PostgreSQL Source Code git master
xlog.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * xlog.c
4 * PostgreSQL write-ahead log manager
5 *
6 * The Write-Ahead Log (WAL) functionality is split into several source
7 * files, in addition to this one:
8 *
9 * xloginsert.c - Functions for constructing WAL records
10 * xlogrecovery.c - WAL recovery and standby code
11 * xlogreader.c - Facility for reading WAL files and parsing WAL records
12 * xlogutils.c - Helper functions for WAL redo routines
13 *
14 * This file contains functions for coordinating database startup and
15 * checkpointing, and managing the write-ahead log buffers when the
16 * system is running.
17 *
18 * StartupXLOG() is the main entry point of the startup process. It
19 * coordinates database startup, performing WAL recovery, and the
20 * transition from WAL recovery into normal operations.
21 *
22 * XLogInsertRecord() inserts a WAL record into the WAL buffers. Most
23 * callers should not call this directly, but use the functions in
24 * xloginsert.c to construct the WAL record. XLogFlush() can be used
25 * to force the WAL to disk.
26 *
27 * In addition to those, there are many other functions for interrogating
28 * the current system state, and for starting/stopping backups.
29 *
30 *
31 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
32 * Portions Copyright (c) 1994, Regents of the University of California
33 *
34 * src/backend/access/transam/xlog.c
35 *
36 *-------------------------------------------------------------------------
37 */
38
39#include "postgres.h"
40
41#include <ctype.h>
42#include <math.h>
43#include <time.h>
44#include <fcntl.h>
45#include <sys/stat.h>
46#include <sys/time.h>
47#include <unistd.h>
48
49#include "access/clog.h"
50#include "access/commit_ts.h"
51#include "access/heaptoast.h"
52#include "access/multixact.h"
53#include "access/rewriteheap.h"
54#include "access/subtrans.h"
55#include "access/timeline.h"
56#include "access/transam.h"
57#include "access/twophase.h"
58#include "access/xact.h"
60#include "access/xlogarchive.h"
61#include "access/xloginsert.h"
62#include "access/xlogreader.h"
63#include "access/xlogrecovery.h"
64#include "access/xlogutils.h"
65#include "backup/basebackup.h"
66#include "catalog/catversion.h"
67#include "catalog/pg_control.h"
68#include "catalog/pg_database.h"
70#include "common/file_utils.h"
71#include "executor/instrument.h"
72#include "miscadmin.h"
73#include "pg_trace.h"
74#include "pgstat.h"
75#include "port/atomics.h"
76#include "postmaster/bgwriter.h"
77#include "postmaster/startup.h"
80#include "replication/origin.h"
81#include "replication/slot.h"
85#include "storage/bufmgr.h"
86#include "storage/fd.h"
87#include "storage/ipc.h"
89#include "storage/latch.h"
90#include "storage/predicate.h"
91#include "storage/proc.h"
92#include "storage/procarray.h"
93#include "storage/reinit.h"
94#include "storage/spin.h"
95#include "storage/sync.h"
96#include "utils/guc_hooks.h"
97#include "utils/guc_tables.h"
99#include "utils/ps_status.h"
100#include "utils/relmapper.h"
101#include "utils/snapmgr.h"
102#include "utils/timeout.h"
103#include "utils/timestamp.h"
104#include "utils/varlena.h"
105
106#ifdef WAL_DEBUG
107#include "utils/memutils.h"
108#endif
109
110/* timeline ID to be used when bootstrapping */
111#define BootstrapTimeLineID 1
112
113/* User-settable parameters */
114int max_wal_size_mb = 1024; /* 1 GB */
115int min_wal_size_mb = 80; /* 80 MB */
117int XLOGbuffers = -1;
121bool EnableHotStandby = false;
122bool fullPageWrites = true;
123bool wal_log_hints = false;
127bool wal_init_zero = true;
128bool wal_recycle = true;
129bool log_checkpoints = true;
132int CommitDelay = 0; /* precommit delay in microseconds */
133int CommitSiblings = 5; /* # concurrent xacts needed to sleep */
136int wal_decode_buffer_size = 512 * 1024;
138
139#ifdef WAL_DEBUG
140bool XLOG_DEBUG = false;
141#endif
142
144
145/*
146 * Number of WAL insertion locks to use. A higher value allows more insertions
147 * to happen concurrently, but adds some CPU overhead to flushing the WAL,
148 * which needs to iterate all the locks.
