summaryrefslogtreecommitdiff
path: root/contrib/cube/cube.c
diff options
context:
space:
mode:
authorTom Lane2000-12-11 20:39:15 +0000
committerTom Lane2000-12-11 20:39:15 +0000
commit9892ddf5ee0c1c82e879f4bb20bf1f53b4241a45 (patch)
tree3201a9c7304bbad67b7fa172146a4ab924e754c1 /contrib/cube/cube.c
parent5bb4f723d23665cb2518260e7953d617fd9d6693 (diff)
Gene Selkov's CUBE datatype (GiST example code)
Diffstat (limited to 'contrib/cube/cube.c')
-rw-r--r--contrib/cube/cube.c1058
1 files changed, 1058 insertions, 0 deletions
diff --git a/contrib/cube/cube.c b/contrib/cube/cube.c
new file mode 100644
index 00000000000..35ac34f0b04
--- /dev/null
+++ b/contrib/cube/cube.c
@@ -0,0 +1,1058 @@
+/******************************************************************************
+ This file contains routines that can be bound to a Postgres backend and
+ called by the backend in the process of processing queries. The calling
+ format for these routines is dictated by Postgres architecture.
+******************************************************************************/
+
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/gist.h"
+#include "access/rtree.h"
+#include "utils/elog.h"
+#include "utils/palloc.h"
+#include "utils/builtins.h"
+
+#include "cubedata.h"
+
+#define max(a,b) ((a) > (b) ? (a) : (b))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define abs(a) ((a) < (0) ? (-a) : (a))
+
+extern void set_parse_buffer(char *str);
+extern int cube_yyparse();
+
+/*
+** Input/Output routines
+*/
+NDBOX * cube_in(char *str);
+char * cube_out(NDBOX *cube);
+
+
+/*
+** GiST support methods
+*/
+bool g_cube_consistent(GISTENTRY *entry, NDBOX *query, StrategyNumber strategy);
+GISTENTRY * g_cube_compress(GISTENTRY *entry);
+GISTENTRY * g_cube_decompress(GISTENTRY *entry);
+float * g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
+GIST_SPLITVEC * g_cube_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
+bool g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
+bool g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
+NDBOX * g_cube_union(bytea *entryvec, int *sizep);
+NDBOX * g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep);
+bool * g_cube_same(NDBOX *b1, NDBOX *b2, bool *result);
+
+/*
+** R-tree suport functions
+*/
+bool cube_same(NDBOX *a, NDBOX *b);
+bool cube_different(NDBOX *a, NDBOX *b);
+bool cube_contains(NDBOX *a, NDBOX *b);
+bool cube_contained (NDBOX *a, NDBOX *b);
+bool cube_overlap(NDBOX *a, NDBOX *b);
+NDBOX * cube_union(NDBOX *a, NDBOX *b);
+NDBOX * cube_inter(NDBOX *a, NDBOX *b);
+float * cube_size(NDBOX *a);
+void rt_cube_size(NDBOX *a, float *sz);
+
+/*
+** These make no sense for this type, but R-tree wants them
+*/
+bool cube_over_left(NDBOX *a, NDBOX *b);
+bool cube_over_right(NDBOX *a, NDBOX *b);
+bool cube_left(NDBOX *a, NDBOX *b);
+bool cube_right(NDBOX *a, NDBOX *b);
+
+/*
+** miscellaneous
+*/
+bool cube_lt(NDBOX *a, NDBOX *b);
+bool cube_gt(NDBOX *a, NDBOX *b);
+float * cube_distance(NDBOX *a, NDBOX *b);
+
+/*
+** Auxiliary funxtions
+*/
+static float distance_1D(float a1, float a2, float b1, float b2);
+static NDBOX *swap_corners (NDBOX *a);
+
+
+/*****************************************************************************
+ * Input/Output functions
+ *****************************************************************************/
+
+/* NdBox = [(lowerleft),(upperright)] */
+/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
+NDBOX *
+cube_in(char *str)
+{
+ void * result;
+
+ set_parse_buffer( str );
+
+ if ( cube_yyparse(&result) != 0 ) {
+ return NULL;
+ }
+
+ return ( (NDBOX *)result );
+}
+
+/*
+ * You might have noticed a slight inconsistency between the following
+ * declaration and the SQL definition:
+ * CREATE FUNCTION cube_out(opaque) RETURNS opaque ...
