summaryrefslogtreecommitdiff
path: root/contrib/pgcrypto/rijndael.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/pgcrypto/rijndael.c')
-rw-r--r--contrib/pgcrypto/rijndael.c677
1 files changed, 0 insertions, 677 deletions
diff --git a/contrib/pgcrypto/rijndael.c b/contrib/pgcrypto/rijndael.c
deleted file mode 100644
index 69387011821..00000000000
--- a/contrib/pgcrypto/rijndael.c
+++ /dev/null
@@ -1,677 +0,0 @@
-/* $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
-
-/* contrib/pgcrypto/rijndael.c */
-
-/* This is an independent implementation of the encryption algorithm: */
-/* */
-/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
-/* */
-/* which is a candidate algorithm in the Advanced Encryption Standard */
-/* programme of the US National Institute of Standards and Technology. */
-/* */
-/* Copyright in this implementation is held by Dr B R Gladman but I */
-/* hereby give permission for its free direct or derivative use subject */
-/* to acknowledgment of its origin and compliance with any conditions */
-/* that the originators of the algorithm place on its exploitation. */
-/* */
-/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
-
-/* Timing data for Rijndael (rijndael.c)
-
-Algorithm: rijndael (rijndael.c)
-
-128 bit key:
-Key Setup: 305/1389 cycles (encrypt/decrypt)
-Encrypt: 374 cycles = 68.4 mbits/sec
-Decrypt: 352 cycles = 72.7 mbits/sec
-Mean: 363 cycles = 70.5 mbits/sec
-
-192 bit key:
-Key Setup: 277/1595 cycles (encrypt/decrypt)
-Encrypt: 439 cycles = 58.3 mbits/sec
-Decrypt: 425 cycles = 60.2 mbits/sec
-Mean: 432 cycles = 59.3 mbits/sec
-
-256 bit key:
-Key Setup: 374/1960 cycles (encrypt/decrypt)
-Encrypt: 502 cycles = 51.0 mbits/sec
-Decrypt: 498 cycles = 51.4 mbits/sec
-Mean: 500 cycles = 51.2 mbits/sec
-
-*/
-
-#include "postgres.h"
-
-#include <sys/param.h>
-
-#include "px.h"
-#include "rijndael.h"
-
-#define PRE_CALC_TABLES
-#define LARGE_TABLES
-
-static void gen_tabs(void);
-
-/* 3. Basic macros for speeding up generic operations */
-
-/* Circular rotate of 32 bit values */
-
-#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
-#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
-
-/* Invert byte order in a 32 bit variable */
-
-#define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
-
-/* Extract byte from a 32 bit quantity (little endian notation) */
-
-#define byte(x,n) ((u1byte)((x) >> (8 * (n))))
-
-#ifdef WORDS_BIGENDIAN
-#define io_swap(x) bswap(x)
-#else
-#define io_swap(x) (x)
-#endif
-
-#ifdef PRINT_TABS
-#undef PRE_CALC_TABLES
-#endif
-
-#ifdef PRE_CALC_TABLES
-
-#include "rijndael.tbl"
-#define tab_gen 1
-#else /* !PRE_CALC_TABLES */
-
-static u1byte pow_tab[256];
-static u1byte log_tab[256];
-static u1byte sbx_tab[256];
-static u1byte isb_tab[256];
-static u4byte rco_tab[10];
-static u4byte ft_tab[4][256];
-static u4byte it_tab[4][256];
-
-#ifdef LARGE_TABLES
-static u4byte fl_tab[4][256];
-static u4byte il_tab[4][256];
-#endif
-
-static u4byte tab_gen = 0;
-#endif /* !PRE_CALC_TABLES */
-
-#define ff_mult(a,b) ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
-
-#define f_rn(bo, bi, n, k) \
- (bo)[n] = ft_tab[0][byte((bi)[n],0)] ^ \
- ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
- ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
- ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
-
-#define i_rn(bo, bi, n, k) \
- (bo)[n] = it_tab[0][byte((bi)[n],0)] ^ \
- it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
- it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
- it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
-
-#ifdef LARGE_TABLES
-
-#define ls_box(x) \
- ( fl_tab[0][byte(x, 0)] ^ \
- fl_tab[1][byte(x, 1)] ^ \
- fl_tab[2][byte(x, 2)] ^ \
- fl_tab[3][byte(x, 3)] )
