summaryrefslogtreecommitdiff
path: root/contrib/pgcrypto/imath.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/pgcrypto/imath.h')
-rw-r--r--contrib/pgcrypto/imath.h445
1 files changed, 0 insertions, 445 deletions
diff --git a/contrib/pgcrypto/imath.h b/contrib/pgcrypto/imath.h
deleted file mode 100644
index 0e1676d04e9..00000000000
--- a/contrib/pgcrypto/imath.h
+++ /dev/null
@@ -1,445 +0,0 @@
-/*
- Name: imath.h
- Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger
-
- Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
-
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
-
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
-
-#ifndef IMATH_H_
-#define IMATH_H_
-
-#include <limits.h>
-
-typedef unsigned char mp_sign;
-typedef unsigned int mp_size;
-typedef int mp_result;
-typedef long mp_small; /* must be a signed type */
-typedef unsigned long mp_usmall; /* must be an unsigned type */
-
-
-/* Build with words as uint64 by default. */
-#ifdef USE_32BIT_WORDS
-typedef uint16 mp_digit;
-typedef uint32 mp_word;
-#define MP_DIGIT_MAX (PG_UINT16_MAX * 1UL)
-#define MP_WORD_MAX (PG_UINT32_MAX * 1UL)
-#else
-typedef uint32 mp_digit;
-typedef uint64 mp_word;
-#define MP_DIGIT_MAX (PG_UINT32_MAX * UINT64CONST(1))
-#define MP_WORD_MAX (PG_UINT64_MAX)
-#endif
-
-typedef struct
-{
- mp_digit single;
- mp_digit *digits;
- mp_size alloc;
- mp_size used;
- mp_sign sign;
-} mpz_t ,
-
- *mp_int;
-
-static inline mp_digit *
-MP_DIGITS(mp_int Z)
-{
- return Z->digits;
-}
-static inline mp_size
-MP_ALLOC(mp_int Z)
-{
- return Z->alloc;
-}
-static inline mp_size
-MP_USED(mp_int Z)
-{
- return Z->used;
-}
-static inline mp_sign
-MP_SIGN(mp_int Z)
-{
- return Z->sign;
-}
-
-extern const mp_result MP_OK;
-extern const mp_result MP_FALSE;
-extern const mp_result MP_TRUE;
-extern const mp_result MP_MEMORY;
-extern const mp_result MP_RANGE;
-extern const mp_result MP_UNDEF;
-extern const mp_result MP_TRUNC;
-extern const mp_result MP_BADARG;
-extern const mp_result MP_MINERR;
-
-#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
-#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
-#define MP_SMALL_MIN LONG_MIN
-#define MP_SMALL_MAX LONG_MAX
-#define MP_USMALL_MAX ULONG_MAX
-
-#define MP_MIN_RADIX 2
-#define MP_MAX_RADIX 36
-
-/** Sets the default number of digits allocated to an `mp_int` constructed by
- `mp_int_init_size()` with `prec == 0`. Allocations are rounded up to
- multiples of this value. `MP_DEFAULT_PREC` is the default value. Requires
- `ndigits > 0`. */
-void mp_int_default_precision(mp_size ndigits);
-
-/** Sets the number of digits below which multiplication will use the standard
- quadratic "schoolbook" multiplcation algorithm rather than Karatsuba-Ofman.