+ * The reason is that the argument pass into cube_out is really just a
+ * pointer. POSTGRES thinks all output functions are:
+ * char *out_func(char *);
+ */
+char *
+cube_out(NDBOX *cube)
+{
+ char *result;
+ char *p;
+ int equal = 1;
+ int dim = cube->dim;
+ int i;
+
+ if (cube == NULL)
+ return(NULL);
+
+ p = result = (char *) palloc(100);
+
+ /* while printing the first (LL) corner, check if it is equal
+ to the scond one */
+ p += sprintf(p, "(");
+ for ( i=0; i < dim; i++ ) {
+ p += sprintf(p, "%g", cube->x[i]);
+ p += sprintf(p, ", ");
+ if ( cube->x[i] != cube->x[i+dim] ) {
+ equal = 0;
+ }
+ }
+ p -= 2; /* get rid of the last ", " */
+ p += sprintf(p, ")");
+
+ if ( !equal ) {
+ p += sprintf(p, ",(");
+ for ( i=dim; i < dim * 2; i++ ) {
+ p += sprintf(p, "%g", cube->x[i]);
+ p += sprintf(p, ", ");
+ }
+ p -= 2;
+ p += sprintf(p, ")");
+ }
+
+ return(result);
+}
+
+
+/*****************************************************************************
+ * GiST functions
+ *****************************************************************************/
+
+/*
+** The GiST Consistent method for boxes
+** Should return false if for all data items x below entry,
+** the predicate x op query == FALSE, where op is the oper
+** corresponding to strategy in the pg_amop table.
+*/
+bool
+g_cube_consistent(GISTENTRY *entry,
+ NDBOX *query,
+ StrategyNumber strategy)
+{
+ /*
+ ** if entry is not leaf, use g_cube_internal_consistent,
+ ** else use g_cube_leaf_consistent
+ */
+ if (GIST_LEAF(entry))
+ return(g_cube_leaf_consistent((NDBOX *)(entry->pred), query, strategy));
+ else
+ return(g_cube_internal_consistent((NDBOX *)(entry->pred), query, strategy));
+}
+
+
+/*
+** The GiST Union method for boxes
+** returns the minimal bounding box that encloses all the entries in entryvec
+*/
+NDBOX *
+g_cube_union(bytea *entryvec, int *sizep)
+{
+ int numranges, i;
+ NDBOX *out = (NDBOX *)NULL;
+ NDBOX *tmp;
+
+ /*
+ fprintf(stderr, "union\n");
+ */
+ numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY);
+ tmp = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
+ /*
+ *sizep = sizeof(NDBOX); -- NDBOX has variable size
+ */
+ *sizep = tmp->size;
+
+ for (i = 1; i < numranges; i++) {
+ out = g_cube_binary_union(tmp, (NDBOX *)
+ (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred,
+ sizep);
+ /*
+ fprintf(stderr, "\t%s ^ %s -> %s\n", cube_out(tmp), cube_out((NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), cube_out(out));
+ */
+ if (i > 1) pfree(tmp);
+ tmp = out;
+ }
+
+ return(out);
+}
+
+/*
+** GiST Compress and Decompress methods for boxes
+** do not do anything.