-
-#define f_rl(bo, bi, n, k) \
- (bo)[n] = fl_tab[0][byte((bi)[n],0)] ^ \
- fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
- fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
- fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
-
-#define i_rl(bo, bi, n, k) \
- (bo)[n] = il_tab[0][byte((bi)[n],0)] ^ \
- il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
- il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
- il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
-#else
-
-#define ls_box(x) \
- ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
- ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
- ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
- ((u4byte)sbx_tab[byte(x, 3)] << 24)
-
-#define f_rl(bo, bi, n, k) \
- (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^ \
- rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]), 8) ^ \
- rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
- rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
-
-#define i_rl(bo, bi, n, k) \
- (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^ \
- rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]), 8) ^ \
- rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
- rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
-#endif
-
-static void
-gen_tabs(void)
-{
-#ifndef PRE_CALC_TABLES
- u4byte i,
- t;
- u1byte p,
- q;
-
- /* log and power tables for GF(2**8) finite field with */
- /* 0x11b as modular polynomial - the simplest primitive */
- /* root is 0x11, used here to generate the tables */
-
- for (i = 0, p = 1; i < 256; ++i)
- {
- pow_tab[i] = (u1byte) p;
- log_tab[p] = (u1byte) i;
-
- p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
-
- log_tab[1] = 0;
- p = 1;
-
- for (i = 0; i < 10; ++i)
- {
- rco_tab[i] = p;
-
- p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
- }
-
- /* note that the affine byte transformation matrix in */
- /* rijndael specification is in big endian format with */
- /* bit 0 as the most significant bit. In the remainder */
- /* of the specification the bits are numbered from the */
- /* least significant end of a byte. */
-
- for (i = 0; i < 256; ++i)
- {
- p = (i ? pow_tab[255 - log_tab[i]] : 0);
- q = p;
- q = (q >> 7) | (q << 1);
- p ^= q;
- q = (q >> 7) | (q << 1);
- p ^= q;
- q = (q >> 7) | (q << 1);
- p ^= q;
- q = (q >> 7) | (q << 1);
- p ^= q ^ 0x63;
- sbx_tab[i] = (u1byte) p;
- isb_tab[p] = (u1byte) i;
- }
-
- for (i = 0; i < 256; ++i)
- {
- p = sbx_tab[i];
-
-#ifdef LARGE_TABLES
-
- t = p;
- fl_tab[0][i] = t;
- fl_tab[1][i] = rotl(t, 8);
- fl_tab[2][i] = rotl(t, 16);
- fl_tab[3][i] = rotl(t, 24);
-#endif
- t = ((u4byte) ff_mult(2, p)) |
- ((u4byte) p << 8) |
- ((u4byte) p << 16) |
- ((u4byte) ff_mult(3, p) << 24);
-
- ft_tab[0][i] = t;
- ft_tab[1][i] = rotl(t, 8);
- ft_tab[2][i] = rotl(t, 16);
- ft_tab[3][i] = rotl(t, 24);
-
- p = isb_tab[i];
-
-#ifdef LARGE_TABLES
-
- t = p;
- il_tab[0][i] = t;
- il_tab[1][i] = rotl(t, 8);
- il_tab[2][i] = rotl(t, 16);
- il_tab[3][i] = rotl(t, 24);
-#endif
- t = ((u4byte) ff_mult(14, p)) |
- ((u4byte) ff_mult(9, p) << 8) |
- ((u4byte) ff_mult(13, p) << 16) |
- ((u4byte) ff_mult(11, p) << 24);
-
- it_tab[0][i] = t;
- it_tab[1][i] = rotl(t, 8);
- it_tab[2][i] = rotl(t, 16);
- it_tab[3][i] = rotl(t, 24);
- }
-
- tab_gen = 1;
-#endif /* !PRE_CALC_TABLES */
-}
-
-
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-
-#define imix_col(y,x) \
-do { \
- u = star_x(x); \
- v = star_x(u); \
- w = star_x(v); \
- t = w ^ (x); \
- (y) = u ^ v ^ w; \
- (y) ^= rotr(u ^ t, 8) ^ \
- rotr(v ^ t, 16) ^ \
- rotr(t,24); \
-} while (0)
-
-/* initialise the key schedule from the user supplied key */
-
-#define loop4(i) \
-do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