149 */
150#define NUM_XLOGINSERT_LOCKS 8
151
152/*
153 * Max distance from last checkpoint, before triggering a new xlog-based
154 * checkpoint.
155 */
157
158/* Estimated distance between checkpoints, in bytes */
160static double PrevCheckPointDistance = 0;
161
162/*
163 * Track whether there were any deferred checks for custom resource managers
164 * specified in wal_consistency_checking.
165 */
167
168/*
169 * GUC support
170 */
172 {"fsync", WAL_SYNC_METHOD_FSYNC, false},
173#ifdef HAVE_FSYNC_WRITETHROUGH
174 {"fsync_writethrough", WAL_SYNC_METHOD_FSYNC_WRITETHROUGH, false},
175#endif
176 {"fdatasync", WAL_SYNC_METHOD_FDATASYNC, false},
177#ifdef O_SYNC
178 {"open_sync", WAL_SYNC_METHOD_OPEN, false},
179#endif
180#ifdef O_DSYNC
181 {"open_datasync", WAL_SYNC_METHOD_OPEN_DSYNC, false},
182#endif
183 {NULL, 0, false}
184};
185
186
187/*
188 * Although only "on", "off", and "always" are documented,
189 * we accept all the likely variants of "on" and "off".
190 */
192 {"always", ARCHIVE_MODE_ALWAYS, false},
193 {"on", ARCHIVE_MODE_ON, false},
194 {"off", ARCHIVE_MODE_OFF, false},
195 {"true", ARCHIVE_MODE_ON, true},
196 {"false", ARCHIVE_MODE_OFF, true},
197 {"yes", ARCHIVE_MODE_ON, true},
198 {"no", ARCHIVE_MODE_OFF, true},
199 {"1", ARCHIVE_MODE_ON, true},
200 {"0", ARCHIVE_MODE_OFF, true},
201 {NULL, 0, false}
202};
203
204/*
205 * Statistics for current checkpoint are collected in this global struct.
206 * Because only the checkpointer or a stand-alone backend can perform
207 * checkpoints, this will be unused in normal backends.
208 */
210
211/*
212 * During recovery, lastFullPageWrites keeps track of full_page_writes that
213 * the replayed WAL records indicate. It's initialized with full_page_writes
214 * that the recovery starting checkpoint record indicates, and then updated
215 * each time XLOG_FPW_CHANGE record is replayed.
216 */
218
219/*
220 * Local copy of the state tracked by SharedRecoveryState in shared memory,
221 * It is false if SharedRecoveryState is RECOVERY_STATE_DONE. True actually
222 * means "not known, need to check the shared state".
223 */
224static bool LocalRecoveryInProgress = true;
225
226/*
227 * Local state for XLogInsertAllowed():
228 * 1: unconditionally allowed to insert XLOG
229 * 0: unconditionally not allowed to insert XLOG
230 * -1: must check RecoveryInProgress(); disallow until it is false
231 * Most processes start with -1 and transition to 1 after seeing that recovery
232 * is not in progress. But we can also force the value for special cases.
233 * The coding in XLogInsertAllowed() depends on the first two of these states
234 * being numerically the same as bool true and false.
235 */
237
238/*
239 * ProcLastRecPtr points to the start of the last XLOG record inserted by the
240 * current backend. It is updated for all inserts. XactLastRecEnd points to
241 * end+1 of the last record, and is reset when we end a top-level transaction,
242 * or start a new one; so it can be used to tell if the current transaction has
243 * created any XLOG records.