+*/
+GISTENTRY *
+g_cube_compress(GISTENTRY *entry)
+{
+ return(entry);
+}
+
+GISTENTRY *
+g_cube_decompress(GISTENTRY *entry)
+{
+ return(entry);
+}
+
+/*
+** The GiST Penalty method for boxes
+** As in the R-tree paper, we use change in area as our penalty metric
+*/
+float *
+g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
+{
+ Datum ud;
+ float tmp1, tmp2;
+
+ ud = (Datum)cube_union((NDBOX *)(origentry->pred), (NDBOX *)(newentry->pred));
+ rt_cube_size((NDBOX *)ud, &tmp1);
+ rt_cube_size((NDBOX *)(origentry->pred), &tmp2);
+ *result = tmp1 - tmp2;
+ pfree((char *)ud);
+ /*
+ fprintf(stderr, "penalty\n");
+ fprintf(stderr, "\t%g\n", *result);
+ */
+ return(result);
+}
+
+
+
+/*
+** The GiST PickSplit method for boxes
+** We use Guttman's poly time split algorithm
+*/
+GIST_SPLITVEC *
+g_cube_picksplit(bytea *entryvec,
+ GIST_SPLITVEC *v)
+{
+ OffsetNumber i, j;
+ NDBOX *datum_alpha, *datum_beta;
+ NDBOX *datum_l, *datum_r;
+ NDBOX *union_d, *union_dl, *union_dr;
+ NDBOX *inter_d;
+ bool firsttime;
+ float size_alpha, size_beta, size_union, size_inter;
+ float size_waste, waste;
+ float size_l, size_r;
+ int nbytes;
+ OffsetNumber seed_1 = 0, seed_2 = 0;
+ OffsetNumber *left, *right;
+ OffsetNumber maxoff;
+
+ /*
+ fprintf(stderr, "picksplit\n");
+ */
+ maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
+ nbytes = (maxoff + 2) * sizeof(OffsetNumber);
+ v->spl_left = (OffsetNumber *) palloc(nbytes);
+ v->spl_right = (OffsetNumber *) palloc(nbytes);
+
+ firsttime = true;
+ waste = 0.0;
+
+ for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
+ datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
+ for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
+ datum_beta = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
+
+ /* compute the wasted space by unioning these guys */
+ /* size_waste = size_union - size_inter; */
+ union_d = (NDBOX *)cube_union(datum_alpha, datum_beta);
+ rt_cube_size(union_d, &size_union);
+ inter_d = (NDBOX *)cube_inter(datum_alpha, datum_beta);
+ rt_cube_size(inter_d, &size_inter);
+ size_waste = size_union - size_inter;
+
+ pfree(union_d);
+
+ if (inter_d != (NDBOX *) NULL)
+ pfree(inter_d);
+
+ /*
+ * are these a more promising split than what we've
+ * already seen?
+ */
+
+ if (size_waste > waste || firsttime) {
+ waste = size_waste;
+ seed_1 = i;
+ seed_2 = j;
+ firsttime = false;
+ }
+ }
+ }
+
+ left = v->spl_left;
+ v->spl_nleft = 0;
+ right = v->spl_right;
+ v->spl_nright = 0;
+
+ datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
+ datum_l = (NDBOX *)cube_union(datum_alpha, datum_alpha);
+ rt_cube_size((NDBOX *)datum_l, &size_l);
+ datum_beta = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);;
+ datum_r = (NDBOX *)cube_union(datum_beta, datum_beta);
+ rt_cube_size((NDBOX *)datum_r, &size_r);
+
+ /*
+ * Now split up the regions between the two seeds. An important
+ * property of this split algorithm is that the split vector v
+ * has the indices of items to be split in order in its left and
+ * right vectors. We exploit this property by doing a merge in
+ * the code that actually splits the page.
+ *
+ * For efficiency, we also place the new index tuple in this loop.
+ * This is handled at the very end, when we have placed all the
+ * existing tuples and i == maxoff + 1.
+ */
+
+ maxoff = OffsetNumberNext(maxoff);
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
+
+ /*
+ * If we've already decided where to place this item, just
+ * put it on the right list. Otherwise, we need to figure
+ * out which page needs the least enlargement in order to
