1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
<!-- doc/src/sgml/start.sgml -->
<chapter id="tutorial-start">
<title>Getting Started</title>
<sect1 id="tutorial-install">
<title>Installation</title>
<para>
In this section we assume that you have already
installed <productname>Pgpool-II</productname> following an
instruction described in <xref linkend="admin">.
Alternatively you can use <xref linkend="PGPOOL-SETUP"> to
create a temporary installation
of <productname>Pgpool-II</productname>
and <productname>PostgreSQL</productname>.
</para>
</sect1>
<sect1 id="tutorial-replication">
<title>Your First Replication</title>
<para>
In this section we are going to explain how to manage a
<productname>PostgreSQL</productname> cluster with streaming
replication using <productname>Pgpool-II</productname>, which is
one of most common setup.
</para>
<para>
Before going further, you should properly set
up <filename>pgpool.conf</filename> with streaming replication
mode. Sample configurations are provided with
<productname>Pgpool-II</productname>, there configuration file
are located at /usr/local/etc with default installation from
source code. you can copy
<filename>pgpool.conf.sample</filename> as pgpool.conf.
<programlisting>
cp /usr/local/etc/pgpool.conf.sample pgpool.conf
</programlisting>
</para>
<para>
If you plan to use <command>pgpool_setup</command>, type:
<programlisting>
pgpool_setup
</programlisting>
This will create
a <productname>Pgpool-II</productname> with streaming
replication mode installation,
primary <productname>PostgreSQL</productname> installation, and
a async standby <productname>PostgreSQL</productname>
installation.
</para>
<para>
From now on, we assume that you
use <command>pgpool_setup</command> to create the installation
under current directory. Please note that the current directory
must be empty before executing <command>pgpool_setup</command>.
</para>
<para>
To start the whole system, type:
<programlisting>
./startall
</programlisting>
</para>
<para>
Once the system starts, you can check the cluster status by
issuing a pseudo SQL command called "show pool_nodes" to any of
databases. <command>pgpool_setup</command> automatically creates
"test" database. We use the database. Note that the port number
is 11000, which is the default port number assigned
to <productname>Pgpool-II</productname>
by <command>pgpool_setup</command>.
<programlisting>
$ psql -p 11000 -c "show pool_nodes" test
node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay | last_status_change
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------+---------------------
0 | /tmp | 11002 | up | 0.500000 | primary | 0 | false | 0 | 2019-01-31 10:23:09
1 | /tmp | 11003 | up | 0.500000 | standby | 0 | true | 0 | 2019-01-31 10:23:09
(2 rows)
</programlisting>
The result shows that the "status" column is "up", which means
the
<productname>PostgreSQL</productname> is up and running, which
is good.
</para>
</sect1>
<sect1 id="tutorial-testing-replication">
<title>Testing Replication</title>
<para>
Let's test the replication functionality using a benchmark
tool <command>pgbench</command>, which comes with the
standard <productname>PostgreSQL</productname> installation.
Type following to create the benchmark tables.
<programlisting>
$ pgbench -i -p 11000 test
</programlisting>
To see if the replication works correctly, directly connect to
the primary and the standby server to see if they return
identical results.
<programlisting>
$ psql -p 11002 test
\dt
List of relations
Schema | Name | Type | Owner
--------+------------------+-------+---------
public | pgbench_accounts | table | t-ishii
public | pgbench_branches | table | t-ishii
public | pgbench_history | table | t-ishii
public | pgbench_tellers | table | t-ishii
(4 rows)
\q
$ psql -p 11003 test
\dt
List of relations
Schema | Name | Type | Owner
--------+------------------+-------+---------
public | pgbench_accounts | table | t-ishii
public | pgbench_branches | table | t-ishii
public | pgbench_history | table | t-ishii
public | pgbench_tellers | table | t-ishii
(4 rows)
</programlisting>
The primary server (port 11002) and the standby server (port
11003) return identical results. Next, let's run pgbench for a
while and check to results.
<programlisting>
$ pgbench -p 11000 -T 10 test
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 4276
latency average = 2.339 ms
tps = 427.492167 (including connections establishing)
tps = 427.739078 (excluding connections establishing)
$ psql -p 11002 -c "SELECT sum(abalance) FROM pgbench_accounts" test
sum
--------
216117
(1 row)
$ psql -p 11003 -c "SELECT sum(abalance) FROM pgbench_accounts" test
sum
--------
216117
(1 row)
</programlisting>
Again, the results are identical.
</para>
</sect1>
<sect1 id="tutorial-testing-load-balance">
<title>Testing Load Balance</title>
<para>
<productname>Pgpool-II</productname> allows read query load
balancing. It is enabled by default. To see the effect, let's
use <command>pgbench -S</command> command.
