloseHandle(hmap);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not map shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+
+ /*
+ * VirtualQuery gives size in page_size units, which is 4K for Windows.
+ * We need size only when we are attaching, but it's better to get the
+ * size when creating new segment to keep size consistent both for
+ * DSM_OP_CREATE and DSM_OP_ATTACH.
+ */
+ if (VirtualQuery(address, &info, sizeof(info)) == 0)
+ {
+ int save_errno;
+
+ _dosmaperr(GetLastError());
+ /* Back out what's already been done. */
+ save_errno = errno;
+ UnmapViewOfFile(address);
+ CloseHandle(hmap);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not stat shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+
+ *mapped_address = address;
+ *mapped_size = info.RegionSize;
+ *impl_private = hmap;
+
+ return true;
+}
+#endif
+
+#ifdef USE_DSM_MMAP
+/*
+ * Operating system primitives to support mmap-based shared memory.
+ *
+ * Calling this "shared memory" is somewhat of a misnomer, because what
+ * we're really doing is creating a bunch of files and mapping them into
+ * our address space. The operating system may feel obliged to
+ * synchronize the contents to disk even if nothing is being paged out,
+ * which will not serve us well. The user can relocate the pg_dynshmem
+ * directory to a ramdisk to avoid this problem, if available.
+ */
+static bool
+dsm_impl_mmap(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address, uint64 *mapped_size,
+ int elevel)
+{
+ char name[64];
+ int flags;
+ int fd;
+ char *address;
+
+ snprintf(name, 64, PG_DYNSHMEM_DIR "/" PG_DYNSHMEM_MMAP_FILE_PREFIX "%u",
+ handle);
+
+ /* Handle teardown cases. */
+ if (op == DSM_OP_DETACH || op == DSM_OP_DESTROY)
+ {
+ if (*mapped_address != NULL
+ && munmap(*mapped_address, *mapped_size) != 0)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not unmap shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = NULL;
+ *mapped_size = 0;
+ if (op == DSM_OP_DESTROY && unlink(name) != 0)
+ {
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not remove shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ return true;
+ }
+
+ /* Create new segment or open an existing one for attach or resize. */
+ flags = O_RDWR | (op == DSM_OP_CREATE ? O_CREAT | O_EXCL : 0);
+ if ((fd = OpenTransientFile(name, flags, 0600)) == -1)
+ {
+ if (errno != EEXIST)
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not open shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+
+ /*
+ * If we're attaching the segment, determine the current size; if we are
+ * creating or resizing the segment, set the size to the requested value.
+ */
+ if (op == DSM_OP_ATTACH)
+ {
+ struct stat st;
+
+ if (fstat(fd, &st) != 0)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ CloseTransientFile(fd);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not stat shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ request_size = st.st_size;
+ }
+ else if (*mapped_size > request_size && ftruncate(fd, request_size))
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ close(fd);
+ if (op == DSM_OP_CREATE)
+ shm_unlink(name);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not resize shared memory segment %s to " UINT64_FORMAT " bytes: %m",
+ name, request_size)));
+ return false;
+ }
+ else if (*mapped_size < request_size)
+ {
+ /*
+ * Allocate a buffer full of zeros.
+ *
+ * Note: palloc zbuffer, instead of just using a local char array,
+ * to ensure it is reasonably well-aligned; this may save a few
+ * cycles transferring data to the kernel.
+ */
+ char *zbuffer = (char *) palloc0(ZBUFFER_SIZE);
+ uint32 remaining = request_size;
+ bool success = true;
+
+ /*
+ * Zero-fill the file. We have to do this the hard way to ensure
+ * that all the file space has really been allocated, so that we
+ * don't later seg fault when accessing the memory mapping. This
+ * is pretty pessimal.
+ */
+ while (success && remaining > 0)
+ {
+ uint64 goal = remaining;
+
+ if (goal > ZBUFFER_SIZE)
+ goal = ZBUFFER_SIZE;
+ if (write(fd, zbuffer, goal) == goal)
+ remaining -= goal;
+ else
+ success = false;
+ }
+
+ if (!success)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ CloseTransientFile(fd);
+ if (op == DSM_OP_CREATE)
+ unlink(name);
+ errno = save_errno ? save_errno : ENOSPC;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not resize shared memory segment %s to " UINT64_FORMAT " bytes: %m",
+ name, request_size)));
+ return false;
+ }
+ }
+
+ /*
+ * If we're reattaching or resizing, we must remove any existing mapping,
+ * unless we've already got the right thing mapped.