- Requires `ndigits >= sizeof(mp_word)`. */
-void mp_int_multiply_threshold(mp_size ndigits);
-
-/** A sign indicating a (strictly) negative value. */
-extern const mp_sign MP_NEG;
-
-/** A sign indicating a zero or positive value. */
-extern const mp_sign MP_ZPOS;
-
-/** Reports whether `z` is odd, having remainder 1 when divided by 2. */
-static inline bool
-mp_int_is_odd(mp_int z)
-{
- return (z->digits[0] & 1) != 0;
-}
-
-/** Reports whether `z` is even, having remainder 0 when divided by 2. */
-static inline bool
-mp_int_is_even(mp_int z)
-{
- return (z->digits[0] & 1) == 0;
-}
-
-/** Initializes `z` with 1-digit precision and sets it to zero. This function
- cannot fail unless `z == NULL`. */
-mp_result mp_int_init(mp_int z);
-
-/** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case
- of error. The only possible error is out-of-memory. */
-mp_int mp_int_alloc(void);
-
-/** Initializes `z` with at least `prec` digits of storage, and sets it to
- zero. If `prec` is zero, the default precision is used. In either case the
- size is rounded up to the nearest multiple of the word size. */
-mp_result mp_int_init_size(mp_int z, mp_size prec);
-
-/** Initializes `z` to be a copy of an already-initialized value in `old`. The
- new copy does not share storage with the original. */
-mp_result mp_int_init_copy(mp_int z, mp_int old);
-
-/** Initializes `z` to the specified signed `value` at default precision. */
-mp_result mp_int_init_value(mp_int z, mp_small value);
-
-/** Initializes `z` to the specified unsigned `value` at default precision. */
-mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue);
-
-/** Sets `z` to the value of the specified signed `value`. */
-mp_result mp_int_set_value(mp_int z, mp_small value);
-
-/** Sets `z` to the value of the specified unsigned `value`. */
-mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue);
-
-/** Releases the storage used by `z`. */
-void mp_int_clear(mp_int z);
-
-/** Releases the storage used by `z` and also `z` itself.
- This should only be used for `z` allocated by `mp_int_alloc()`. */
-void mp_int_free(mp_int z);
-
-/** Replaces the value of `c` with a copy of the value of `a`. No new memory is
- allocated unless `a` has more significant digits than `c` has allocated. */
-mp_result mp_int_copy(mp_int a, mp_int c);
-
-/** Swaps the values and storage between `a` and `c`. */
-void mp_int_swap(mp_int a, mp_int c);
-
-/** Sets `z` to zero. The allocated storage of `z` is not changed. */
-void mp_int_zero(mp_int z);
-
-/** Sets `c` to the absolute value of `a`. */
-mp_result mp_int_abs(mp_int a, mp_int c);
-
-/** Sets `c` to the additive inverse (negation) of `a`. */
-mp_result mp_int_neg(mp_int a, mp_int c);
-
-/** Sets `c` to the sum of `a` and `b`. */
-mp_result mp_int_add(mp_int a, mp_int b, mp_int c);
-
-/** Sets `c` to the sum of `a` and `value`. */
-mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
-
-/** Sets `c` to the difference of `a` less `b`. */
-mp_result mp_int_sub(mp_int a, mp_int b, mp_int c);
-
-/** Sets `c` to the difference of `a` less `value`. */
-mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
-
-/** Sets `c` to the product of `a` and `b`. */
-mp_result mp_int_mul(mp_int a, mp_int b, mp_int c);
-
-/** Sets `c` to the product of `a` and `value`. */
-mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
-
-/** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */
-mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
-
-/** Sets `c` to the square of `a`. */
-mp_result mp_int_sqr(mp_int a, mp_int c);
-
-/** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by
- powers of 2 is detected and handled efficiently. The remainder is pinned
- to `0 <= r < b`.
-
- Either of `q` or `r` may be NULL, but not both, and `q` and `r` may not
- point to the same value. */
-mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r);
-
-/** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by
- powers of 2 is detected and handled efficiently. The remainder is pinned to
- `0 <= *r < b`. Either of `q` or `r` may be NULL. */
-mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r);
-
-/** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a
- special case for division by powers of two that is more efficient than
- using ordinary division. Note that `mp_int_div()` will automatically handle
- this case, this function is for cases where you have only the exponent. */
-mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r);
-
-/** Sets `c` to the remainder of `a / m`.