<programlisting>
$ ./shutdownall
$ ./startall
$ pgbench -p 11000 -c 10 -j 10 -S -T 60 test
starting vacuum...end.
transaction type: <builtin: select only>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 10
duration: 60 s
number of transactions actually processed: 1086766
latency average = 0.552 ms
tps = 18112.487043 (including connections establishing)
tps = 18125.572952 (excluding connections establishing)
$ psql -p 11000 -c "show pool_nodes" test
node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay | last_status_change
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------+---------------------
0 | /tmp | 11002 | up | 0.500000 | primary | 537644 | false | 0 | 2019-01-31 11:51:58
1 | /tmp | 11003 | up | 0.500000 | standby | 548582 | true | 0 | 2019-01-31 11:51:58
(2 rows)
</programlisting>
"select_cnt" column shows how many SELECT are dispatched to each
node. Since with the default
configuration, <productname>Pgpool-II</productname> tries to
dispatch equal number of SELECT, the column shows almost same
numbers.
</para>
<para>
<productname>Pgpool-II</productname> offers more sophisticated
strategy for load
balancing. See <xref linkend="runtime-config-load-balancing">
for more details.
</para>
</sect1>
<sect1 id="tutorial-testing-failover">
<title>Testing Fail Over</title>
<para>
<productname>Pgpool-II</productname> allows an automatic fail
over when <productname>PostgreSQL</productname> server goes
down. In this case <productname>Pgpool-II</productname> sets the
status of the server to "down" and continue the database
operation using remaining servers.
<programlisting>
$ pg_ctl -D data1 stop
waiting for server to shut down.... done
server stopped
$ psql -p 11000 -c "show pool_nodes" test
node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay | last_status_change
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------+---------------------
0 | /tmp | 11002 | up | 0.500000 | primary | 4276 | true | 0 | 2019-01-31 12:00:09
1 | /tmp | 11003 | down | 0.500000 | standby | 1 | false | 0 | 2019-01-31 12:03:07
(2 rows)
</programlisting>
The standby node was shut down by pg_ctl
command. <productname>Pgpool-II</productname> detects it and
detaches the standby node. "show pool_nodes" command shows that
the standby node is in down status. You can continue to use the
cluster without the standby node:
<programlisting>
$ psql -p 11000 -c "SELECT sum(abalance) FROM pgbench_accounts" test
sum
--------
216117
(1 row)
</programlisting>
What happens if the primary server goes down? In this case, one
of remaining standby server is promoted to new primary
server. For this testing, we start from the state in which both
nodes are up.
<programlisting>
$ psql -p 11000 -c "show pool_nodes" test
node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay | last_status_change
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------+---------------------
0 | /tmp | 11002 | up | 0.500000 | primary | 0 | false | 0 | 2019-01-31 12:04:58
1 | /tmp | 11003 | up | 0.500000 | standby | 0 | true | 0 | 2019-01-31 12:04:58
(2 rows)
$ pg_ctl -D data0 stop
waiting for server to shut down.... done
server stopped
$ psql -p 11000 -c "show pool_nodes" test
node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay | last_status_change
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------+---------------------
0 | /tmp | 11002 | down | 0.500000 | standby | 0 | false | 0 | 2019-01-31 12:05:20
1 | /tmp | 11003 | up | 0.500000 | primary | 0 | true | 0 | 2019-01-31 12:05:20
(2 rows)
</programlisting>
Now the primary node is changed from 0 to 1. What happens
inside? When the node 0 goes
down, <productname>Pgpool-II</productname> detects it and
executes <varname>failover_command</varname> defined
in <filename>pgpool.conf</filename>. Here is the content of the
file.
<programlisting>
#! /bin/sh
# Execute command by failover.
# special values: %d = node id
# %h = host name
# %p = port number
# %D = database cluster path
# %m = new main node id
# %M = old main node id
# %H = new main node host name
# %P = old primary node id
# %R = new main database cluster path
# %r = new main port number
# %% = '%' character
failed_node_id=$1
failed_host_name=$2
failed_port=$3
failed_db_cluster=$4
new_main_id=$5
old_main_id=$6
new_main_host_name=$7
old_primary_node_id=$8
new_main_port_number=$9
new_main_db_cluster=${10}
mydir=/home/t-ishii/tmp/Tutorial
log=$mydir/log/failover.log
pg_ctl=/usr/local/pgsql/bin/pg_ctl
cluster0=$mydir/data0
cluster1=$mydir/data1
date >> $log
echo "failed_node_id $failed_node_id failed_host_name $failed_host_name failed_port $failed_port failed_db_cluster $failed_db_cluster new_main_id $new_main_id old_main_id $old_main_id new_main_host_name $new_main_host_name old_primary_node_id $old_primary_node_id new_main_port_number $new_main_port_number new_main_db_cluster $new_main_db_cluster" >> $log
if [ a"$failed_node_id" = a"$old_primary_node_id" ];then # main failed
! new_primary_db_cluster=${mydir}/data"$new_main_id"
echo $pg_ctl -D $new_primary_db_cluster promote >>$log # let standby take over
$pg_ctl -D $new_primary_db_cluster promote >>$log # let standby take over
sleep 2
fi
</programlisting>
The script receives necessary information as parameters
from <productname>Pgpool-II</productname>. If the primary server
goes down, it executes "pg_ctl -D data1 promote", which should
promote the standby server to a new primary server.