- t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
- t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
- t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
- t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
-} while (0)
-
-#define loop6(i) \
-do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
- t ^= e_key[6 * (i)]; e_key[6 * (i) + 6] = t; \
- t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t; \
- t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t; \
- t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t; \
- t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t; \
- t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t; \
-} while (0)
-
-#define loop8(i) \
-do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
- t ^= e_key[8 * (i)]; e_key[8 * (i) + 8] = t; \
- t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t; \
- t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t; \
- t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t; \
- t = e_key[8 * (i) + 4] ^ ls_box(t); \
- e_key[8 * (i) + 12] = t; \
- t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t; \
- t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t; \
- t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t; \
-} while (0)
-
-rijndael_ctx *
-rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
- int encrypt)
-{
- u4byte i,
- t,
- u,
- v,
- w;
- u4byte *e_key = ctx->e_key;
- u4byte *d_key = ctx->d_key;
-
- ctx->decrypt = !encrypt;
-
- if (!tab_gen)
- gen_tabs();
-
- ctx->k_len = (key_len + 31) / 32;
-
- e_key[0] = io_swap(in_key[0]);
- e_key[1] = io_swap(in_key[1]);
- e_key[2] = io_swap(in_key[2]);
- e_key[3] = io_swap(in_key[3]);
-
- switch (ctx->k_len)
- {
- case 4:
- t = e_key[3];
- for (i = 0; i < 10; ++i)
- loop4(i);
- break;
-
- case 6:
- e_key[4] = io_swap(in_key[4]);
- t = e_key[5] = io_swap(in_key[5]);
- for (i = 0; i < 8; ++i)
- loop6(i);
- break;
-
- case 8:
- e_key[4] = io_swap(in_key[4]);
- e_key[5] = io_swap(in_key[5]);
- e_key[6] = io_swap(in_key[6]);
- t = e_key[7] = io_swap(in_key[7]);
- for (i = 0; i < 7; ++i)
- loop8(i);
- break;
- }
-
- if (!encrypt)
- {
- d_key[0] = e_key[0];
- d_key[1] = e_key[1];
- d_key[2] = e_key[2];
- d_key[3] = e_key[3];
-
- for (i = 4; i < 4 * ctx->k_len + 24; ++i)
- imix_col(d_key[i], e_key[i]);
- }
-
- return ctx;
-}
-
-/* encrypt a block of text */
-
-#define f_nround(bo, bi, k) \
-do { \
- f_rn(bo, bi, 0, k); \
- f_rn(bo, bi, 1, k); \
- f_rn(bo, bi, 2, k); \
- f_rn(bo, bi, 3, k); \
- k += 4; \
-} while (0)
-
-#define f_lround(bo, bi, k) \
-do { \
- f_rl(bo, bi, 0, k); \
- f_rl(bo, bi, 1, k); \
- f_rl(bo, bi, 2, k); \
- f_rl(bo, bi, 3, k); \
-} while (0)
-
-void
-rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
-{
- u4byte k_len = ctx->k_len;
- u4byte *e_key = ctx->e_key;
- u4byte b0[4],
- b1[4],
- *kp;
-
- b0[0] = io_swap(in_blk[0]) ^ e_key[0];
- b0[1] = io_swap(in_blk[1]) ^ e_key[1];
- b0[2] = io_swap(in_blk[2]) ^ e_key[2];
- b0[3] = io_swap(in_blk[3]) ^ e_key[3];
-
- kp = e_key + 4;
-
- if (k_len > 6)
- {
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- }
-
- if (k_len > 4)
- {
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- }
-
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_lround(b0, b1, kp);
-
- out_blk[0] = io_swap(b0[0]);
- out_blk[1] = io_swap(b0[1]);
- out_blk[2] = io_swap(b0[2]);
- out_blk[3] = io_swap(b0[3]);
-}
-
-/* decrypt a block of text */
-
-#define i_nround(bo, bi, k) \
-do { \
- i_rn(bo, bi, 0, k); \
- i_rn(bo, bi, 1, k); \
- i_rn(bo, bi, 2, k); \
- i_rn(bo, bi, 3, k); \
- k -= 4; \
-} while (0)
-
-#define i_lround(bo, bi, k) \
-do { \
- i_rl(bo, bi, 0, k); \
- i_rl(bo, bi, 1, k); \
- i_rl(bo, bi, 2, k); \
- i_rl(bo, bi, 3, k); \
