summaryrefslogtreecommitdiff
path: root/src/test
diff options
context:
space:
mode:
authorMichael P2011-11-06 23:36:10 +0000
committerMichael P2011-11-06 23:36:10 +0000
commit2182ca2d05a38c185e443c9dd73c9ddf0f0db182 (patch)
tree872222936756bc4a3654bdca3e6d0cdf1e02e93f /src/test
parent72292cbae1adaca8788725ff1939f18d3c51a0b5 (diff)
Print correct columns names in EXPLAIN for a join query
Patch by Xiong Wang Review and corrections by me
Diffstat (limited to 'src/test')
-rw-r--r--src/test/regress/expected/xc_having.out88
1 files changed, 44 insertions, 44 deletions
diff --git a/src/test/regress/expected/xc_having.out b/src/test/regress/expected/xc_having.out
index b10d4f81b7..2212a79c3e 100644
--- a/src/test/regress/expected/xc_having.out
+++ b/src/test/regress/expected/xc_having.out
@@ -24,7 +24,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(6 rows)
@@ -43,7 +43,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -62,7 +62,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2))
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -79,7 +79,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -116,14 +116,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
(1 row)
explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
- QUERY PLAN
-----------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
HashAggregate (cost=1.02..1.03 rows=1 width=8)
Output: xc_having_tab1.val2
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: xc_having_tab1.val2, (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: xc_having_tab1.val2, sum(xc_having_tab1.val)
(7 rows)
@@ -136,14 +136,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
(3 rows)
explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
- QUERY PLAN
--------------------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
HashAggregate (cost=1.02..1.04 rows=1 width=8)
Output: ((xc_having_tab1.val + xc_having_tab1.val2))
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val)
(7 rows)
@@ -162,7 +162,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1
Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val))
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val)
(7 rows)
@@ -189,7 +189,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(6 rows)
@@ -208,7 +208,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -227,7 +227,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2))
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -244,7 +244,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -281,14 +281,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
(1 row)
explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
- QUERY PLAN
-----------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
HashAggregate (cost=1.02..1.03 rows=1 width=8)
Output: xc_having_tab1.val2
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: xc_having_tab1.val2, (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: xc_having_tab1.val2, sum(xc_having_tab1.val)
(7 rows)
@@ -301,14 +301,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
(3 rows)
explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
- QUERY PLAN
--------------------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
HashAggregate (cost=1.02..1.04 rows=1 width=8)
Output: ((xc_having_tab1.val + xc_having_tab1.val2))
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val)
(7 rows)
@@ -327,7 +327,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1
Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val))
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val)
(7 rows)
@@ -354,7 +354,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(6 rows)
@@ -373,7 +373,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -392,7 +392,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2))
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -409,7 +409,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -449,14 +449,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
(1 row)
explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
- QUERY PLAN
-----------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
GroupAggregate (cost=1.02..1.05 rows=1 width=8)
Output: xc_having_tab1.val2
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: xc_having_tab1.val2, (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: xc_having_tab1.val2, sum(xc_having_tab1.val)
(7 rows)
@@ -469,14 +469,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
(3 rows)
explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
- QUERY PLAN
--------------------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
GroupAggregate (cost=1.03..1.05 rows=1 width=8)
Output: ((xc_having_tab1.val + xc_having_tab1.val2))
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val)
(7 rows)
@@ -495,7 +495,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1
Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val))
- -> Data Node Scan (Node Count [2]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [2]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val)
(7 rows)
@@ -522,7 +522,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Output: pg_catalog.count(*), pg_catalog.sum((sum(xc_having_tab1.val))), pg_catalog.avg((avg(xc_having_tab1.val))), ((pg_catalog.sum((sum(xc_having_tab1.val))))::double precision / (pg_catalog.count(*))::double precision), xc_having_tab1.val2
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(6 rows)
@@ -541,7 +541,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -560,7 +560,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: ((pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75) OR (xc_having_tab1.val2 > 2))
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -577,7 +577,7 @@ explain verbose select count(*), sum(val), avg(val), sum(val)::float8/count(*),
Filter: (pg_catalog.avg((avg(xc_having_tab1.val))) > 3.75)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2
(7 rows)
@@ -617,14 +617,14 @@ select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
(1 row)
explain verbose select val2 from xc_having_tab1 group by val2 having sum(val) > 8;
- QUERY PLAN
-----------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
GroupAggregate (cost=1.02..1.05 rows=1 width=8)
Output: xc_having_tab1.val2
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 8)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: xc_having_tab1.val2, (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: xc_having_tab1.val2, sum(xc_having_tab1.val)
(7 rows)
@@ -637,14 +637,14 @@ select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
(3 rows)
explain verbose select val + val2 from xc_having_tab1 group by val + val2 having sum(val) > 5;
- QUERY PLAN
--------------------------------------------------------------------------------------------
+ QUERY PLAN
+---------------------------------------------------------------------------------------------------------
GroupAggregate (cost=1.03..1.05 rows=1 width=8)
Output: ((xc_having_tab1.val + xc_having_tab1.val2))
Filter: (pg_catalog.sum((sum(xc_having_tab1.val))) > 5)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: ((xc_having_tab1.val + xc_having_tab1.val2)), (sum(xc_having_tab1.val))
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: (xc_having_tab1.val + xc_having_tab1.val2), sum(xc_having_tab1.val)
(7 rows)
@@ -663,7 +663,7 @@ explain verbose select count(*) + sum(val) + avg(val), val2 from xc_having_tab1
Filter: (min((min(xc_having_tab1.val))) < xc_having_tab1.val2)
-> Materialize (cost=0.00..0.00 rows=0 width=0)
Output: (count(*)), (sum(xc_having_tab1.val)), (avg(xc_having_tab1.val)), xc_having_tab1.val2, (min(xc_having_tab1.val))
- -> Data Node Scan (Node Count [1]) (cost=0.00..1.01 rows=1000 width=8)
+ -> Data Node Scan (Node Count [1]) on "__FOREIGN_QUERY__" (cost=0.00..1.01 rows=1000 width=8)
Output: count(*), sum(xc_having_tab1.val), avg(xc_having_tab1.val), xc_having_tab1.val2, min(xc_having_tab1.val)
(7 rows)