244 *
245 * While in parallel mode, this may not be fully up to date. When committing,
246 * a transaction can assume this covers all xlog records written either by the
247 * user backend or by any parallel worker which was present at any point during
248 * the transaction. But when aborting, or when still in parallel mode, other
249 * parallel backends may have written WAL records at later LSNs than the value
250 * stored here. The parallel leader advances its own copy, when necessary,
251 * in WaitForParallelWorkersToFinish.
252 */
256
257/*
258 * RedoRecPtr is this backend's local copy of the REDO record pointer
259 * (which is almost but not quite the same as a pointer to the most recent
260 * CHECKPOINT record). We update this from the shared-memory copy,
261 * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
262 * hold an insertion lock). See XLogInsertRecord for details. We are also
263 * allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck;
264 * see GetRedoRecPtr.
265 *
266 * NB: Code that uses this variable must be prepared not only for the
267 * possibility that it may be arbitrarily out of date, but also for the
268 * possibility that it might be set to InvalidXLogRecPtr. We used to
269 * initialize it as a side effect of the first call to RecoveryInProgress(),
270 * which meant that most code that might use it could assume that it had a
271 * real if perhaps stale value. That's no longer the case.
272 */
274
275/*
276 * doPageWrites is this backend's local copy of (fullPageWrites ||
277 * runningBackups > 0). It is used together with RedoRecPtr to decide whether
278 * a full-page image of a page need to be taken.
279 *
280 * NB: Initially this is false, and there's no guarantee that it will be
281 * initialized to any other value before it is first used. Any code that
282 * makes use of it must recheck the value after obtaining a WALInsertLock,
283 * and respond appropriately if it turns out that the previous value wasn't
284 * accurate.
285 */
286static bool doPageWrites;
287
288/*----------
289 * Shared-memory data structures for XLOG control
290 *
291 * LogwrtRqst indicates a byte position that we need to write and/or fsync
292 * the log up to (all records before that point must be written or fsynced).
293 * The positions already written/fsynced are maintained in logWriteResult
294 * and logFlushResult using atomic access.
295 * In addition to the shared variable, each backend has a private copy of
296 * both in LogwrtResult, which is updated when convenient.
297 *
298 * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
299 * (protected by info_lck), but we don't need to cache any copies of it.
300 *
301 * info_lck is only held long enough to read/update the protected variables,
302 * so it's a plain spinlock. The other locks are held longer (potentially
303 * over I/O operations), so we use LWLocks for them. These locks are:
304 *
305 * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
306 * XLogFlush).
307 *
308 * ControlFileLock: must be held to read/update control file or create
309 * new log file.
310 *
311 *----------
312 */
313
314typedef struct XLogwrtRqst
315{
316 XLogRecPtr Write; /* last byte + 1 to write out */
317 XLogRecPtr Flush; /* last byte + 1 to flush */
319
320typedef struct XLogwrtResult
321{
322 XLogRecPtr Write; /* last byte + 1 written out */
323 XLogRecPtr Flush; /* last byte + 1 flushed */
325
326/*
327 * Inserting to WAL is protected by a small fixed number of WAL insertion
328 * locks. To insert to the WAL, you must hold one of the locks - it doesn't
329 * matter which one. To lock out other concurrent insertions, you must hold
330 * of them. Each WAL insertion lock consists of a lightweight lock, plus an
331 * indicator of how far the insertion has progressed (insertingAt).
332 *
333 * The insertingAt values are read when a process wants to flush WAL from
334 * the in-memory buffers to disk, to check that all the insertions to the
335 * region the process is about to write out have finished. You could simply
336 * wait for all currently in-progress insertions to finish, but the
337 * insertingAt indicator allows you to ignore insertions to later in the WAL,
338 * so that you only wait for the insertions that are modifying the buffers
339 * you're about to write out.