+ * store the item.
+ */
+
+ if (i == seed_1) {
+ *left++ = i;
+ v->spl_nleft++;
+ continue;
+ } else if (i == seed_2) {
+ *right++ = i;
+ v->spl_nright++;
+ continue;
+ }
+
+ /* okay, which page needs least enlargement? */
+ datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
+ union_dl = (NDBOX *)cube_union(datum_l, datum_alpha);
+ union_dr = (NDBOX *)cube_union(datum_r, datum_alpha);
+ rt_cube_size((NDBOX *)union_dl, &size_alpha);
+ rt_cube_size((NDBOX *)union_dr, &size_beta);
+
+ /* pick which page to add it to */
+ if (size_alpha - size_l < size_beta - size_r) {
+ pfree(datum_l);
+ pfree(union_dr);
+ datum_l = union_dl;
+ size_l = size_alpha;
+ *left++ = i;
+ v->spl_nleft++;
+ } else {
+ pfree(datum_r);
+ pfree(union_dl);
+ datum_r = union_dr;
+ size_r = size_alpha;
+ *right++ = i;
+ v->spl_nright++;
+ }
+ }
+ *left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
+
+ v->spl_ldatum = (char *)datum_l;
+ v->spl_rdatum = (char *)datum_r;
+
+ return v;
+}
+
+/*
+** Equality method
+*/
+bool *
+g_cube_same(NDBOX *b1, NDBOX *b2, bool *result)
+{
+ if (cube_same(b1, b2))
+ *result = TRUE;
+ else *result = FALSE;
+ /*
+ fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
+ */
+ return(result);
+}
+
+/*
+** SUPPORT ROUTINES
+*/
+bool
+g_cube_leaf_consistent(NDBOX *key,
+ NDBOX *query,
+ StrategyNumber strategy)
+{
+ bool retval;
+
+ /*
+ fprintf(stderr, "leaf_consistent, %d\n", strategy);
+ */
+ switch(strategy) {
+ case RTLeftStrategyNumber:
+ retval = (bool)cube_left(key, query);
+ break;
+ case RTOverLeftStrategyNumber:
+ retval = (bool)cube_over_left(key,query);
+ break;
+ case RTOverlapStrategyNumber:
+ retval = (bool)cube_overlap(key, query);
+ break;
+ case RTOverRightStrategyNumber:
+ retval = (bool)cube_over_right(key, query);
+ break;
+ case RTRightStrategyNumber:
+ retval = (bool)cube_right(key, query);
+ break;
+ case RTSameStrategyNumber:
+ retval = (bool)cube_same(key, query);
+ break;
+ case RTContainsStrategyNumber:
+ retval = (bool)cube_contains(key, query);
+ break;
+ case RTContainedByStrategyNumber:
+ retval = (bool)cube_contained(key,query);
+ break;
+ default:
+ retval = FALSE;
+ }
+ return(retval);
+}
+
+bool
+g_cube_internal_consistent(NDBOX *key,
+ NDBOX *query,
+ StrategyNumber strategy)
+{
+ bool retval;
+
+ /*
+ fprintf(stderr, "internal_consistent, %d\n", strategy);
+ */
+ switch(strategy) {
+ case RTLeftStrategyNumber:
+ case RTOverLeftStrategyNumber:
+ retval = (bool)cube_over_left(key,query);
+ break;
+ case RTOverlapStrategyNumber:
+ retval = (bool)cube_overlap(key, query);
+ break;
+ case RTOverRightStrategyNumber:
+ case RTRightStrategyNumber:
+ retval = (bool)cube_right(key, query);
+ break;
+ case RTSameStrategyNumber:
+ case RTContainsStrategyNumber:
+ retval = (bool)cube_contains(key, query);
+ break;
+ case RTContainedByStrategyNumber:
+ retval = (bool)cube_overlap(key, query);
+ break;
+ default:
+ retval = FALSE;
+ }
+ return(retval);
+}
+
+NDBOX *
+g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep)
+{
+ NDBOX *retval;
+
+ retval = cube_union(r1, r2);
+ *sizep = retval->size;
+
+ return (retval);
+}
+
+
+/* cube_union */
+NDBOX *cube_union(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ NDBOX *result;
+ NDBOX *a = swap_corners(box_a);
+ NDBOX *b = swap_corners(box_b);
+
+ if ( a->dim >= b->dim ) {
+ result = palloc(a->size);
+ result->size = a->size;
+ result->dim = a->dim;
+ }
+ else {
+ result = palloc(b->size);
+ result->size = b->size;
+ result->dim = b->dim;
+ }
+
+ /* swap the box pointers if needed */
+ if ( a->dim < b->dim ) {
+ NDBOX * tmp = b; b = a; a = tmp;