+ */
+ if (*mapped_address != NULL)
+ {
+ if (*mapped_size == request_size)
+ return true;
+ if (munmap(*mapped_address, *mapped_size) != 0)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ CloseTransientFile(fd);
+ if (op == DSM_OP_CREATE)
+ unlink(name);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not unmap shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = NULL;
+ *mapped_size = 0;
+ }
+
+ /* Map it. */
+ address = mmap(NULL, request_size, PROT_READ|PROT_WRITE,
+ MAP_SHARED|MAP_HASSEMAPHORE, fd, 0);
+ if (address == MAP_FAILED)
+ {
+ int save_errno;
+
+ /* Back out what's already been done. */
+ save_errno = errno;
+ CloseTransientFile(fd);
+ if (op == DSM_OP_CREATE)
+ unlink(name);
+ errno = save_errno;
+
+ ereport(elevel,
+ (errcode_for_dynamic_shared_memory(),
+ errmsg("could not map shared memory segment \"%s\": %m",
+ name)));
+ return false;
+ }
+ *mapped_address = address;
+ *mapped_size = request_size;
+ CloseTransientFile(fd);
+
+ return true;
+}
+#endif
+
+static int
+errcode_for_dynamic_shared_memory()
+{
+ if (errno == EFBIG || errno == ENOMEM)
+ return errcode(ERRCODE_OUT_OF_MEMORY);
+ else
+ return errcode_for_file_access();
+}
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "storage/bufmgr.h"
+#include "storage/dsm.h"
#include "storage/ipc.h"
#include "storage/pg_shmem.h"
#include "storage/pmsignal.h"
ShmemBackendArrayAllocation();
#endif
+ /* Initialize dynamic shared memory facilities. */
+ if (!IsUnderPostmaster)
+ dsm_postmaster_startup();
+
/*
* Now give loadable modules a chance to set up their shmem allocations
*/
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "storage/bufmgr.h"
+#include "storage/dsm_impl.h"
#include "storage/standby.h"
#include "storage/fd.h"
#include "storage/proc.h"
*/
extern const struct config_enum_entry wal_level_options[];
extern const struct config_enum_entry sync_method_options[];
+extern const struct config_enum_entry dynamic_shared_memory_options[];
/*
* GUC option variables that are exported from this module
NULL, NULL, NULL
},
+ {
+ {"dynamic_shared_memory_type", PGC_POSTMASTER, RESOURCES_MEM,
+ gettext_noop("Selects the dynamic shared memory implementation used."),
+ NULL
+ },
+ &dynamic_shared_memory_type,
+ DEFAULT_DYNAMIC_SHARED_MEMORY_TYPE, dynamic_shared_memory_options,
+ NULL, NULL, NULL
+ },
+
{
{"wal_sync_method", PGC_SIGHUP, WAL_SETTINGS,
gettext_noop("Selects the method used for forcing WAL updates to disk."),
#work_mem = 1MB # min 64kB
#maintenance_work_mem = 16MB # min 1MB
#max_stack_depth = 2MB # min 100kB
+#dynamic_shared_memory_type = posix # the default is the first option
+ # supported by the operating system:
+ # posix
+ # sysv
+ # windows
+ # mmap
+ # use none to disable dynamic shared memory
# - Disk -
int nfiles; /* number of owned temporary files */
File *files; /* dynamically allocated array */
int maxfiles; /* currently allocated array size */
+
+ /* We have built-in support for remembering dynamic shmem segments */
+ int ndsms; /* number of owned shmem segments */
+ dsm_segment **dsms; /* dynamically allocated array */
+ int maxdsms; /* currently allocated array size */
} ResourceOwnerData;
static void PrintTupleDescLeakWarning(TupleDesc tupdesc);
static void PrintSnapshotLeakWarning(Snapshot snapshot);
static void PrintFileLeakWarning(File file);
+static void PrintDSMLeakWarning(dsm_segment *seg);
/*****************************************************************************
PrintRelCacheLeakWarning(owner->relrefs[owner->nrelrefs - 1]);
RelationClose(owner->relrefs[owner->nrelrefs - 1]);
}
+
+ /*
+ * Release dynamic shared memory segments. Note that dsm_detach()
+ * will remove the segment from my list, so I just have to iterate
+ * until there are none.
+ *
+ * As in the preceding cases, warn if there are leftover at commit
+ * time.
+ */
+ while (owner->ndsms > 0)
+ {
+ if (isCommit)
+ PrintDSMLeakWarning(owner->dsms[owner->ndsms - 1]);
+ dsm_detach(owner->dsms[owner->ndsms - 1]);
+ }
}
else if (phase == RESOURCE_RELEASE_LOCKS)
{
Assert(owner->ncatrefs == 0);
Assert(owner->ncatlistrefs == 0);
Assert(owner->nrelrefs == 0);
+ Assert(owner->ndsms == 0);
Assert(owner->nplanrefs == 0);
Assert(owner->ntupdescs == 0);
Assert(owner->nsnapshots == 0);
pfree(owner->snapshots);
if (owner->files)
pfree(owner->files);
+ if (owner->dsms)
+ pfree(owner->dsms);
pfree(owner);
}
"temporary file leak: File %d still referenced",
file);
}
+
+/*
+ * Make sure there is room for at least one more entry in a ResourceOwner's
+ * dynamic shmem segment reference array.
