summaryrefslogtreecommitdiff
path: root/src/backend
diff options
context:
space:
mode:
authorTom Lane2017-02-23 19:04:43 +0000
committerTom Lane2017-02-23 19:04:43 +0000
commitb9d092c962ea3262930e3c31a8c3d79b66ce9d43 (patch)
treedce85c309787c766f079c627b7f06fb5f284495b /src/backend
parentd28aafb6dda326688e2f042c95c93ea57963c03c (diff)
Remove now-dead code for !HAVE_INT64_TIMESTAMP.
This is a basically mechanical removal of #ifdef HAVE_INT64_TIMESTAMP tests and the negative-case controlled code. Discussion: https://postgr.es/m/26788.1487455319@sss.pgh.pa.us
Diffstat (limited to 'src/backend')
-rw-r--r--src/backend/commands/variable.c4
-rw-r--r--src/backend/utils/adt/date.c250
-rw-r--r--src/backend/utils/adt/datetime.c110
-rw-r--r--src/backend/utils/adt/formatting.c24
-rw-r--r--src/backend/utils/adt/misc.c5
-rw-r--r--src/backend/utils/adt/nabstime.c12
-rw-r--r--src/backend/utils/adt/rangetypes.c10
-rw-r--r--src/backend/utils/adt/selfuncs.c18
-rw-r--r--src/backend/utils/adt/timestamp.c458
-rw-r--r--src/backend/utils/misc/guc.c4
10 files changed, 6 insertions, 889 deletions
diff --git a/src/backend/commands/variable.c b/src/backend/commands/variable.c
index 15dbaf3fd21..d75bddd87b2 100644
--- a/src/backend/commands/variable.c
+++ b/src/backend/commands/variable.c
@@ -308,11 +308,7 @@ check_timezone(char **newval, void **extra, GucSource source)
}
/* Here we change from SQL to Unix sign convention */
-#ifdef HAVE_INT64_TIMESTAMP
gmtoffset = -(interval->time / USECS_PER_SEC);
-#else
- gmtoffset = -interval->time;
-#endif
new_tz = pg_tzset_offset(gmtoffset);
pfree(interval);
diff --git a/src/backend/utils/adt/date.c b/src/backend/utils/adt/date.c
index 0a100a30eaf..76ab9496e2e 100644
--- a/src/backend/utils/adt/date.c
+++ b/src/backend/utils/adt/date.c
@@ -590,13 +590,9 @@ date2timestamp(DateADT dateVal)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
-#ifdef HAVE_INT64_TIMESTAMP
+
/* date is days since 2000, timestamp is microseconds since same... */
result = dateVal * USECS_PER_DAY;
-#else
- /* date is days since 2000, timestamp is seconds since same... */
- result = dateVal * (double) SECS_PER_DAY;
-#endif
}
return result;
@@ -633,11 +629,7 @@ date2timestamptz(DateADT dateVal)
tm->tm_sec = 0;
tz = DetermineTimeZoneOffset(tm, session_timezone);
-#ifdef HAVE_INT64_TIMESTAMP
result = dateVal * USECS_PER_DAY + tz * USECS_PER_SEC;
-#else
- result = dateVal * (double) SECS_PER_DAY + tz;
-#endif
/*
* Since it is possible to go beyond allowed timestamptz range because
@@ -673,13 +665,8 @@ date2timestamp_no_overflow(DateADT dateVal)
result = DBL_MAX;
else
{
-#ifdef HAVE_INT64_TIMESTAMP
/* date is days since 2000, timestamp is microseconds since same... */
result = dateVal * (double) USECS_PER_DAY;
-#else
- /* date is days since 2000, timestamp is seconds since same... */
- result = dateVal * (double) SECS_PER_DAY;
-#endif
}
return result;
@@ -1250,12 +1237,8 @@ time_in(PG_FUNCTION_ARGS)
static int
tm2time(struct pg_tm * tm, fsec_t fsec, TimeADT *result)
{
-#ifdef HAVE_INT64_TIMESTAMP
*result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec)
* USECS_PER_SEC) + fsec;
-#else
- *result = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
-#endif
return 0;
}
@@ -1269,7 +1252,6 @@ tm2time(struct pg_tm * tm, fsec_t fsec, TimeADT *result)
static int
time2tm(TimeADT time, struct pg_tm * tm, fsec_t *fsec)
{
-#ifdef HAVE_INT64_TIMESTAMP
tm->tm_hour = time / USECS_PER_HOUR;
time -= tm->tm_hour * USECS_PER_HOUR;
tm->tm_min = time / USECS_PER_MINUTE;
@@ -1277,24 +1259,6 @@ time2tm(TimeADT time, struct pg_tm * tm, fsec_t *fsec)
tm->tm_sec = time / USECS_PER_SEC;
time -= tm->tm_sec * USECS_PER_SEC;
*fsec = time;
-#else
- double trem;
-
-recalc:
- trem = time;
- TMODULO(trem, tm->tm_hour, (double) SECS_PER_HOUR);
- TMODULO(trem, tm->tm_min, (double) SECS_PER_MINUTE);
- TMODULO(trem, tm->tm_sec, 1.0);
- trem = TIMEROUND(trem);
- /* roundoff may need to propagate to higher-order fields */
- if (trem >= 1.0)
- {
- time = ceil(time);
- goto recalc;
- }
- *fsec = trem;
-#endif
-
return 0;
}
@@ -1317,9 +1281,6 @@ time_out(PG_FUNCTION_ARGS)
/*
* time_recv - converts external binary format to time
- *
- * We make no attempt to provide compatibility between int and float
- * time representations ...
*/
Datum
time_recv(PG_FUNCTION_ARGS)
@@ -1332,21 +1293,12 @@ time_recv(PG_FUNCTION_ARGS)
int32 typmod = PG_GETARG_INT32(2);
TimeADT result;
-#ifdef HAVE_INT64_TIMESTAMP
result = pq_getmsgint64(buf);
if (result < INT64CONST(0) || result > USECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
-#else
- result = pq_getmsgfloat8(buf);
-
- if (result < 0 || result > (double) SECS_PER_DAY)
- ereport(ERROR,
- (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
- errmsg("time out of range")));
-#endif
AdjustTimeForTypmod(&result, typmod);
@@ -1363,11 +1315,7 @@ time_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
-#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, time);
-#else
- pq_sendfloat8(&buf, time);
-#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@@ -1410,12 +1358,8 @@ make_time(PG_FUNCTION_ARGS)
tm_hour, tm_min, sec)));
/* This should match tm2time */
-#ifdef HAVE_INT64_TIMESTAMP
time = (((tm_hour * MINS_PER_HOUR + tm_min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
-#else
- time = ((tm_hour * MINS_PER_HOUR + tm_min) * SECS_PER_MINUTE) + sec;
-#endif
PG_RETURN_TIMEADT(time);
}
@@ -1459,7 +1403,6 @@ time_scale(PG_FUNCTION_ARGS)
static void
AdjustTimeForTypmod(TimeADT *time, int32 typmod)
{
-#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimeScales[MAX_TIME_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@@ -1479,42 +1422,15 @@ AdjustTimeForTypmod(TimeADT *time, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
-#else
- /* note MAX_TIME_PRECISION differs in this case */
- static const double TimeScales[MAX_TIME_PRECISION + 1] = {
- 1.0,
- 10.0,
- 100.0,
- 1000.0,
- 10000.0,
- 100000.0,
- 1000000.0,
- 10000000.0,
- 100000000.0,
- 1000000000.0,
- 10000000000.0
- };
-#endif
if (typmod >= 0 && typmod <= MAX_TIME_PRECISION)
{
- /*
- * Note: this round-to-nearest code is not completely consistent about
- * rounding values that are exactly halfway between integral values.