</para>
</sect1>
<sect1 id="tutorial-testing-online-recovery">
<title>Testing Online Recovery</title>
<para>
<productname>Pgpool-II</productname> allows to recover a downed
node by technique called "Online Recovery". This copies data
from the primary node to a standby node so that it sync with the
primary. This may take long time and database may be updated
during the process. That's no problem because in the streaming
configuration, the standby will receive WAL log and applies it
to catch up the primary. To test online recovery, let's start
with previous cluster, where node 0 is in down state.
<programlisting>
$ pcp_recovery_node -p 11001 -n 0
Password:
pcp_recovery_node -- Command Successful
$ psql -p 11000 -c "show pool_nodes" test
node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay | last_status_change
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------+---------------------
0 | /tmp | 11002 | up | 0.500000 | standby | 0 | false | 0 | 2019-01-31 12:06:48
1 | /tmp | 11003 | up | 0.500000 | primary | 0 | true | 0 | 2019-01-31 12:05:20
(2 rows)
</programlisting>
<xref linkend="pcp-recovery-node"> is one of control commands
coming with <productname>Pgpool-II</productname>
installation. The argument -p is to specify the port number
assigned to the command, which is 11001 set
by <command>pgpool_setup</command>. The argument -n is to
specify the node id to be recovered. After executing the command,
node 0 returned to "up" status.
</para>
<para>
The script executed by <command>pcp_recovery_node</command> is
specified as "recovery_1st_stage_command"
in <filename>pgpool.conf</filename>. Here is the file installed
by <command>pgpool_setup</command>.
<programlisting>
#! /bin/sh
psql=/usr/local/pgsql/bin/psql
DATADIR_BASE=/home/t-ishii/tmp/Tutorial
PGSUPERUSER=t-ishii
main_db_cluster=$1
recovery_node_host_name=$2
DEST_CLUSTER=$3
PORT=$4
recovery_node=$5
pg_rewind_failed="true"
log=$DATADIR_BASE/log/recovery.log
echo >> $log
date >> $log
if [ $pg_rewind_failed = "true" ];then
$psql -p $PORT -c "SELECT pg_start_backup('Streaming Replication', true)" postgres
echo "source: $main_db_cluster dest: $DEST_CLUSTER" >> $log
rsync -C -a -c --delete --exclude postgresql.conf --exclude postmaster.pid \
--exclude postmaster.opts --exclude pg_log \
--exclude recovery.conf --exclude recovery.done \
--exclude pg_xlog \
$main_db_cluster/ $DEST_CLUSTER/
rm -fr $DEST_CLUSTER/pg_xlog
mkdir $DEST_CLUSTER/pg_xlog
chmod 700 $DEST_CLUSTER/pg_xlog
rm $DEST_CLUSTER/recovery.done
fi
cat > $DEST_CLUSTER/recovery.conf $lt;$lt;REOF
standby_mode = 'on'
primary_conninfo = 'port=$PORT user=$PGSUPERUSER'
recovery_target_timeline='latest'
restore_command = 'cp $DATADIR_BASE/archivedir/%f "%p" 2> /dev/null'
REOF
if [ $pg_rewind_failed = "true" ];then
$psql -p $PORT -c "SELECT pg_stop_backup()" postgres
fi
if [ $pg_rewind_failed = "false" ];then
cp /tmp/postgresql.conf $DEST_CLUSTER/
fi
</programlisting>
</para>
</sect1>
<sect1 id="tutorial-arch">
<title>Architectural Fundamentals</title>
<para>
<productname>Pgpool-II</productname> is a proxy server sitting
between clients and <productname>PostgreSQL</productname>.
<productname>Pgpool-II</productname> understands the wire level
protocol used by <productname>PostgreSQL</productname> called
"frontend and backend protocol". For more details of the
protocol, see the <productname>PostgreSQL</productname> manual.
No modified <productname>PostgreSQL</productname> is required to
use <productname>Pgpool-II</productname> (more precisely, you
will need a few extensions to use full functions
of <productname>Pgpool-II</productname>). So <productname>Pgpool-II</productname>
can cope with variety of <productname>PostgreSQL</productname>
versions. In theory, even the earliest version
of <productname>PostgreSQL</productname> can be used
with <productname>Pgpool-II</productname>. Same thing can be
said to client side. As long as it follows the
protocol, <productname>Pgpool-II</productname> happily accept
connections from it, no matter what kind of languages or drivers
it uses.
</para>
<para>
<productname>Pgpool-II</productname> consists of multiple
process. There is a main process, which is the parent process of
all other process. It is responsible for forking child process
each of which accepts connections from clients. There are some
worker process those are forked from the main process as well,
which is responsible for detecting streaming replication
delay. There is also a special process called "pcp process",
which is solely used for management
of <productname>Pgpool-II</productname>
itself. <productname>Pgpool-II</productname> has a built-in high
availability function called "watchdog". Watchdog consists of
some process. For more details of watchdog,
see <xref linkend="tutorial-watchdog">.
</para>
<para>
<figure>
<title>Process architecture of <productname>Pgpool-II</productname></title>
<mediaobject>
<imageobject>
<imagedata fileref="process-diagram.gif">
</imageobject>
</mediaobject>
</figure>
</para>
</sect1>
</chapter>
|