+ }
+
+ /* use the potentially smaller of the two boxes (b) to fill in
+ the result, padding absent dimensions with zeroes*/
+ for ( i = 0; i < b->dim; i++ ) {
+ result->x[i] = b->x[i];
+ result->x[i + a->dim] = b->x[i + b->dim];
+ }
+ for ( i = b->dim; i < a->dim; i++ ) {
+ result->x[i] = 0;
+ result->x[i + a->dim] = 0;
+ }
+
+ /* compute the union */
+ for ( i = 0; i < a->dim; i++ ) {
+ result->x[i] = min(a->x[i], result->x[i]);
+ }
+ for ( i = a->dim; i < a->dim * 2; i++ ) {
+ result->x[i] = max(a->x[i], result->x[i]);
+ }
+
+ pfree(a);
+ pfree(b);
+
+ return(result);
+}
+
+/* cube_inter */
+NDBOX *cube_inter(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ NDBOX * result;
+ NDBOX *a = swap_corners(box_a);
+ NDBOX *b = swap_corners(box_b);
+
+ if ( a->dim >= b->dim ) {
+ result = palloc(a->size);
+ result->size = a->size;
+ result->dim = a->dim;
+ }
+ else {
+ result = palloc(b->size);
+ result->size = b->size;
+ result->dim = b->dim;
+ }
+
+ /* swap the box pointers if needed */
+ if ( a->dim < b->dim ) {
+ NDBOX * tmp = b; b = a; a = tmp;
+ }
+
+ /* use the potentially smaller of the two boxes (b) to fill in
+ the result, padding absent dimensions with zeroes*/
+ for ( i = 0; i < b->dim; i++ ) {
+ result->x[i] = b->x[i];
+ result->x[i + a->dim] = b->x[i + b->dim];
+ }
+ for ( i = b->dim; i < a->dim; i++ ) {
+ result->x[i] = 0;
+ result->x[i + a->dim] = 0;
+ }
+
+ /* compute the intersection */
+ for ( i = 0; i < a->dim; i++ ) {
+ result->x[i] = max(a->x[i], result->x[i]);
+ }
+ for ( i = a->dim; i < a->dim * 2; i++ ) {
+ result->x[i] = min(a->x[i], result->x[i]);
+ }
+
+ pfree(a);
+ pfree(b);
+
+ /* Is it OK to return a non-null intersection for non-overlapping boxes? */
+ return(result);
+}
+
+/* cube_size */
+float *cube_size(NDBOX *a)
+{
+ int i,j;
+ float *result;
+
+ result = (float *) palloc(sizeof(float));
+
+ *result = 1.0;
+ for ( i = 0, j = a->dim; i < a->dim; i++,j++ ) {
+ *result=(*result)*abs((a->x[j] - a->x[i]));
+ }
+
+ return(result);
+}
+
+void
+rt_cube_size(NDBOX *a, float *size)
+{
+ int i,j;
+ if (a == (NDBOX *) NULL)
+ *size = 0.0;
+ else {
+ *size = 1.0;
+ for ( i = 0, j = a->dim; i < a->dim; i++,j++ ) {
+ *size=(*size)*abs((a->x[j] - a->x[i]));
+ }
+ }
+ return;
+}
+
+/* The following four methods compare the projections of the boxes
+ onto the 0-th coordinate axis. These methods are useless for dimensions
+ larger than 2, but it seems that R-tree requires all its strategies
+ map to real functions that return something */
+
+/* is the right edge of (a) located to the left of
+ the right edge of (b)? */
+bool cube_over_left(NDBOX *box_a, NDBOX *box_b)
+{
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ return( a->x[a->dim - 1] <= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b) );
+}
+
+/* is the left edge of (a) located to the right of
+ the left edge of (b)? */
+bool cube_over_right(NDBOX *box_a, NDBOX *box_b)
+{
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ return( a->x[a->dim - 1] >= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b) );
+}
+
+
+/* return 'true' if the projection of 'a' is
+ entirely on the left of the projection of 'b' */
+bool cube_left(NDBOX *box_a, NDBOX *box_b)
+{
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ return( a->x[a->dim - 1] < b->x[0]);
+}
+
+/* return 'true' if the projection of 'a' is
+ entirely on the right of the projection of 'b' */
+bool cube_right(NDBOX *box_a, NDBOX *box_b)
+{
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ return( a->x[0] > b->x[b->dim - 1]);
+}
+