- * On most platforms, rint() will implement round-to-nearest-even, but
- * the integer code always rounds up (away from zero). Is it worth
- * trying to be consistent?
- */
-#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0))
*time = ((*time + TimeOffsets[typmod]) / TimeScales[typmod]) *
TimeScales[typmod];
else
*time = -((((-*time) + TimeOffsets[typmod]) / TimeScales[typmod]) *
TimeScales[typmod]);
-#else
- *time = rint((double) *time * TimeScales[typmod]) / TimeScales[typmod];
-#endif
}
}
@@ -1589,12 +1505,7 @@ time_cmp(PG_FUNCTION_ARGS)
Datum
time_hash(PG_FUNCTION_ARGS)
{
- /* We can use either hashint8 or hashfloat8 directly */
-#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
-#else
- return hashfloat8(fcinfo);
-#endif
}
Datum
@@ -1760,17 +1671,12 @@ timestamp_time(PG_FUNCTION_ARGS)
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
-#ifdef HAVE_INT64_TIMESTAMP
-
/*
* Could also do this with time = (timestamp / USECS_PER_DAY *
* USECS_PER_DAY) - timestamp;
*/
result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
-#else
- result = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
-#endif
PG_RETURN_TIMEADT(result);
}
@@ -1796,17 +1702,12 @@ timestamptz_time(PG_FUNCTION_ARGS)
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
-#ifdef HAVE_INT64_TIMESTAMP
-
/*
* Could also do this with time = (timestamp / USECS_PER_DAY *
* USECS_PER_DAY) - timestamp;
*/
result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
-#else
- result = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
-#endif
PG_RETURN_TIMEADT(result);
}
@@ -1865,8 +1766,6 @@ interval_time(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
TimeADT result;
-
-#ifdef HAVE_INT64_TIMESTAMP
int64 days;
result = span->time;
@@ -1880,11 +1779,6 @@ interval_time(PG_FUNCTION_ARGS)
days = (-result + USECS_PER_DAY - 1) / USECS_PER_DAY;
result += days * USECS_PER_DAY;
}
-#else
- result = span->time;
- if (result >= (double) SECS_PER_DAY || result < 0)
- result -= floor(result / (double) SECS_PER_DAY) * (double) SECS_PER_DAY;
-#endif
PG_RETURN_TIMEADT(result);
}
@@ -1918,19 +1812,10 @@ time_pl_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeADT result;
-#ifdef HAVE_INT64_TIMESTAMP
result = time + span->time;
result -= result / USECS_PER_DAY * USECS_PER_DAY;
if (result < INT64CONST(0))
result += USECS_PER_DAY;
-#else
- TimeADT time1;
-
- result = time + span->time;
- TMODULO(result, time1, (double) SECS_PER_DAY);
- if (result < 0)
- result += SECS_PER_DAY;
-#endif
PG_RETURN_TIMEADT(result);
}
@@ -1945,19 +1830,10 @@ time_mi_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeADT result;
-#ifdef HAVE_INT64_TIMESTAMP
result = time - span->time;
result -= result / USECS_PER_DAY * USECS_PER_DAY;
if (result < INT64CONST(0))
result += USECS_PER_DAY;
-#else
- TimeADT time1;
-
- result = time - span->time;
- TMODULO(result, time1, (double) SECS_PER_DAY);
- if (result < 0)
- result += SECS_PER_DAY;
-#endif
PG_RETURN_TIMEADT(result);
}
@@ -1995,27 +1871,15 @@ time_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
-#else
- result = (tm->tm_sec + fsec) * 1000000;
-#endif
break;
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
-#else
- result = (tm->tm_sec + fsec) * 1000;
-#endif
break;
case DTK_SECOND:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
-#else
- result = tm->tm_sec + fsec;
-#endif
break;
case DTK_MINUTE:
@@ -2047,11 +1911,7 @@ time_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
-#ifdef HAVE_INT64_TIMESTAMP
result = time / 1000000.0;
-#else
- result = time;
-#endif
}
else
{
@@ -2076,12 +1936,8 @@ time_part(PG_FUNCTION_ARGS)
static int
tm2timetz(struct pg_tm * tm, fsec_t fsec, int tz, TimeTzADT *result)
{
-#ifdef HAVE_INT64_TIMESTAMP
result->time = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
-#else
- result->time = ((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec + fsec;
-#endif
result->zone = tz;
return 0;
@@ -2156,21 +2012,12 @@ timetz_recv(PG_FUNCTION_ARGS)
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
-#ifdef HAVE_INT64_TIMESTAMP
result->time = pq_getmsgint64(buf);
if (result->time < INT64CONST(0) || result->time > USECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
-#else
- result->time = pq_getmsgfloat8(buf);
-
- if (result->time < 0 || result->time > (double) SECS_PER_DAY)
- ereport(ERROR,
- (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
- errmsg("time out of range")));
-#endif
result->zone = pq_getmsgint(buf, sizeof(result->zone));
@@ -2195,11 +2042,7 @@ timetz_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
-#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, time->time);
-#else
- pq_sendfloat8(&buf, time->time);
-#endif
pq_sendint(&buf, time->zone, sizeof(time->zone));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@@ -2229,27 +2072,12 @@ timetz2tm(TimeTzADT *time, struct pg_tm * tm, fsec_t *fsec, int *tzp)
{
TimeOffset trem = time->time;
-#ifdef HAVE_INT64_TIMESTAMP
tm->tm_hour = trem / USECS_PER_HOUR;
trem -= tm->tm_hour * USECS_PER_HOUR;
tm->tm_min = trem / USECS_PER_MINUTE;
trem -= tm->tm_min * USECS_PER_MINUTE;
tm->tm_sec = trem / USECS_PER_SEC;
*fsec = trem - tm->tm_sec * USECS_PER_SEC;
-#else
-recalc:
- TMODULO(trem, tm->tm_hour, (double) SECS_PER_HOUR);
- TMODULO(trem, tm->tm_min, (double) SECS_PER_MINUTE);
- TMODULO(trem, tm->tm_sec, 1.0);
- trem = TIMEROUND(trem);
- /* roundoff may need to propagate to higher-order fields */
- if (trem >= 1.0)
- {
- trem = ceil(time->time);
- goto recalc;
- }
- *fsec = trem;
-#endif
if (tzp != NULL)
*tzp = time->zone;
@@ -2286,13 +2114,8 @@ timetz_cmp_internal(TimeTzADT *time1, TimeTzADT *time2)
t2;
/* Primary sort is by true (GMT-equivalent) time */
-#ifdef HAVE_INT64_TIMESTAMP
t1 = time1->time + (time1->zone * USECS_PER_SEC);
t2 = time2->time + (time2->zone * USECS_PER_SEC);
-#else
- t1 = time1->time + time1->zone;
- t2 = time2->time + time2->zone;
-#endif
if (t1 > t2)
return 1;
@@ -2382,17 +2205,10 @@ timetz_hash(PG_FUNCTION_ARGS)
/*
* To avoid any problems with padding bytes in the struct, we figure the
- * field hashes separately and XOR them. This also provides a convenient
- * framework for dealing with the fact that the time field might be either
- * double or int64.
+ * field hashes separately and XOR them.