-} while (0)
-
-void
-rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
-{
- u4byte b0[4],
- b1[4],
- *kp;
- u4byte k_len = ctx->k_len;
- u4byte *e_key = ctx->e_key;
- u4byte *d_key = ctx->d_key;
-
- b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
- b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
- b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
- b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
-
- kp = d_key + 4 * (k_len + 5);
-
- if (k_len > 6)
- {
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- }
-
- if (k_len > 4)
- {
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- }
-
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_lround(b0, b1, kp);
-
- out_blk[0] = io_swap(b0[0]);
- out_blk[1] = io_swap(b0[1]);
- out_blk[2] = io_swap(b0[2]);
- out_blk[3] = io_swap(b0[3]);
-}
-
-/*
- * conventional interface
- *
- * ATM it hopes all data is 4-byte aligned - which
- * should be true for PX. -marko
- */
-
-void
-aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc)
-{
- uint32 *k;
-
- k = (uint32 *) key;
- rijndael_set_key(ctx, k, keybits, enc);
-}
-
-void
-aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
-{
- unsigned bs = 16;
- uint32 *d;
-
- while (len >= bs)
- {
- d = (uint32 *) data;
- rijndael_encrypt(ctx, d, d);
-
- len -= bs;
- data += bs;
- }
-}
-
-void
-aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
-{
- unsigned bs = 16;
- uint32 *d;
-
- while (len >= bs)
- {
- d = (uint32 *) data;
- rijndael_decrypt(ctx, d, d);
-
- len -= bs;
- data += bs;
- }
-}
-
-void
-aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
-{
- uint32 *iv = (uint32 *) iva;
- uint32 *d = (uint32 *) data;
- unsigned bs = 16;
-
- while (len >= bs)
- {
- d[0] ^= iv[0];
- d[1] ^= iv[1];
- d[2] ^= iv[2];
- d[3] ^= iv[3];
-
- rijndael_encrypt(ctx, d, d);
-
- iv = d;
- d += bs / 4;
- len -= bs;
- }
-}
-
-void
-aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
-{
- uint32 *d = (uint32 *) data;
- unsigned bs = 16;
- uint32 buf[4],
- iv[4];
-
- memcpy(iv, iva, bs);
- while (len >= bs)
- {
- buf[0] = d[0];
- buf[1] = d[1];
- buf[2] = d[2];
- buf[3] = d[3];
-
- rijndael_decrypt(ctx, buf, d);
-
- d[0] ^= iv[0];
- d[1] ^= iv[1];
- d[2] ^= iv[2];
- d[3] ^= iv[3];
-
- iv[0] = buf[0];
- iv[1] = buf[1];
- iv[2] = buf[2];
- iv[3] = buf[3];
- d += 4;
- len -= bs;
- }
-}
-
-/*
- * pre-calculate tables.
- *
- * On i386 lifts 17k from .bss to .rodata
- * and avoids 1k code and setup time.
- * -marko
- */
-#ifdef PRINT_TABS
-
-static void
-show256u8(char *name, uint8 *data)
-{
- int i;
-
- printf("static const u1byte %s[256] = {\n ", name);
- for (i = 0; i < 256;)
- {
- printf("%u", pow_tab[i++]);
- if (i < 256)
- printf(i % 16 ? ", " : ",\n ");
- }
- printf("\n};\n\n");
-}
-
-
-static void
-show4x256u32(char *name, uint32 data[4][256])
-{
- int i,
- j;
-
- printf("static const u4byte %s[4][256] = {\n{\n ", name);
- for (i = 0; i < 4; i++)
- {
- for (j = 0; j < 256;)
- {
- printf("0x%08x", data[i][j]);
- j++;
- if (j < 256)
- printf(j % 4 ? ", " : ",\n ");
- }
- printf(i < 3 ? "\n}, {\n " : "\n}\n");
- }
- printf("};\n\n");
-}
-
-int
-main()
-{
- int i;
- char *hdr = "/* Generated by rijndael.c */\n\n";
-
- gen_tabs();
-
- printf(hdr);
- show256u8("pow_tab", pow_tab);
- show256u8("log_tab", log_tab);
- show256u8("sbx_tab", sbx_tab);
- show256u8("isb_tab", isb_tab);
-
- show4x256u32("ft_tab", ft_tab);
- show4x256u32("it_tab", it_tab);
-#ifdef LARGE_TABLES
- show4x256u32("fl_tab", fl_tab);
- show4x256u32("il_tab", il_tab);
-#endif
- printf("static const u4byte rco_tab[10] = {\n ");
- for (i = 0; i < 10; i++)
- {
- printf("0x%08x", rco_tab[i]);
- if (i < 9)
- printf(", ");
- if (i == 4)
- printf("\n ");
- }
- printf("\n};\n\n");
- return 0;
-}
-
-#endif