+/* make up a metric in which one box will be 'lower' than the other
+ -- this can be useful for srting and to determine uniqueness */
+bool cube_lt(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ int dim;
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+ dim = min(a->dim, b->dim);
+
+ /* if all common dimensions are equal, the cube with more dimensions wins */
+ if ( cube_same(a, b) ) {
+ if (a->dim < b->dim) {
+ return(TRUE);
+ }
+ else {
+ return(FALSE);
+ }
+ }
+
+ /* compare the common dimensions */
+ for ( i = 0; i < dim; i++ ) {
+ if ( a->x[i] > b->x[i] )
+ return(FALSE);
+ if ( a->x[i] < b->x[i] )
+ return(TRUE);
+ }
+ for ( i = 0; i < dim; i++ ) {
+ if ( a->x[i + a->dim] > b->x[i + b->dim] )
+ return(FALSE);
+ if ( a->x[i + a->dim] < b->x[i + b->dim] )
+ return(TRUE);
+ }
+
+ /* compare extra dimensions to zero */
+ if ( a->dim > b->dim ) {
+ for ( i = dim; i < a->dim; i++ ) {
+ if ( a->x[i] > 0 )
+ return(FALSE);
+ if ( a->x[i] < 0 )
+ return(TRUE);
+ }
+ for ( i = 0; i < dim; i++ ) {
+ if ( a->x[i + a->dim] > 0 )
+ return(FALSE);
+ if ( a->x[i + a->dim] < 0 )
+ return(TRUE);
+ }
+ }
+ if ( a->dim < b->dim ) {
+ for ( i = dim; i < b->dim; i++ ) {
+ if ( b->x[i] > 0 )
+ return(TRUE);
+ if ( b->x[i] < 0 )
+ return(FALSE);
+ }
+ for ( i = 0; i < dim; i++ ) {
+ if ( b->x[i + b->dim] > 0 )
+ return(TRUE);
+ if ( b->x[i + b->dim] < 0 )
+ return(FALSE);
+ }
+ }
+
+ return(FALSE);
+}
+
+
+bool cube_gt(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ int dim;
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+ dim = min(a->dim, b->dim);
+
+ /* if all common dimensions are equal, the cube with more dimensions wins */
+ if ( cube_same(a, b) ) {
+ if (a->dim > b->dim) {
+ return(TRUE);
+ }
+ else {
+ return(FALSE);
+ }
+ }
+
+ /* compare the common dimensions */
+ for ( i = 0; i < dim; i++ ) {
+ if ( a->x[i] < b->x[i] )
+ return(FALSE);
+ if ( a->x[i] > b->x[i] )
+ return(TRUE);
+ }
+ for ( i = 0; i < dim; i++ ) {
+ if ( a->x[i + a->dim] < b->x[i + b->dim] )
+ return(FALSE);
+ if ( a->x[i + a->dim] > b->x[i + b->dim] )
+ return(TRUE);
+ }
+
+
+ /* compare extra dimensions to zero */
+ if ( a->dim > b->dim ) {
+ for ( i = dim; i < a->dim; i++ ) {
+ if ( a->x[i] < 0 )
+ return(FALSE);
+ if ( a->x[i] > 0 )
+ return(TRUE);
+ }
+ for ( i = 0; i < dim; i++ ) {
+ if ( a->x[i + a->dim] < 0 )
+ return(FALSE);
+ if ( a->x[i + a->dim] > 0 )
+ return(TRUE);
+ }
+ }
+ if ( a->dim < b->dim ) {
+ for ( i = dim; i < b->dim; i++ ) {
+ if ( b->x[i] < 0 )
+ return(TRUE);
+ if ( b->x[i] > 0 )
+ return(FALSE);
+ }
+ for ( i = 0; i < dim; i++ ) {
+ if ( b->x[i + b->dim] < 0 )
+ return(TRUE);
+ if ( b->x[i + b->dim] > 0 )
+ return(FALSE);
+ }
+ }
+
+ return(FALSE);
+}
+
+
+/* Equal */
+bool cube_same(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ /* swap the box pointers if necessary */
+ if ( a->dim < b->dim ) {
+ NDBOX * tmp = b; b = a; a = tmp;
+ }
+
+ for ( i = 0; i < b->dim; i++ ) {
+ if ( a->x[i] != b->x[i] )
+ return(FALSE);
+ if ( a->x[i + a->dim] != b->x[i + b->dim] )
+ return(FALSE);
+ }
+
+ /* all dimensions of (b) are compared to those of (a);
+ instead of those in (a) absent in (b), compare (a) to zero */
+ for ( i = b->dim; i < a->dim; i++ ) {
+ if ( a->x[i] != 0 )
+ return(FALSE);
+ if ( a->x[i + a->dim] != 0 )
+ return(FALSE);
+ }
+
+ pfree(a);
+ pfree(b);
+
+ return(TRUE);
+}
+
+/* Different */
+bool cube_different(NDBOX *box_a, NDBOX *box_b)
+{
+ return(!cube_same(box_a, box_b));
+}
+
+
+/* Contains */
+/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
+bool cube_contains(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ NDBOX *a;