*/
-#ifdef HAVE_INT64_TIMESTAMP
thash = DatumGetUInt32(DirectFunctionCall1(hashint8,
Int64GetDatumFast(key->time)));
-#else
- thash = DatumGetUInt32(DirectFunctionCall1(hashfloat8,
- Float8GetDatumFast(key->time)));
-#endif
thash ^= DatumGetUInt32(hash_uint32(key->zone));
PG_RETURN_UINT32(thash);
}
@@ -2435,23 +2251,12 @@ timetz_pl_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeTzADT *result;
-#ifndef HAVE_INT64_TIMESTAMP
- TimeTzADT time1;
-#endif
-
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
-#ifdef HAVE_INT64_TIMESTAMP
result->time = time->time + span->time;
result->time -= result->time / USECS_PER_DAY * USECS_PER_DAY;
if (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
-#else
- result->time = time->time + span->time;
- TMODULO(result->time, time1.time, (double) SECS_PER_DAY);
- if (result->time < 0)
- result->time += SECS_PER_DAY;
-#endif
result->zone = time->zone;
@@ -2468,23 +2273,12 @@ timetz_mi_interval(PG_FUNCTION_ARGS)
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeTzADT *result;
-#ifndef HAVE_INT64_TIMESTAMP
- TimeTzADT time1;
-#endif
-
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
-#ifdef HAVE_INT64_TIMESTAMP
result->time = time->time - span->time;
result->time -= result->time / USECS_PER_DAY * USECS_PER_DAY;
if (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
-#else
- result->time = time->time - span->time;
- TMODULO(result->time, time1.time, (double) SECS_PER_DAY);
- if (result->time < 0)
- result->time += SECS_PER_DAY;
-#endif
result->zone = time->zone;
@@ -2710,11 +2504,7 @@ datetimetz_timestamptz(PG_FUNCTION_ARGS)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
-#ifdef HAVE_INT64_TIMESTAMP
result = date * USECS_PER_DAY + time->time + time->zone * USECS_PER_SEC;
-#else
- result = date * (double) SECS_PER_DAY + time->time + time->zone;
-#endif
/*
* Since it is possible to go beyond allowed timestamptz range because
@@ -2779,27 +2569,15 @@ timetz_part(PG_FUNCTION_ARGS)
break;
case DTK_MICROSEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
-#else
- result = (tm->tm_sec + fsec) * 1000000;
-#endif
break;
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
-#else
- result = (tm->tm_sec + fsec) * 1000;
-#endif
break;
case DTK_SECOND:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
-#else
- result = tm->tm_sec + fsec;
-#endif
break;
case DTK_MINUTE:
@@ -2827,11 +2605,7 @@ timetz_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
-#ifdef HAVE_INT64_TIMESTAMP
result = time->time / 1000000.0 + time->zone;
-#else
- result = time->time + time->zone;
-#endif
}
else
{
@@ -2917,19 +2691,11 @@ timetz_zone(PG_FUNCTION_ARGS)
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
-#ifdef HAVE_INT64_TIMESTAMP
result->time = t->time + (t->zone - tz) * USECS_PER_SEC;
while (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
while (result->time >= USECS_PER_DAY)
result->time -= USECS_PER_DAY;
-#else
- result->time = t->time + (t->zone - tz);
- while (result->time < 0)
- result->time += SECS_PER_DAY;
- while (result->time >= SECS_PER_DAY)
- result->time -= SECS_PER_DAY;
-#endif
result->zone = tz;
@@ -2954,27 +2720,15 @@ timetz_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
-#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
-#else
- tz = -(zone->time);
-#endif
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
-#ifdef HAVE_INT64_TIMESTAMP
result->time = time->time + (time->zone - tz) * USECS_PER_SEC;
while (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
while (result->time >= USECS_PER_DAY)
result->time -= USECS_PER_DAY;
-#else
- result->time = time->time + (time->zone - tz);
- while (result->time < 0)
- result->time += SECS_PER_DAY;
- while (result->time >= SECS_PER_DAY)
- result->time -= SECS_PER_DAY;
-#endif
result->zone = tz;
diff --git a/src/backend/utils/adt/datetime.c b/src/backend/utils/adt/datetime.c
index 8424372bfe1..30db3bf7e59 100644
--- a/src/backend/utils/adt/datetime.c
+++ b/src/backend/utils/adt/datetime.c
@@ -43,11 +43,6 @@ static int DecodeTime(char *str, int fmask, int range,
static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
struct pg_tm * tm);
-
-#ifndef HAVE_INT64_TIMESTAMP
-static char *TrimTrailingZeros(char *str);
-#endif /* HAVE_INT64_TIMESTAMP */
-
static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
int precision, bool fillzeros);
static void AdjustFractSeconds(double frac, struct pg_tm * tm, fsec_t *fsec,
@@ -401,28 +396,6 @@ GetCurrentTimeUsec(struct pg_tm * tm, fsec_t *fsec, int *tzp)
}
-/* TrimTrailingZeros()
- * ... resulting from printing numbers with full precision.
- *
- * Returns a pointer to the new end of string. No NUL terminator is put
- * there; callers are responsible for NUL terminating str themselves.
- *
- * Before Postgres 8.4, this always left at least 2 fractional digits,
- * but conversations on the lists suggest this isn't desired
- * since showing '0.10' is misleading with values of precision(1).
- */
-#ifndef HAVE_INT64_TIMESTAMP
-static char *
-TrimTrailingZeros(char *str)
-{
- int len = strlen(str);
-
- while (len > 1 && *(str + len - 1) == '0' && *(str + len - 2) != '.')
- len--;
- return str + len;
-}
-#endif /* HAVE_INT64_TIMESTAMP */
-
/*
* Append seconds and fractional seconds (if any) at *cp.
*
@@ -439,14 +412,12 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
{
Assert(precision >= 0);
-#ifdef HAVE_INT64_TIMESTAMP
- /* fsec_t is just an int32 */
-
if (fillzeros)
cp = pg_ltostr_zeropad(cp, Abs(sec), 2);
else
cp = pg_ltostr(cp, Abs(sec));
+ /* fsec_t is just an int32 */
if (fsec != 0)
{
int32 value = Abs(fsec);
@@ -490,25 +461,6 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
}
else
return cp;
-#else
- /* fsec_t is a double */
-
- if (fsec == 0)
- {
- if (fillzeros)
- return pg_ltostr_zeropad(cp, Abs(sec), 2);
- else
- return pg_ltostr(cp, Abs(sec));
- }
- else
- {
- if (fillzeros)
- sprintf(cp, "%0*.*f", precision + 3, precision, fabs(sec + fsec));
- else
- sprintf(cp, "%.*f", precision, fabs(sec + fsec));
- return TrimTrailingZeros(cp);
- }
-#endif /* HAVE_INT64_TIMESTAMP */
}
@@ -521,14 +473,6 @@ AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
static char *
AppendTimestampSeconds(char *cp, struct pg_tm * tm, fsec_t fsec)
{
- /*
- * In float mode, don't print fractional seconds before 1 AD, since it's
- * unlikely there's any precision left ...