+ *
+ * This is separate from actually inserting an entry because if we run out
+ * of memory, it's critical to do so *before* acquiring the resource.
+ */
+void
+ResourceOwnerEnlargeDSMs(ResourceOwner owner)
+{
+ int newmax;
+
+ if (owner->ndsms < owner->maxdsms)
+ return; /* nothing to do */
+
+ if (owner->dsms == NULL)
+ {
+ newmax = 16;
+ owner->dsms = (dsm_segment **)
+ MemoryContextAlloc(TopMemoryContext,
+ newmax * sizeof(dsm_segment *));
+ owner->maxdsms = newmax;
+ }
+ else
+ {
+ newmax = owner->maxdsms * 2;
+ owner->dsms = (dsm_segment **)
+ repalloc(owner->dsms, newmax * sizeof(dsm_segment *));
+ owner->maxdsms = newmax;
+ }
+}
+
+/*
+ * Remember that a dynamic shmem segment is owned by a ResourceOwner
+ *
+ * Caller must have previously done ResourceOwnerEnlargeDSMs()
+ */
+void
+ResourceOwnerRememberDSM(ResourceOwner owner, dsm_segment *seg)
+{
+ Assert(owner->ndsms < owner->maxdsms);
+ owner->dsms[owner->ndsms] = seg;
+ owner->ndsms++;
+}
+
+/*
+ * Forget that a temporary file is owned by a ResourceOwner
+ */
+void
+ResourceOwnerForgetDSM(ResourceOwner owner, dsm_segment *seg)
+{
+ dsm_segment **dsms = owner->dsms;
+ int ns1 = owner->ndsms - 1;
+ int i;
+
+ for (i = ns1; i >= 0; i--)
+ {
+ if (dsms[i] == seg)
+ {
+ while (i < ns1)
+ {
+ dsms[i] = dsms[i + 1];
+ i++;
+ }
+ owner->ndsms = ns1;
+ return;
+ }
+ }
+ elog(ERROR,
+ "dynamic shared memory segment %u is not owned by resource owner %s",
+ dsm_segment_handle(seg), owner->name);
+}
+
+
+/*
+ * Debugging subroutine
+ */
+static void
+PrintDSMLeakWarning(dsm_segment *seg)
+{
+ elog(WARNING,
+ "dynamic shared memory leak: segment %u still referenced",
+ dsm_segment_handle(seg));
+}
"pg_xlog",
"pg_xlog/archive_status",
"pg_clog",
+ "pg_dynshmem",
"pg_notify",
"pg_serial",
"pg_snapshots",
/* Define to 1 if you have the `setsid' function. */
#undef HAVE_SETSID
+/* Define to 1 if you have the `shm_open' function. */
+#undef HAVE_SHM_OPEN
+
/* Define to 1 if you have the `sigprocmask' function. */
#undef HAVE_SIGPROCMASK
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * mem.h
+ * portability definitions for various memory operations
+ *
+ * Copyright (c) 2001-2013, PostgreSQL Global Development Group
+ *
+ * src/include/portability/mem.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef MEM_H
+#define MEM_H
+
+#define IPCProtection (0600) /* access/modify by user only */
+
+#ifdef SHM_SHARE_MMU /* use intimate shared memory on Solaris */
+#define PG_SHMAT_FLAGS SHM_SHARE_MMU
+#else
+#define PG_SHMAT_FLAGS 0
+#endif
+
+/* Linux prefers MAP_ANONYMOUS, but the flag is called MAP_ANON on other systems. */
+#ifndef MAP_ANONYMOUS
+#define MAP_ANONYMOUS MAP_ANON
+#endif
+
+/* BSD-derived systems have MAP_HASSEMAPHORE, but it's not present (or needed) on Linux. */
+#ifndef MAP_HASSEMAPHORE
+#define MAP_HASSEMAPHORE 0
+#endif
+
+#define PG_MMAP_FLAGS (MAP_SHARED|MAP_ANONYMOUS|MAP_HASSEMAPHORE)
+
+/* Some really old systems don't define MAP_FAILED. */
+#ifndef MAP_FAILED
+#define MAP_FAILED ((void *) -1)
+#endif
+
+#endif /* MEM_H */
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * dsm.h
+ * manage dynamic shared memory segments
+ *
+ * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * src/include/storage/dsm.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef DSM_H
+#define DSM_H
+
+#include "storage/dsm_impl.h"
+
+typedef struct dsm_segment dsm_segment;