340 *
341 * This isn't just an optimization. If all the WAL buffers are dirty, an
342 * inserter that's holding a WAL insert lock might need to evict an old WAL
343 * buffer, which requires flushing the WAL. If it's possible for an inserter
344 * to block on another inserter unnecessarily, deadlock can arise when two
345 * inserters holding a WAL insert lock wait for each other to finish their
346 * insertion.
347 *
348 * Small WAL records that don't cross a page boundary never update the value,
349 * the WAL record is just copied to the page and the lock is released. But
350 * to avoid the deadlock-scenario explained above, the indicator is always
351 * updated before sleeping while holding an insertion lock.
352 *
353 * lastImportantAt contains the LSN of the last important WAL record inserted
354 * using a given lock. This value is used to detect if there has been
355 * important WAL activity since the last time some action, like a checkpoint,
356 * was performed - allowing to not repeat the action if not. The LSN is
357 * updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was
358 * set. lastImportantAt is never cleared, only overwritten by the LSN of newer
359 * records. Tracking the WAL activity directly in WALInsertLock has the
360 * advantage of not needing any additional locks to update the value.
361 */
362typedef struct
363{
368
369/*
370 * All the WAL insertion locks are allocated as an array in shared memory. We
371 * force the array stride to be a power of 2, which saves a few cycles in
372 * indexing, but more importantly also ensures that individual slots don't
373 * cross cache line boundaries. (Of course, we have to also ensure that the
374 * array start address is suitably aligned.)
375 */
377{
381
382/*
383 * Session status of running backup, used for sanity checks in SQL-callable
384 * functions to start and stop backups.
385 */
387
388/*
389 * Shared state data for WAL insertion.
390 */
391typedef struct XLogCtlInsert
392{
393 slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */
394
395 /*
396 * CurrBytePos is the end of reserved WAL. The next record will be
397 * inserted at that position. PrevBytePos is the start position of the
398 * previously inserted (or rather, reserved) record - it is copied to the
399 * prev-link of the next record. These are stored as "usable byte
400 * positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()).
401 */
404
405 /*
406 * Make sure the above heavily-contended spinlock and byte positions are
407 * on their own cache line. In particular, the RedoRecPtr and full page
408 * write variables below should be on a different cache line. They are
409 * read on every WAL insertion, but updated rarely, and we don't want
410 * those reads to steal the cache line containing Curr/PrevBytePos.
411 */
413
414 /*
415 * fullPageWrites is the authoritative value used by all backends to
416 * determine whether to write full-page image to WAL. This shared value,
417 * instead of the process-local fullPageWrites, is required because, when
418 * full_page_writes is changed by SIGHUP, we must WAL-log it before it
419 * actually affects WAL-logging by backends. Checkpointer sets at startup
420 * or after SIGHUP.
421 *
422 * To read these fields, you must hold an insertion lock. To modify them,
423 * you must hold ALL the locks.
424 */
425 XLogRecPtr RedoRecPtr; /* current redo point for insertions */
427
428 /*
429 * runningBackups is a counter indicating the number of backups currently
430 * in progress. lastBackupStart is the latest checkpoint redo location
431 * used as a starting point for an online backup.
432 */
435
436 /*
437 * WAL insertion locks.
438 */
441
442/*
443 * Total shared-memory state for XLOG.
444 */
445typedef struct XLogCtlData
446{
448
449 /* Protected by info_lck: */
451 XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */
452 FullTransactionId ckptFullXid; /* nextXid of latest checkpoint */
453 XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */
454 XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */
455
456 XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */
457
458 /* Fake LSN counter, for unlogged relations. */
460
461 /* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */
464
465 /* These are accessed using atomics -- info_lck not needed */
466 pg_atomic_uint64 logInsertResult; /* last byte + 1 inserted to buffers */
467 pg_atomic_uint64 logWriteResult; /* last byte + 1 written out */
468 pg_atomic_uint64 logFlushResult; /* last byte + 1 flushed */
469
470 /*
471 * First initialized page in the cache (first byte position).