- */
-#ifndef HAVE_INT64_TIMESTAMP
- if (tm->tm_year <= 0)
- fsec = 0;
-#endif
return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
}
@@ -547,11 +491,7 @@ AdjustFractSeconds(double frac, struct pg_tm * tm, fsec_t *fsec, int scale)
sec = (int) frac;
tm->tm_sec += sec;
frac -= sec;
-#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(frac * 1000000);
-#else
- *fsec += frac;
-#endif
}
/* As above, but initial scale produces days */
@@ -582,11 +522,7 @@ ParseFractionalSecond(char *cp, fsec_t *fsec)
/* check for parse failure */
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
-#ifdef HAVE_INT64_TIMESTAMP
*fsec = rint(frac * 1000000);
-#else
- *fsec = frac;
-#endif
return 0;
}
@@ -1162,12 +1098,7 @@ DecodeDateTime(char **field, int *ftype, int nf,
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
-
-#ifdef HAVE_INT64_TIMESTAMP
time *= USECS_PER_DAY;
-#else
- time *= SECS_PER_DAY;
-#endif
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
@@ -2070,12 +2001,7 @@ DecodeTimeOnly(char **field, int *ftype, int nf,
time = strtod(cp, &cp);
if (*cp != '\0' || errno != 0)
return DTERR_BAD_FORMAT;
-
-#ifdef HAVE_INT64_TIMESTAMP
time *= USECS_PER_DAY;
-#else
- time *= SECS_PER_DAY;
-#endif
dt2time(time,
&tm->tm_hour, &tm->tm_min,
&tm->tm_sec, fsec);
@@ -2338,12 +2264,7 @@ DecodeTimeOnly(char **field, int *ftype, int nf,
/* test for > 24:00:00 */
(tm->tm_hour == HOURS_PER_DAY &&
(tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)) ||
-#ifdef HAVE_INT64_TIMESTAMP
- *fsec < INT64CONST(0) || *fsec > USECS_PER_SEC
-#else
- *fsec < 0 || *fsec > 1
-#endif
- )
+ *fsec < INT64CONST(0) || *fsec > USECS_PER_SEC)
return DTERR_FIELD_OVERFLOW;
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
@@ -2695,18 +2616,11 @@ DecodeTime(char *str, int fmask, int range,
return DTERR_BAD_FORMAT;
/* do a sanity check */
-#ifdef HAVE_INT64_TIMESTAMP
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
*fsec < INT64CONST(0) ||
*fsec > USECS_PER_SEC)
return DTERR_FIELD_OVERFLOW;
-#else
- if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
- tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
- *fsec < 0 || *fsec > 1)
- return DTERR_FIELD_OVERFLOW;
-#endif
return 0;
}
@@ -2923,11 +2837,7 @@ DecodeNumberField(int len, char *str, int fmask,
frac = strtod(cp, NULL);
if (errno != 0)
return DTERR_BAD_FORMAT;
-#ifdef HAVE_INT64_TIMESTAMP
*fsec = rint(frac * 1000000);
-#else
- *fsec = frac;
-#endif
/* Now truncate off the fraction for further processing */
*cp = '\0';
len = strlen(str);
@@ -3336,11 +3246,7 @@ DecodeInterval(char **field, int *ftype, int nf, int range,
switch (type)
{
case DTK_MICROSEC:
-#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(val + fval);
-#else
- *fsec += (val + fval) * 1e-6;
-#endif
tmask = DTK_M(MICROSECOND);
break;
@@ -3348,21 +3254,13 @@ DecodeInterval(char **field, int *ftype, int nf, int range,
/* avoid overflowing the fsec field */
tm->tm_sec += val / 1000;
val -= (val / 1000) * 1000;
-#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint((val + fval) * 1000);
-#else
- *fsec += (val + fval) * 1e-3;
-#endif
tmask = DTK_M(MILLISECOND);
break;
case DTK_SECOND:
tm->tm_sec += val;
-#ifdef HAVE_INT64_TIMESTAMP
*fsec += rint(fval * 1000000);
-#else
- *fsec += fval;
-#endif
/*
* If any subseconds were specified, consider this
@@ -3484,12 +3382,8 @@ DecodeInterval(char **field, int *ftype, int nf, int range,
{
int sec;
-#ifdef HAVE_INT64_TIMESTAMP
sec = *fsec / USECS_PER_SEC;
*fsec -= sec * USECS_PER_SEC;
-#else
- TMODULO(*fsec, sec, 1.0);
-#endif
tm->tm_sec += sec;
}
diff --git a/src/backend/utils/adt/formatting.c b/src/backend/utils/adt/formatting.c
index 247234564e3..e552c8d20b6 100644
--- a/src/backend/utils/adt/formatting.c
+++ b/src/backend/utils/adt/formatting.c
@@ -2434,23 +2434,13 @@ DCH_to_char(FormatNode *node, bool is_interval, TmToChar *in, char *out, Oid col
s += strlen(s);
break;
case DCH_MS: /* millisecond */
-#ifdef HAVE_INT64_TIMESTAMP
sprintf(s, "%03d", (int) (in->fsec / INT64CONST(1000)));
-#else
- /* No rint() because we can't overflow and we might print US */
- sprintf(s, "%03d", (int) (in->fsec * 1000));
-#endif
if (S_THth(n->suffix))
str_numth(s, s, S_TH_TYPE(n->suffix));
s += strlen(s);
break;
case DCH_US: /* microsecond */
-#ifdef HAVE_INT64_TIMESTAMP
sprintf(s, "%06d", (int) in->fsec);
-#else
- /* don't use rint() because we can't overflow 1000 */
- sprintf(s, "%06d", (int) (in->fsec * 1000000));
-#endif
if (S_THth(n->suffix))
str_numth(s, s, S_TH_TYPE(n->suffix));
s += strlen(s);
@@ -3793,17 +3783,10 @@ do_to_timestamp(text *date_txt, text *fmt,
}
}
-#ifdef HAVE_INT64_TIMESTAMP
if (tmfc.ms)
*fsec += tmfc.ms * 1000;
if (tmfc.us)
*fsec += tmfc.us;
-#else
- if (tmfc.ms)
- *fsec += (double) tmfc.ms / 1000;
- if (tmfc.us)
- *fsec += (double) tmfc.us / 1000000;
-#endif
/* Range-check date fields according to bit mask computed above */
if (fmask != 0)
@@ -3826,12 +3809,7 @@ do_to_timestamp(text *date_txt, text *fmt,
if (tm->tm_hour < 0 || tm->tm_hour >= HOURS_PER_DAY ||
tm->tm_min < 0 || tm->tm_min >= MINS_PER_HOUR ||
tm->tm_sec < 0 || tm->tm_sec >= SECS_PER_MINUTE ||
-#ifdef HAVE_INT64_TIMESTAMP
- *fsec < INT64CONST(0) || *fsec >= USECS_PER_SEC
-#else
- *fsec < 0 || *fsec >= 1
-#endif
- )
+ *fsec < INT64CONST(0) || *fsec >= USECS_PER_SEC)
DateTimeParseError(DTERR_FIELD_OVERFLOW, date_str, "timestamp");
DEBUG_TM(tm);
diff --git a/src/backend/utils/adt/misc.c b/src/backend/utils/adt/misc.c
index 66d09bcb0cd..0116fa08a61 100644
--- a/src/backend/utils/adt/misc.c
+++ b/src/backend/utils/adt/misc.c
@@ -535,12 +535,7 @@ pg_sleep(PG_FUNCTION_ARGS)
* less than the specified time when WaitLatch is terminated early by a
* non-query-canceling signal such as SIGHUP.