+
+/* Initialization function. */
+extern void dsm_postmaster_startup(void);
+
+/* Functions that create, update, or remove mappings. */
+extern dsm_segment *dsm_create(uint64 size);
+extern dsm_segment *dsm_attach(dsm_handle h);
+extern void *dsm_resize(dsm_segment *seg, uint64 size);
+extern void *dsm_remap(dsm_segment *seg);
+extern void dsm_detach(dsm_segment *seg);
+
+/* Resource management functions. */
+extern void dsm_keep_mapping(dsm_segment *seg);
+extern dsm_segment *dsm_find_mapping(dsm_handle h);
+
+/* Informational functions. */
+extern void *dsm_segment_address(dsm_segment *seg);
+extern uint64 dsm_segment_map_length(dsm_segment *seg);
+extern dsm_handle dsm_segment_handle(dsm_segment *seg);
+
+#endif /* DSM_H */
--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * dsm_impl.h
+ * low-level dynamic shared memory primitives
+ *
+ * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * src/include/storage/dsm_impl.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef DSM_IMPL_H
+#define DSM_IMPL_H
+
+/* Dynamic shared memory implementations. */
+#define DSM_IMPL_NONE 0
+#define DSM_IMPL_POSIX 1
+#define DSM_IMPL_SYSV 2
+#define DSM_IMPL_WINDOWS 3
+#define DSM_IMPL_MMAP 4
+
+/*
+ * Determine which dynamic shared memory implementations will be supported
+ * on this platform, and which one will be the default.
+ */
+#ifdef WIN32
+#define USE_DSM_WINDOWS
+#define DEFAULT_DYNAMIC_SHARED_MEMORY_TYPE DSM_IMPL_WINDOWS
+#else
+#ifdef HAVE_SHM_OPEN
+#define USE_DSM_POSIX
+#define DEFAULT_DYNAMIC_SHARED_MEMORY_TYPE DSM_IMPL_POSIX
+#endif
+#define USE_DSM_SYSV
+#ifndef DEFAULT_DYNAMIC_SHARED_MEMORY_TYPE
+#define DEFAULT_DYNAMIC_SHARED_MEMORY_TYPE DSM_IMPL_SYSV
+#endif
+#define USE_DSM_MMAP
+#endif
+
+/* GUC. */
+extern int dynamic_shared_memory_type;
+
+/*
+ * Directory for on-disk state.
+ *
+ * This is used by all implementations for crash recovery and by the mmap
+ * implementation for storage.
+ */
+#define PG_DYNSHMEM_DIR "pg_dynshmem"
+#define PG_DYNSHMEM_MMAP_FILE_PREFIX "mmap."
+
+/* A "name" for a dynamic shared memory segment. */
+typedef uint32 dsm_handle;
+
+/* All the shared-memory operations we know about. */
+typedef enum
+{
+ DSM_OP_CREATE,
+ DSM_OP_ATTACH,
+ DSM_OP_DETACH,
+ DSM_OP_RESIZE,
+ DSM_OP_DESTROY
+} dsm_op;
+
+/* Create, attach to, detach from, resize, or destroy a segment. */
+extern bool dsm_impl_op(dsm_op op, dsm_handle handle, uint64 request_size,
+ void **impl_private, void **mapped_address, uint64 *mapped_size,
+ int elevel);
+
+/* Some implementations cannot resize segments. Can this one? */
+extern bool dsm_impl_can_resize(void);
+
+#endif /* DSM_IMPL_H */
OldSerXidLock,
SyncRepLock,
BackgroundWorkerLock,
+ DynamicSharedMemoryControlLock,
/* Individual lock IDs end here */
FirstBufMappingLock,
FirstLockMgrLock = FirstBufMappingLock + NUM_BUFFER_PARTITIONS,
#ifndef RESOWNER_PRIVATE_H
#define RESOWNER_PRIVATE_H
+#include "storage/dsm.h"
#include "storage/fd.h"
#include "storage/lock.h"
#include "utils/catcache.h"
extern void ResourceOwnerForgetFile(ResourceOwner owner,
File file);
+/* support for dynamic shared memory management */
+extern void ResourceOwnerEnlargeDSMs(ResourceOwner owner);
+extern void ResourceOwnerRememberDSM(ResourceOwner owner,
+ dsm_segment *);
+extern void ResourceOwnerForgetDSM(ResourceOwner owner,
+ dsm_segment *);
+
#endif /* RESOWNER_PRIVATE_H */