472 */
474
475 /*
476 * Latest reserved for initialization page in the cache (last byte
477 * position + 1).
478 *
479 * To change the identity of a buffer, you need to advance
480 * InitializeReserved first. To change the identity of a buffer that's
481 * still dirty, the old page needs to be written out first, and for that
482 * you need WALWriteLock, and you need to ensure that there are no
483 * in-progress insertions to the page by calling
484 * WaitXLogInsertionsToFinish().
485 */
487
488 /*
489 * Latest initialized page in the cache (last byte position + 1).
490 *
491 * InitializedUpTo is updated after the buffer initialization. After
492 * update, waiters got notification using InitializedUpToCondVar.
493 */
496
497 /*
498 * These values do not change after startup, although the pointed-to pages
499 * and xlblocks values certainly do. xlblocks values are changed
500 * lock-free according to the check for the xlog write position and are
501 * accompanied by changes of InitializeReserved and InitializedUpTo.
502 */
503 char *pages; /* buffers for unwritten XLOG pages */
504 pg_atomic_uint64 *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
505 int XLogCacheBlck; /* highest allocated xlog buffer index */
506
507 /*
508 * InsertTimeLineID is the timeline into which new WAL is being inserted
509 * and flushed. It is zero during recovery, and does not change once set.
510 *
511 * If we create a new timeline when the system was started up,
512 * PrevTimeLineID is the old timeline's ID that we forked off from.
513 * Otherwise it's equal to InsertTimeLineID.
514 *
515 * We set these fields while holding info_lck. Most that reads these
516 * values knows that recovery is no longer in progress and so can safely
517 * read the value without a lock, but code that could be run either during
518 * or after recovery can take info_lck while reading these values.
519 */
522
523 /*
524 * SharedRecoveryState indicates if we're still in crash or archive
525 * recovery. Protected by info_lck.
526 */
528
529 /*
530 * InstallXLogFileSegmentActive indicates whether the checkpointer should
531 * arrange for future segments by recycling and/or PreallocXlogFiles().
532 * Protected by ControlFileLock. Only the startup process changes it. If
533 * true, anyone can use InstallXLogFileSegment(). If false, the startup
534 * process owns the exclusive right to install segments, by reading from
535 * the archive and possibly replacing existing files.
536 */
538
539 /*
540 * WalWriterSleeping indicates whether the WAL writer is currently in
541 * low-power mode (and hence should be nudged if an async commit occurs).
542 * Protected by info_lck.
543 */
545
546 /*
547 * During recovery, we keep a copy of the latest checkpoint record here.
548 * lastCheckPointRecPtr points to start of checkpoint record and
549 * lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the
550 * checkpointer when it wants to create a restartpoint.
551 *
552 * Protected by info_lck.
553 */
557
558 /*
559 * lastFpwDisableRecPtr points to the start of the last replayed
560 * XLOG_FPW_CHANGE record that instructs full_page_writes is disabled.
561 */
563
564 slock_t info_lck; /* locks shared variables shown above */
566
567/*
568 * Classification of XLogInsertRecord operations.
569 */
570typedef enum
571{
576
577static XLogCtlData *XLogCtl = NULL;
578
579/* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */
581
582/*
583 * We maintain an image of pg_control in shared memory.
584 */
586
587/*
588 * Calculate the amount of space left on the page after 'endptr'. Beware
589 * multiple evaluation!
590 */
591#define INSERT_FREESPACE(endptr) \
592 (((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ))
593
594/* Macro to advance to next buffer index. */
595#define NextBufIdx(idx) \
596 (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
597
598/*
599 * XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or
600 * would hold if it was in cache, the page containing 'recptr'.
601 */
602#define XLogRecPtrToBufIdx(recptr) \
603 (((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1))
604
605/*
606 * These are the number of bytes in a WAL page usable for WAL data.