*/
-
-#ifdef HAVE_INT64_TIMESTAMP
#define GetNowFloat() ((float8) GetCurrentTimestamp() / 1000000.0)
-#else
-#define GetNowFloat() GetCurrentTimestamp()
-#endif
endtime = GetNowFloat() + secs;
diff --git a/src/backend/utils/adt/nabstime.c b/src/backend/utils/adt/nabstime.c
index c9d0b0d7fbc..6da769e562c 100644
--- a/src/backend/utils/adt/nabstime.c
+++ b/src/backend/utils/adt/nabstime.c
@@ -818,14 +818,10 @@ interval_reltime(PG_FUNCTION_ARGS)
month = interval->month % MONTHS_PER_YEAR;
day = interval->day;
-#ifdef HAVE_INT64_TIMESTAMP
span = ((INT64CONST(365250000) * year + INT64CONST(30000000) * month +
INT64CONST(1000000) * day) * INT64CONST(86400)) +
interval->time;
span /= USECS_PER_SEC;
-#else
- span = (DAYS_PER_YEAR * year + (double) DAYS_PER_MONTH * month + day) * SECS_PER_DAY + interval->time;
-#endif
if (span < INT_MIN || span > INT_MAX)
time = INVALID_RELTIME;
@@ -859,7 +855,6 @@ reltime_interval(PG_FUNCTION_ARGS)
break;
default:
-#ifdef HAVE_INT64_TIMESTAMP
year = reltime / SECS_PER_YEAR;
reltime -= year * SECS_PER_YEAR;
month = reltime / (DAYS_PER_MONTH * SECS_PER_DAY);
@@ -868,13 +863,6 @@ reltime_interval(PG_FUNCTION_ARGS)
reltime -= day * SECS_PER_DAY;
result->time = (reltime * USECS_PER_SEC);
-#else
- TMODULO(reltime, year, SECS_PER_YEAR);
- TMODULO(reltime, month, DAYS_PER_MONTH * SECS_PER_DAY);
- TMODULO(reltime, day, SECS_PER_DAY);
-
- result->time = reltime;
-#endif
result->month = MONTHS_PER_YEAR * year + month;
result->day = day;
break;
diff --git a/src/backend/utils/adt/rangetypes.c b/src/backend/utils/adt/rangetypes.c
index da82d0b3001..e518523a70b 100644
--- a/src/backend/utils/adt/rangetypes.c
+++ b/src/backend/utils/adt/rangetypes.c
@@ -1443,12 +1443,7 @@ tsrange_subdiff(PG_FUNCTION_ARGS)
Timestamp v2 = PG_GETARG_TIMESTAMP(1);
float8 result;
-#ifdef HAVE_INT64_TIMESTAMP
result = ((float8) v1 - (float8) v2) / USECS_PER_SEC;
-#else
- result = v1 - v2;
-#endif
-
PG_RETURN_FLOAT8(result);
}
@@ -1459,12 +1454,7 @@ tstzrange_subdiff(PG_FUNCTION_ARGS)
Timestamp v2 = PG_GETARG_TIMESTAMP(1);
float8 result;
-#ifdef HAVE_INT64_TIMESTAMP
result = ((float8) v1 - (float8) v2) / USECS_PER_SEC;
-#else
- result = v1 - v2;
-#endif
-
PG_RETURN_FLOAT8(result);
}
diff --git a/src/backend/utils/adt/selfuncs.c b/src/backend/utils/adt/selfuncs.c
index 13cb1facd49..8b05e8f9f79 100644
--- a/src/backend/utils/adt/selfuncs.c
+++ b/src/backend/utils/adt/selfuncs.c
@@ -4212,31 +4212,17 @@ convert_timevalue_to_scalar(Datum value, Oid typid)
* average month length of 365.25/12.0 days. Not too
* accurate, but plenty good enough for our purposes.
*/
-#ifdef HAVE_INT64_TIMESTAMP
return interval->time + interval->day * (double) USECS_PER_DAY +
interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
-#else
- return interval->time + interval->day * SECS_PER_DAY +
- interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * (double) SECS_PER_DAY);
-#endif
}
case RELTIMEOID:
-#ifdef HAVE_INT64_TIMESTAMP
return (DatumGetRelativeTime(value) * 1000000.0);
-#else
- return DatumGetRelativeTime(value);
-#endif
case TINTERVALOID:
{
TimeInterval tinterval = DatumGetTimeInterval(value);
-#ifdef HAVE_INT64_TIMESTAMP
if (tinterval->status != 0)
return ((tinterval->data[1] - tinterval->data[0]) * 1000000.0);
-#else
- if (tinterval->status != 0)
- return tinterval->data[1] - tinterval->data[0];
-#endif
return 0; /* for lack of a better idea */
}
case TIMEOID:
@@ -4246,11 +4232,7 @@ convert_timevalue_to_scalar(Datum value, Oid typid)
TimeTzADT *timetz = DatumGetTimeTzADTP(value);
/* use GMT-equivalent time */
-#ifdef HAVE_INT64_TIMESTAMP
return (double) (timetz->time + (timetz->zone * 1000000.0));
-#else
- return (double) (timetz->time + timetz->zone);
-#endif
}
}
diff --git a/src/backend/utils/adt/timestamp.c b/src/backend/utils/adt/timestamp.c
index 997a551bd87..4be1999119c 100644
--- a/src/backend/utils/adt/timestamp.c
+++ b/src/backend/utils/adt/timestamp.c
@@ -234,9 +234,6 @@ timestamp_out(PG_FUNCTION_ARGS)
/*
* timestamp_recv - converts external binary format to timestamp
- *
- * We make no attempt to provide compatibility between int and float
- * timestamp representations ...
*/
Datum
timestamp_recv(PG_FUNCTION_ARGS)
@@ -252,16 +249,7 @@ timestamp_recv(PG_FUNCTION_ARGS)
*tm = &tt;
fsec_t fsec;
-#ifdef HAVE_INT64_TIMESTAMP
timestamp = (Timestamp) pq_getmsgint64(buf);
-#else
- timestamp = (Timestamp) pq_getmsgfloat8(buf);
-
- if (isnan(timestamp))
- ereport(ERROR,
- (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
- errmsg("timestamp cannot be NaN")));
-#endif
/* range check: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
@@ -287,11 +275,7 @@ timestamp_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
-#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
-#else
- pq_sendfloat8(&buf, timestamp);
-#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@@ -348,7 +332,6 @@ timestamp_scale(PG_FUNCTION_ARGS)
static void
AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
{
-#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@@ -368,17 +351,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
-#else
- static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
- 1,
- 10,
- 100,
- 1000,
- 10000,
- 100000,
- 1000000
- };
-#endif
if (!TIMESTAMP_NOT_FINITE(*time)
&& (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
@@ -389,14 +361,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
errmsg("timestamp(%d) precision must be between %d and %d",
typmod, 0, MAX_TIMESTAMP_PRECISION)));
- /*
- * Note: this round-to-nearest code is not completely consistent about
- * rounding values that are exactly halfway between integral values.
- * On most platforms, rint() will implement round-to-nearest-even, but
- * the integer code always rounds up (away from zero). Is it worth
- * trying to be consistent?
- */
-#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0))
{
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
@@ -407,9 +371,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
* TimestampScales[typmod]);
}
-#else
- *time = rint((double) *time * TimestampScales[typmod]) / TimestampScales[typmod];
-#endif
}
}
@@ -628,7 +589,6 @@ make_timestamp_internal(int year, int month, int day,
hour, min, sec)));
/* This should match tm2time */
-#ifdef HAVE_INT64_TIMESTAMP
time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
@@ -650,10 +610,6 @@ make_timestamp_internal(int year, int month, int day,
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
year, month, day,
hour, min, sec)));
-#else
- time = ((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE) + sec;
- result = date * SECS_PER_DAY + time;
-#endif
/* final range check catches just-out-of-range timestamps */
if (!IS_VALID_TIMESTAMP(result))
@@ -783,12 +739,8 @@ float8_timestamptz(PG_FUNCTION_ARGS)
/* Convert UNIX epoch to Postgres epoch */
seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
-#ifdef HAVE_INT64_TIMESTAMP
seconds = rint(seconds * USECS_PER_SEC);
result = (int64) seconds;
-#else
- result = seconds;
-#endif
/* Recheck in case roundoff produces something just out of range */
if (!IS_VALID_TIMESTAMP(result))
@@ -831,9 +783,6 @@ timestamptz_out(PG_FUNCTION_ARGS)
/*
* timestamptz_recv - converts external binary format to timestamptz
- *
- * We make no attempt to provide compatibility between int and float
- * timestamp representations ...