- The remainder is pinned to `0 <= c < m`. */
-mp_result mp_int_mod(mp_int a, mp_int m, mp_int c);
-
-/** Sets `c` to the value of `a` raised to the `b` power.
- It returns `MP_RANGE` if `b < 0`. */
-mp_result mp_int_expt(mp_int a, mp_small b, mp_int c);
-
-/** Sets `c` to the value of `a` raised to the `b` power.
- It returns `MP_RANGE` if `b < 0`. */
-mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c);
-
-/** Sets `c` to the value of `a` raised to the `b` power.
- It returns `MP_RANGE`) if `b < 0`. */
-mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c);
-
-/** Sets `*r` to the remainder of `a / value`.
- The remainder is pinned to `0 <= r < value`. */
-static inline
-mp_result
-mp_int_mod_value(mp_int a, mp_small value, mp_small *r)
-{
- return mp_int_div_value(a, value, 0, r);
-}
-
-/** Returns the comparator of `a` and `b`. */
-int mp_int_compare(mp_int a, mp_int b);
-
-/** Returns the comparator of the magnitudes of `a` and `b`, disregarding their
- signs. Neither `a` nor `b` is modified by the comparison. */
-int mp_int_compare_unsigned(mp_int a, mp_int b);
-
-/** Returns the comparator of `z` and zero. */
-int mp_int_compare_zero(mp_int z);
-
-/** Returns the comparator of `z` and the signed value `v`. */
-int mp_int_compare_value(mp_int z, mp_small v);
-
-/** Returns the comparator of `z` and the unsigned value `uv`. */
-int mp_int_compare_uvalue(mp_int z, mp_usmall uv);
-
-/** Reports whether `a` is divisible by `v`. */
-bool mp_int_divisible_value(mp_int a, mp_small v);
-
-/** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such
- `k` exists, the function returns -1. */
-int mp_int_is_pow2(mp_int z);
-
-/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`.
- It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
-mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c);
-
-/** Sets `c` to the value of `a` raised to the `value` power, modulo `m`.
- It returns `MP_RANGE` if `value < 0` or `MP_UNDEF` if `m == 0`. */
-mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c);
-
-/** Sets `c` to the value of `value` raised to the `b` power, modulo `m`.
- It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
-mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c);
-
-/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`,
- given a precomputed reduction constant `mu` defined for Barrett's modular
- reduction algorithm.
-
- It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
-mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
-
-/** Sets `c` to the reduction constant for Barrett reduction by modulus `m`.
- Requires that `c` and `m` point to distinct locations. */
-mp_result mp_int_redux_const(mp_int m, mp_int c);
-
-/** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists.
- The least non-negative representative of the congruence class is computed.
-
- It returns `MP_UNDEF` if the inverse does not exist, or `MP_RANGE` if `a ==
- 0` or `m <= 0`. */
-mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c);
-
-/** Sets `c` to the greatest common divisor of `a` and `b`.
-
- It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
- and `b` are both zero. */
-mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c);
-
-/** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and
- `y` to values satisfying Bezout's identity `gcd(a, b) = ax + by`.
-
- It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
- and `b` are both zero. */
-mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y);
-
-/** Sets `c` to the least common multiple of `a` and `b`.
-
- It returns `MP_UNDEF` if the LCM is undefined, such as for example if `a`
- and `b` are both zero. */
-mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c);
-
-/** Sets `c` to the greatest integer not less than the `b`th root of `a`,
- using Newton's root-finding algorithm.
- It returns `MP_UNDEF` if `a < 0` and `b` is even. */
-mp_result mp_int_root(mp_int a, mp_small b, mp_int c);
-
-/** Sets `c` to the greatest integer not less than the square root of `a`.
- This is a special case of `mp_int_root()`. */
-static inline
-mp_result
-mp_int_sqrt(mp_int a, mp_int c)
-{
- return mp_int_root(a, 2, c);
-}
-
-/** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`.
