diff options
| author | Michael P | 2011-11-06 23:36:10 +0000 |
|---|---|---|
| committer | Michael P | 2011-11-06 23:36:10 +0000 |
| commit | 2182ca2d05a38c185e443c9dd73c9ddf0f0db182 (patch) | |
| tree | 872222936756bc4a3654bdca3e6d0cdf1e02e93f /src/test | |
| parent | 72292cbae1adaca8788725ff1939f18d3c51a0b5 (diff) | |
Print correct columns names in EXPLAIN for a join query
Patch by Xiong Wang
Review and corrections by me
Diffstat (limited to 'src/test')
| -rw-r--r-- | src/test/regress/expected/xc_having.out | 88 |
1 files changed, 44 insertions, 44 deletions
diff --git a/src/test/regress/expected/xc_having.out b/src/test/regress/expected/xc_having.out index b10d4f81b7..2212a79c3e 100644 --- a/src/test/regress/expected/xc_having.out +++ b/src/test/regress/expected/xc_having.out @@ -24,7 +24,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2 -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (6 rows) @@ -43,7 +43,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -62,7 +62,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2)) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -79,7 +79,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -116,14 +116,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8; (1 row) explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8; - QUERY PLAN ----------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- HashAggregate (cost=1.02..1.03 rows=1 width=8) Output: xc_having_tab1.val2 Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: xc_having_tab1.val2, (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: xc_having_tab1.val2, sum(xc_having_tab1.val) (7 rows) @@ -136,14 +136,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; (3 rows) explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; - QUERY PLAN -------------------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- HashAggregate (cost=1.02..1.04 rows=1 width=8) Output: ((xc_having_tab1.val + xc_having_tab1.val2)) Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val) (7 rows) @@ -162,7 +162,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1 Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val)) - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val) (7 rows) @@ -189,7 +189,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2 -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (6 rows) @@ -208,7 +208,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -227,7 +227,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2)) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -244,7 +244,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -281,14 +281,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8; (1 row) explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8; - QUERY PLAN ----------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- HashAggregate (cost=1.02..1.03 rows=1 width=8) Output: xc_having_tab1.val2 Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: xc_having_tab1.val2, (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: xc_having_tab1.val2, sum(xc_having_tab1.val) (7 rows) @@ -301,14 +301,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; (3 rows) explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; - QUERY PLAN -------------------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- HashAggregate (cost=1.02..1.04 rows=1 width=8) Output: ((xc_having_tab1.val + xc_having_tab1.val2)) Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val) (7 rows) @@ -327,7 +327,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1 Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val)) - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val) (7 rows) @@ -354,7 +354,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2 -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (6 rows) @@ -373,7 +373,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -392,7 +392,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2)) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -409,7 +409,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -449,14 +449,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8; (1 row) explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8; - QUERY PLAN ----------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- GroupAggregate (cost=1.02..1.05 rows=1 width=8) Output: xc_having_tab1.val2 Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: xc_having_tab1.val2, (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: xc_having_tab1.val2, sum(xc_having_tab1.val) (7 rows) @@ -469,14 +469,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; (3 rows) explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; - QUERY PLAN -------------------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- GroupAggregate (cost=1.03..1.05 rows=1 width=8) Output: ((xc_having_tab1.val + xc_having_tab1.val2)) Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val) (7 rows) @@ -495,7 +495,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1 Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val)) - -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val) (7 rows) @@ -522,7 +522,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2 -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (6 rows) @@ -541,7 +541,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -560,7 +560,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2)) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -577,7 +577,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*), Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2 - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2 (7 rows) @@ -617,14 +617,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8; (1 row) explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8; - QUERY PLAN ----------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- GroupAggregate (cost=1.02..1.05 rows=1 width=8) Output: xc_having_tab1.val2 Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: xc_having_tab1.val2, (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: xc_having_tab1.val2, sum(xc_having_tab1.val) (7 rows) @@ -637,14 +637,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; (3 rows) explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5; - QUERY PLAN -------------------------------------------------------------------------------------------- + QUERY PLAN +--------------------------------------------------------------------------------------------------------- GroupAggregate (cost=1.03..1.05 rows=1 width=8) Output: ((xc_having_tab1.val + xc_having_tab1.val2)) Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val)) - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val) (7 rows) @@ -663,7 +663,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1 Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2) -> Materialize (cost=0.00..0.00 rows=0 width=0) Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val)) - -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8) + -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8) Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val) (7 rows) |