*/
Datum
timestamptz_recv(PG_FUNCTION_ARGS)
@@ -850,11 +799,7 @@ timestamptz_recv(PG_FUNCTION_ARGS)
*tm = &tt;
fsec_t fsec;
-#ifdef HAVE_INT64_TIMESTAMP
timestamp = (TimestampTz) pq_getmsgint64(buf);
-#else
- timestamp = (TimestampTz) pq_getmsgfloat8(buf);
-#endif
/* range check: see if timestamptz_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
@@ -880,11 +825,7 @@ timestamptz_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
-#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
-#else
- pq_sendfloat8(&buf, timestamp);
-#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@@ -1047,11 +988,7 @@ interval_recv(PG_FUNCTION_ARGS)
interval = (Interval *) palloc(sizeof(Interval));
-#ifdef HAVE_INT64_TIMESTAMP
interval->time = pq_getmsgint64(buf);
-#else
- interval->time = pq_getmsgfloat8(buf);
-#endif
interval->day = pq_getmsgint(buf, sizeof(interval->day));
interval->month = pq_getmsgint(buf, sizeof(interval->month));
@@ -1070,11 +1007,7 @@ interval_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
-#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, interval->time);
-#else
- pq_sendfloat8(&buf, interval->time);
-#endif
pq_sendint(&buf, interval->day, sizeof(interval->day));
pq_sendint(&buf, interval->month, sizeof(interval->month));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
@@ -1385,7 +1318,6 @@ interval_scale(PG_FUNCTION_ARGS)
static void
AdjustIntervalForTypmod(Interval *interval, int32 typmod)
{
-#ifdef HAVE_INT64_TIMESTAMP
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@@ -1405,17 +1337,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
-#else
- static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
- 1,
- 10,
- 100,
- 1000,
- 10000,
- 100000,
- 1000000
- };
-#endif
/*
* Unspecified range and precision? Then not necessary to adjust. Setting
@@ -1473,21 +1394,13 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
}
else if (range == INTERVAL_MASK(HOUR))
{
-#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
-#else
- interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
-#endif
}
else if (range == INTERVAL_MASK(MINUTE))
{
-#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
-#else
- interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
-#endif
}
else if (range == INTERVAL_MASK(SECOND))
{
@@ -1497,24 +1410,16 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR)))
{
-#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
-#else
- interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
-#endif
}
/* DAY TO MINUTE */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
-#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
-#else
- interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
-#endif
}
/* DAY TO SECOND */
else if (range == (INTERVAL_MASK(DAY) |
@@ -1528,12 +1433,8 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
-#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
-#else
- interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
-#endif
}
/* HOUR TO SECOND */
else if (range == (INTERVAL_MASK(HOUR) |
@@ -1560,14 +1461,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
errmsg("interval(%d) precision must be between %d and %d",
precision, 0, MAX_INTERVAL_PRECISION)));
- /*
- * Note: this round-to-nearest code is not completely consistent
- * about rounding values that are exactly halfway between integral
- * values. On most platforms, rint() will implement
- * round-to-nearest-even, but the integer code always rounds up
- * (away from zero). Is it worth trying to be consistent?
- */
-#ifdef HAVE_INT64_TIMESTAMP
if (interval->time >= INT64CONST(0))
{
interval->time = ((interval->time +
@@ -1582,11 +1475,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
IntervalScales[precision]) *
IntervalScales[precision]);
}
-#else
- interval->time = rint(((double) interval->time) *
- IntervalScales[precision]) /
- IntervalScales[precision];
-#endif
}
}
}
@@ -1619,16 +1507,10 @@ make_interval(PG_FUNCTION_ARGS)
result->month = years * MONTHS_PER_YEAR + months;
result->day = weeks * 7 + days;
-#ifdef HAVE_INT64_TIMESTAMP
secs = rint(secs * USECS_PER_SEC);
result->time = hours * ((int64) SECS_PER_HOUR * USECS_PER_SEC) +
mins * ((int64) SECS_PER_MINUTE * USECS_PER_SEC) +
(int64) secs;
-#else
- result->time = hours * (double) SECS_PER_HOUR +
- mins * (double) SECS_PER_MINUTE +
- secs;
-#endif
PG_RETURN_INTERVAL_P(result);
}
@@ -1693,59 +1575,10 @@ GetCurrentTimestamp(void)
result = (TimestampTz) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
-
-#ifdef HAVE_INT64_TIMESTAMP
- result = (result * USECS_PER_SEC) + tp.tv_usec;
-#else
- result = result + (tp.tv_usec / 1000000.0);
-#endif
-
- return result;
-}
-
-/*
- * GetCurrentIntegerTimestamp -- get the current operating system time as int64
- *
- * Result is the number of microseconds since the Postgres epoch. If compiled
- * with --enable-integer-datetimes, this is identical to GetCurrentTimestamp(),
- * and is implemented as a macro.
- */
-#ifndef HAVE_INT64_TIMESTAMP
-int64
-GetCurrentIntegerTimestamp(void)
-{
- int64 result;
- struct timeval tp;
-
- gettimeofday(&tp, NULL);
-
- result = (int64) tp.tv_sec -
- ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
-
result = (result * USECS_PER_SEC) + tp.tv_usec;
return result;
}
-#endif
-
-/*
- * IntegerTimestampToTimestampTz -- convert an int64 timestamp to native format
- *
- * When compiled with --enable-integer-datetimes, this is implemented as a
- * no-op macro.