- If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
-mp_result mp_int_to_int(mp_int z, mp_small *out);
-
-/** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`.
- If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
-mp_result mp_int_to_uint(mp_int z, mp_usmall *out);
-
-/** Converts `z` to a zero-terminated string of characters in the specified
- `radix`, writing at most `limit` characters to `str` including the
- terminating NUL value. A leading `-` is used to indicate a negative value.
-
- Returns `MP_TRUNC` if `limit` was to small to write all of `z`.
- Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
-mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit);
-
-/** Reports the minimum number of characters required to represent `z` as a
- zero-terminated string in the given `radix`.
- Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
-mp_result mp_int_string_len(mp_int z, mp_size radix);
-
-/** Reads a string of ASCII digits in the specified `radix` from the zero
- terminated `str` provided into `z`. For values of `radix > 10`, the letters
- `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
- to case.
-
- Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
- sign flag. Processing stops when a NUL or any other character out of range
- for a digit in the given radix is encountered.
-
- If the whole string was consumed, `MP_OK` is returned; otherwise
- `MP_TRUNC`. is returned.
-
- Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
-mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
-
-/** Reads a string of ASCII digits in the specified `radix` from the zero
- terminated `str` provided into `z`. For values of `radix > 10`, the letters
- `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
- to case.
-
- Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
- sign flag. Processing stops when a NUL or any other character out of range
- for a digit in the given radix is encountered.
-
- If the whole string was consumed, `MP_OK` is returned; otherwise
- `MP_TRUNC`. is returned. If `end` is not NULL, `*end` is set to point to
- the first unconsumed byte of the input string (the NUL byte if the whole
- string was consumed). This emulates the behavior of the standard C
- `strtol()` function.
-
- Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end);
-
-/** Returns the number of significant bits in `z`. */
-mp_result mp_int_count_bits(mp_int z);
-
-/** Converts `z` to 2's complement binary, writing at most `limit` bytes into
- the given `buf`. Returns `MP_TRUNC` if the buffer limit was too small to
- contain the whole value. If this occurs, the contents of buf will be
- effectively garbage, as the function uses the buffer as scratch space.
-
- The binary representation of `z` is in base-256 with digits ordered from
- most significant to least significant (network byte ordering). The
- high-order bit of the first byte is set for negative values, clear for
- non-negative values.
-
- As a result, non-negative values will be padded with a leading zero byte if
- the high-order byte of the base-256 magnitude is set. This extra byte is
- accounted for by the `mp_int_binary_len()` function. */
-mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
-
-/** Reads a 2's complement binary value from `buf` into `z`, where `len` is the
- length of the buffer. The contents of `buf` may be overwritten during
- processing, although they will be restored when the function returns. */
-mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
-
-/** Returns the number of bytes to represent `z` in 2's complement binary. */
-mp_result mp_int_binary_len(mp_int z);
-
-/** Converts the magnitude of `z` to unsigned binary, writing at most `limit`
- bytes into the given `buf`. The sign of `z` is ignored, but `z` is not
- modified. Returns `MP_TRUNC` if the buffer limit was too small to contain
- the whole value. If this occurs, the contents of `buf` will be effectively
- garbage, as the function uses the buffer as scratch space during
- conversion.
-
- The binary representation of `z` is in base-256 with digits ordered from
- most significant to least significant (network byte ordering). */
-mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
-
-/** Reads an unsigned binary value from `buf` into `z`, where `len` is the
- length of the buffer. The contents of `buf` are not modified during
- processing. */
-mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
-
-/** Returns the number of bytes required to represent `z` as an unsigned binary
- value in base 256. */
-mp_result mp_int_unsigned_len(mp_int z);
-
-/** Returns a pointer to a brief, human-readable, zero-terminated string
- describing `res`. The returned string is statically allocated and must not
- be freed by the caller. */
-const char *mp_error_string(mp_result res);
-
-#endif /* end IMATH_H_ */