+ NDBOX *b;
+
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ if ( a->dim < b->dim ) {
+ /* the further comparisons will make sense if the
+ excess dimensions of (b) were zeroes */
+ for ( i = a->dim; i < b->dim; i++ ) {
+ if ( b->x[i] != 0 )
+ return(FALSE);
+ if ( b->x[i + b->dim] != 0 )
+ return(FALSE);
+ }
+ }
+
+ /* Can't care less about the excess dimensions of (a), if any */
+ for ( i = 0; i < min(a->dim, b->dim); i++ ) {
+ if ( a->x[i] > b->x[i] )
+ return(FALSE);
+ if ( a->x[i + a->dim] < b->x[i + b->dim] )
+ return(FALSE);
+ }
+
+ pfree(a);
+ pfree(b);
+
+ return(TRUE);
+}
+
+/* Contained */
+/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
+bool cube_contained (NDBOX *a, NDBOX *b)
+{
+ if (cube_contains(b,a) == TRUE)
+ return(TRUE);
+ else
+ return(FALSE);
+}
+
+/* Overlap */
+/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
+bool cube_overlap(NDBOX *box_a, NDBOX *box_b)
+{
+ int i;
+ NDBOX *a;
+ NDBOX *b;
+
+ /* This *very bad* error was found in the source:
+ if ( (a==NULL) || (b=NULL) )
+ return(FALSE);
+ */
+ if ( (box_a==NULL) || (box_b==NULL) )
+ return(FALSE);
+
+ a = swap_corners(box_a);
+ b = swap_corners(box_b);
+
+ /* swap the box pointers if needed */
+ if ( a->dim < b->dim ) {
+ NDBOX * tmp = b; b = a; a = tmp;
+ }
+
+ /* compare within the dimensions of (b) */
+ for ( i = 0; i < b->dim; i++ ) {
+ if ( a->x[i] > b->x[i + b->dim] )
+ return(FALSE);
+ if ( a->x[i + a->dim] < b->x[i] )
+ return(FALSE);
+ }
+
+ /* compare to zero those dimensions in (a) absent in (b) */
+ for ( i = b->dim; i < a->dim; i++ ) {
+ if ( a->x[i] > 0 )
+ return(FALSE);
+ if ( a->x[i + a->dim] < 0 )
+ return(FALSE);
+ }
+
+ pfree(a);
+ pfree(b);
+
+ return(TRUE);
+}
+
+
+/* Distance */
+/* The distance is computed as a per axis sum of the squared distances
+ between 1D projections of the boxes onto Cartesian axes. Assuming zero
+ distance between overlapping projections, this metric coincides with the
+ "common sense" geometric distance */
+float *cube_distance(NDBOX *a, NDBOX *b)
+{
+ int i;
+ double d, distance;
+ float *result;
+
+ result = (float *) palloc(sizeof(float));
+
+ /* swap the box pointers if needed */
+ if ( a->dim < b->dim ) {
+ NDBOX * tmp = b; b = a; a = tmp;
+ }
+
+ distance = 0.0;
+ /* compute within the dimensions of (b) */
+ for ( i = 0; i < b->dim; i++ ) {
+ d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
+ distance += d*d;
+ }
+
+ /* compute distance to zero for those dimensions in (a) absent in (b) */
+ for ( i = b->dim; i < a->dim; i++ ) {
+ d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
+ distance += d*d;
+ }
+
+ *result = (float)sqrt(distance);
+
+ return(result);
+}
+
+static float distance_1D(float a1, float a2, float b1, float b2)
+{
+ /* interval (a) is entirely on the left of (b) */
+ if( (a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2) ) {
+ return ( min( b1, b2 ) - max( a1, a2 ) );
+ }
+
+ /* interval (a) is entirely on the right of (b) */
+ if( (a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2) ) {
+ return ( min( a1, a2 ) - max( b1, b2 ) );
+ }
+
+ /* the rest are all sorts of intersections */
+ return(0.0);
+}
+
+/* normalize the box's co-ordinates by placing min(xLL,xUR) to LL
+ and max(xLL,xUR) to UR
+*/
+static NDBOX *swap_corners ( NDBOX *a )
+{
+ int i, j;
+ NDBOX * result;
+
+ result = palloc(a->size);
+ result->size = a->size;
+ result->dim = a->dim;
+
+ for ( i = 0, j = a->dim; i < a->dim; i++, j++ ) {
+ result->x[i] = min(a->x[i],a->x[j]);
+ result->x[j] = max(a->x[i],a->x[j]);
+ }
+
+ return(result);
+}