- */
-#ifndef HAVE_INT64_TIMESTAMP
-TimestampTz
-IntegerTimestampToTimestampTz(int64 timestamp)
-{
- TimestampTz result;
-
- result = timestamp / USECS_PER_SEC;
- result += (timestamp % USECS_PER_SEC) / 1000000.0;
-
- return result;
-}
-#endif
/*
* GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n)
@@ -1799,13 +1632,8 @@ TimestampDifference(TimestampTz start_time, TimestampTz stop_time,
}
else
{
-#ifdef HAVE_INT64_TIMESTAMP
*secs = (long) (diff / USECS_PER_SEC);
*microsecs = (int) (diff % USECS_PER_SEC);
-#else
- *secs = (long) diff;
- *microsecs = (int) ((diff - *secs) * 1000000.0);
-#endif
}
}
@@ -1823,11 +1651,7 @@ TimestampDifferenceExceeds(TimestampTz start_time,
{
TimestampTz diff = stop_time - start_time;
-#ifdef HAVE_INT64_TIMESTAMP
return (diff >= msec * INT64CONST(1000));
-#else
- return (diff * 1000.0 >= msec);
-#endif
}
/*
@@ -1848,10 +1672,7 @@ time_t_to_timestamptz(pg_time_t tm)
result = (TimestampTz) tm -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
-
-#ifdef HAVE_INT64_TIMESTAMP
result *= USECS_PER_SEC;
-#endif
return result;
}
@@ -1871,13 +1692,8 @@ timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
-#ifdef HAVE_INT64_TIMESTAMP
result = (pg_time_t) (t / USECS_PER_SEC +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
-#else
- result = (pg_time_t) (t +
- ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
-#endif
return result;
}
@@ -1917,21 +1733,12 @@ dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
time = jd;
-#ifdef HAVE_INT64_TIMESTAMP
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
-#else
- *hour = time / SECS_PER_HOUR;
- time -= (*hour) * SECS_PER_HOUR;
- *min = time / SECS_PER_MINUTE;
- time -= (*min) * SECS_PER_MINUTE;
- *sec = time;
- *fsec = time - *sec;
-#endif
} /* dt2time() */
@@ -1957,7 +1764,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
if (attimezone == NULL)
attimezone = session_timezone;
-#ifdef HAVE_INT64_TIMESTAMP
time = dt;
TMODULO(time, date, USECS_PER_DAY);
@@ -1976,42 +1782,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
-#else
- time = dt;
- TMODULO(time, date, (double) SECS_PER_DAY);
-
- if (time < 0)
- {
- time += SECS_PER_DAY;
- date -= 1;
- }
-
- /* add offset to go from J2000 back to standard Julian date */
- date += POSTGRES_EPOCH_JDATE;
-
-recalc_d:
- /* Julian day routine does not work for negative Julian days */
- if (date < 0 || date > (Timestamp) INT_MAX)
- return -1;
-
- j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
-recalc_t:
- dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
-
- *fsec = TSROUND(*fsec);
- /* roundoff may need to propagate to higher-order fields */
- if (*fsec >= 1.0)
- {
- time = ceil(time);
- if (time >= (double) SECS_PER_DAY)
- {
- time = 0;
- date += 1;
- goto recalc_d;
- }
- goto recalc_t;
- }
-#endif
/* Done if no TZ conversion wanted */
if (tzp == NULL)
@@ -2034,13 +1804,8 @@ recalc_t:
* coding avoids hardwiring any assumptions about the width of pg_time_t,
* so it should behave sanely on machines without int64.
*/
-#ifdef HAVE_INT64_TIMESTAMP
dt = (dt - *fsec) / USECS_PER_SEC +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
-#else
- dt = rint(dt - *fsec +
- (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
-#endif
utime = (pg_time_t) dt;
if ((Timestamp) utime == dt)
{
@@ -2100,7 +1865,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
-#ifdef HAVE_INT64_TIMESTAMP
*result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != date)
@@ -2116,9 +1880,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
*result = 0; /* keep compiler quiet */
return -1;
}
-#else
- *result = date * SECS_PER_DAY + time;
-#endif
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
@@ -2147,7 +1908,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
tm->tm_mday = span.day;
time = span.time;
-#ifdef HAVE_INT64_TIMESTAMP
tfrac = time / USECS_PER_HOUR;
time -= tfrac * USECS_PER_HOUR;
tm->tm_hour = tfrac;
@@ -2161,23 +1921,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
tfrac = time / USECS_PER_SEC;
*fsec = time - (tfrac * USECS_PER_SEC);
tm->tm_sec = tfrac;
-#else
-recalc:
- TMODULO(time, tfrac, (double) SECS_PER_HOUR);
- tm->tm_hour = tfrac; /* could overflow ... */
- TMODULO(time, tfrac, (double) SECS_PER_MINUTE);
- tm->tm_min = tfrac;
- TMODULO(time, tfrac, 1.0);
- tm->tm_sec = tfrac;
- time = TSROUND(time);
- /* roundoff may need to propagate to higher-order fields */
- if (time >= 1.0)
- {
- time = ceil(span.time);
- goto recalc;
- }
- *fsec = time;
-#endif
return 0;
}
@@ -2191,15 +1934,9 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
return -1;
span->month = total_months;
span->day = tm->tm_mday;
-#ifdef HAVE_INT64_TIMESTAMP
span->time = (((((tm->tm_hour * INT64CONST(60)) +
tm->tm_min) * INT64CONST(60)) +
tm->tm_sec) * USECS_PER_SEC) + fsec;
-#else
- span->time = (((tm->tm_hour * (double) MINS_PER_HOUR) +
- tm->tm_min) * (double) SECS_PER_MINUTE) +
- tm->tm_sec + fsec;
-#endif
return 0;
}
@@ -2207,21 +1944,13 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
static TimeOffset
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
-#ifdef HAVE_INT64_TIMESTAMP
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
-#else
- return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
-#endif
}
static Timestamp
dt2local(Timestamp dt, int tz)
{
-#ifdef HAVE_INT64_TIMESTAMP
dt -= (tz * USECS_PER_SEC);
-#else
- dt -= tz;
-#endif
return dt;
}
@@ -2288,44 +2017,11 @@ SetEpochTimestamp(void)
* The comparison functions are among them. - thomas 2001-09-25
*
* timestamp_relop - is timestamp1 relop timestamp2
- *
- * collate invalid timestamp at the end
*/
int
timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
{
-#ifdef HAVE_INT64_TIMESTAMP
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
-#else
-
- /*
- * When using float representation, we have to be wary of NaNs.
- *
- * We consider all NANs to be equal and larger than any non-NAN. This is
- * somewhat arbitrary; the important thing is to have a consistent sort
- * order.
- */
- if (isnan(dt1))
- {
- if (isnan(dt2))
- return 0; /* NAN = NAN */
- else
- return 1; /* NAN > non-NAN */
- }
- else if (isnan(dt2))
- {
- return -1; /* non-NAN < NAN */
- }
- else
- {
- if (dt1 > dt2)
- return 1;
- else if (dt1 < dt2)
- return -1;
- else
- return 0;
- }
-#endif
}
Datum
@@ -2413,12 +2109,7 @@ timestamp_sortsupport(PG_FUNCTION_ARGS)
Datum
timestamp_hash(PG_FUNCTION_ARGS)
{
- /* We can use either hashint8 or hashfloat8 directly */
-#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
-#else
- return hashfloat8(fcinfo);
-#endif
}
@@ -2597,8 +2288,6 @@ timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
/*
* interval_relop - is interval1 relop interval2
- *
- * collate invalid interval at the end
*/
static inline TimeOffset
interval_cmp_value(const Interval *interval)
@@ -2606,14 +2295,8 @@ interval_cmp_value(const Interval *interval)
TimeOffset span;
span = interval->time;
-
-#ifdef HAVE_INT64_TIMESTAMP
span += interval->month * INT64CONST(30) * USECS_PER_DAY;
span += interval->day * INT64CONST(24) * USECS_PER_HOUR;
-#else
- span += interval->month * ((double) DAYS_PER_MONTH * SECS_PER_DAY);
- span += interval->day * ((double) HOURS_PER_DAY * SECS_PER_HOUR);
-#endif
return span;
}
@@ -2695,7 +2378,7 @@ interval_cmp(PG_FUNCTION_ARGS)
*
* We must produce equal hashvals for values that interval_cmp_internal()
* considers equal. So, compute the net span the same way it does,
- * and then hash that, using either int64 or float8 hashing.
+ * and then hash that.
*/
Datum
interval_hash(PG_FUNCTION_ARGS)
@@ -2703,11 +2386,7 @@ interval_hash(PG_FUNCTION_ARGS)
Interval *interval = PG_GETARG_INTERVAL_P(0);
TimeOffset span = interval_cmp_value(interval);
-#ifdef HAVE_INT64_TIMESTAMP
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span));
-#else
- return DirectFunctionCall1(hashfloat8, Float8GetDatumFast(span));
-#endif
}
/* overlaps_timestamp() --- implements the SQL OVERLAPS operator.
@@ -2946,11 +2625,7 @@ interval_justify_interval(PG_FUNCTION_ARGS)
result->day = span->day;
result->time = span->time;
-#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
-#else
- TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
-#endif
result->day += wholeday; /* could overflow... */
wholemonth = result->day / DAYS_PER_MONTH;
@@ -2972,20 +2647,12 @@ interval_justify_interval(PG_FUNCTION_ARGS)
if (result->day > 0 && result->time < 0)
{
-#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
-#else
- result->time += (double) SECS_PER_DAY;
-#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
-#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
-#else
- result->time -= (double) SECS_PER_DAY;
-#endif
result->day++;
}
@@ -3012,29 +2679,17 @@ interval_justify_hours(PG_FUNCTION_ARGS)
result->day = span->day;
result->time = span->time;
-#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
-#else
- TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
-#endif
result->day += wholeday; /* could overflow... */
if (result->day > 0 && result->time < 0)
{
-#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
-#else
- result->time += (double) SECS_PER_DAY;
-#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
-#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
-#else
- result->time -= (double) SECS_PER_DAY;
-#endif
result->day++;
}
@@ -3492,16 +3147,12 @@ interval_mul(PG_FUNCTION_ARGS)
/* cascade units down */
result->day += (int32) month_remainder_days;
-#ifdef HAVE_INT64_TIMESTAMP
result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
if (result_double > PG_INT64_MAX || result_double < PG_INT64_MIN)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->time = (int64) result_double;
-#else
- result->time = span->time * factor + sec_remainder;
-#endif
PG_RETURN_INTERVAL_P(result);
}
@@ -3553,12 +3204,7 @@ interval_div(PG_FUNCTION_ARGS)
/* cascade units down */
result->day += (int32) month_remainder_days;
-#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
-#else
- /* See TSROUND comment in interval_mul(). */
- result->time = span->time / factor + sec_remainder;
-#endif
PG_RETURN_INTERVAL_P(result);
}
@@ -3571,11 +3217,6 @@ interval_div(PG_FUNCTION_ARGS)
* intervals, where the first is the running sum and the second contains
* the number of values so far in its 'time' field. This is a bit ugly
* but it beats inventing a specialized datatype for the purpose.
- *
- * NOTE: The inverse transition function cannot guarantee exact results
- * when using float8 timestamps. However, int8 timestamps are now the
- * norm, and the probable range of values is not so wide that disastrous
- * cancellation is likely even with float8, so we'll ignore the risk.
*/
Datum
@@ -3776,11 +3417,7 @@ timestamp_age(PG_FUNCTION_ARGS)
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
-#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
-#else
- fsec += 1.0;
-#endif
tm->tm_sec--;
}
@@ -3901,11 +3538,7 @@ timestamptz_age(PG_FUNCTION_ARGS)
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
-#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
-#else
- fsec += 1.0;
-#endif
tm->tm_sec--;
}
@@ -4076,17 +3709,10 @@ timestamp_trunc(PG_FUNCTION_ARGS)
break;
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
-#else
- fsec = floor(fsec * 1000) / 1000;
-#endif
break;
case DTK_MICROSEC:
-#ifndef HAVE_INT64_TIMESTAMP
- fsec = floor(fsec * 1000000) / 1000000;
-#endif
break;
default:
@@ -4229,18 +3855,10 @@ timestamptz_trunc(PG_FUNCTION_ARGS)
case DTK_SECOND:
fsec = 0;
break;
-
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
-#else
- fsec = floor(fsec * 1000) / 1000;
-#endif
break;
case DTK_MICROSEC:
-#ifndef HAVE_INT64_TIMESTAMP
- fsec = floor(fsec * 1000000) / 1000000;
-#endif
break;
default:
@@ -4326,18 +3944,10 @@ interval_trunc(PG_FUNCTION_ARGS)
case DTK_SECOND:
fsec = 0;
break;
-
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
-#else
- fsec = floor(fsec * 1000) / 1000;
-#endif
break;
case DTK_MICROSEC:
-#ifndef HAVE_INT64_TIMESTAMP
- fsec = floor(fsec * 1000000) / 1000000;
-#endif
break;
default:
@@ -4669,27 +4279,15 @@ timestamp_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
-#else
- result = (tm->tm_sec + fsec) * 1000000;
-#endif
break;
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
-#else
- result = (tm->tm_sec + fsec) * 1000;
-#endif
break;
case DTK_SECOND:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
-#else
- result = tm->tm_sec + fsec;
-#endif
break;
case DTK_MINUTE:
@@ -4762,13 +4360,8 @@ timestamp_part(PG_FUNCTION_ARGS)
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
-#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
-#else
- result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
- tm->tm_sec + fsec) / (double) SECS_PER_DAY;
-#endif
break;
case DTK_ISOYEAR:
@@ -4812,15 +4405,11 @@ timestamp_part(PG_FUNCTION_ARGS)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
-#ifdef HAVE_INT64_TIMESTAMP
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
-#else
- result = timestamp - epoch;
-#endif
break;
default:
@@ -4906,27 +4495,15 @@ timestamptz_part(PG_FUNCTION_ARGS)
break;
case DTK_MICROSEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
-#else
- result = (tm->tm_sec + fsec) * 1000000;
-#endif
break;
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
-#else
- result = (tm->tm_sec + fsec) * 1000;
-#endif
break;
case DTK_SECOND:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
-#else
- result = tm->tm_sec + fsec;
-#endif
break;
case DTK_MINUTE:
@@ -4987,13 +4564,8 @@ timestamptz_part(PG_FUNCTION_ARGS)
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
-#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
-#else
- result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
- tm->tm_sec + fsec) / (double) SECS_PER_DAY;
-#endif
break;
case DTK_ISOYEAR:
@@ -5035,15 +4607,11 @@ timestamptz_part(PG_FUNCTION_ARGS)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
-#ifdef HAVE_INT64_TIMESTAMP
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
-#else
- result = timestamp - epoch;
-#endif
break;
default:
@@ -5099,27 +4667,15 @@ interval_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
-#else
- result = (tm->tm_sec + fsec) * 1000000;
-#endif
break;
case DTK_MILLISEC:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
-#else
- result = (tm->tm_sec + fsec) * 1000;
-#endif
break;
case DTK_SECOND:
-#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
-#else
- result = tm->tm_sec + fsec;
-#endif
break;
case DTK_MINUTE:
@@ -5178,11 +4734,7 @@ interval_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
-#ifdef HAVE_INT64_TIMESTAMP
result = interval->time / 1000000.0;
-#else
- result = interval->time;
-#endif
result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
result += ((double) SECS_PER_DAY) * interval->day;
@@ -5338,11 +4890,7 @@ timestamp_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
-#ifdef HAVE_INT64_TIMESTAMP
tz = zone->time / USECS_PER_SEC;
-#else
- tz = zone->time;
-#endif
result = dt2local(timestamp, tz);
@@ -5539,11 +5087,7 @@ timestamptz_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
-#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
-#else
- tz = -zone->time;
-#endif
result = dt2local(timestamp, tz);
diff --git a/src/backend/utils/misc/guc.c b/src/backend/utils/misc/guc.c
index 24771389c84..0707f666311 100644
--- a/src/backend/utils/misc/guc.c
+++ b/src/backend/utils/misc/guc.c
@@ -1507,11 +1507,7 @@ static struct config_bool ConfigureNamesBool[] =
GUC_REPORT | GUC_NOT_IN_SAMPLE | GUC_DISALLOW_IN_FILE
},
&integer_datetimes,
-#ifdef HAVE_INT64_TIMESTAMP
true,
-#else
- false,
-#endif
NULL, NULL, NULL
},