607 */
608#define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD)
609
610/*
611 * Convert values of GUCs measured in megabytes to equiv. segment count.
612 * Rounds down.
613 */
614#define ConvertToXSegs(x, segsize) XLogMBVarToSegs((x), (segsize))
615
616/* The number of bytes in a WAL segment usable for WAL data. */
618
619/*
620 * Private, possibly out-of-date copy of shared LogwrtResult.
621 * See discussion above.
622 */
624
625/*
626 * Update local copy of shared XLogCtl->log{Write,Flush}Result
627 *
628 * It's critical that Flush always trails Write, so the order of the reads is
629 * important, as is the barrier. See also XLogWrite.
630 */
631#define RefreshXLogWriteResult(_target) \
632 do { \
633 _target.Flush = pg_atomic_read_u64(&XLogCtl->logFlushResult); \
634 pg_read_barrier(); \
635 _target.Write = pg_atomic_read_u64(&XLogCtl->logWriteResult); \
636 } while (0)
637
638/*
639 * openLogFile is -1 or a kernel FD for an open log file segment.
640 * openLogSegNo identifies the segment, and openLogTLI the corresponding TLI.
641 * These variables are only used to write the XLOG, and so will normally refer
642 * to the active segment.
643 *
644 * Note: call Reserve/ReleaseExternalFD to track consumption of this FD.
645 */
646static int openLogFile = -1;
649
650/*
651 * Local copies of equivalent fields in the control file. When running
652 * crash recovery, LocalMinRecoveryPoint is set to InvalidXLogRecPtr as we
653 * expect to replay all the WAL available, and updateMinRecoveryPoint is
654 * switched to false to prevent any updates while replaying records.
655 * Those values are kept consistent as long as crash recovery runs.
656 */
659static bool updateMinRecoveryPoint = true;
660
661/* For WALInsertLockAcquire/Release functions */
662static int MyLockNo = 0;
663static bool holdingAllLocks = false;
664
665#ifdef WAL_DEBUG
666static MemoryContext walDebugCxt = NULL;
667#endif
668
669static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI,
670 XLogRecPtr EndOfLog,
671 TimeLineID newTLI);
672static void CheckRequiredParameterValues(void);
673static void XLogReportParameters(void);
674static int LocalSetXLogInsertAllowed(void);
675static void CreateEndOfRecoveryRecord(void);
677 XLogRecPtr pagePtr,
678 TimeLineID newTLI);
679static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
680static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo);
682
683static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli,
684 bool opportunistic);
685static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible);
686static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
687 bool find_free, XLogSegNo max_segno,
688 TimeLineID tli);
689static void XLogFileClose(void);
690static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli);
691static void RemoveTempXlogFiles(void);
692static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr,
693 XLogRecPtr endptr, TimeLineID insertTLI);
694static void RemoveXlogFile(const struct dirent *segment_de,
695 XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
696 TimeLineID insertTLI);
697static void UpdateLastRemovedPtr(char *filename);
698static void ValidateXLOGDirectoryStructure(void);
699static void CleanupBackupHistory(void);
700static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
701static bool PerformRecoveryXLogAction(void);
702static void InitControlFile(uint64 sysidentifier, uint32 data_checksum_version);
703static void WriteControlFile(void);
704static void ReadControlFile(void);
705static void UpdateControlFile(void);
706static char *str_time(pg_time_t tnow);
707
708static int get_sync_bit(int method);
709
710static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch,
711 XLogRecData *rdata,
712 XLogRecPtr StartPos, XLogRecPtr EndPos,
713 TimeLineID tli);
714static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos,
715 XLogRecPtr *EndPos, XLogRecPtr *PrevPtr);
716static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos,
717 XLogRecPtr *PrevPtr);
719static char *GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli);
723
724static void WALInsertLockAcquire(void);
725static void WALInsertLockAcquireExclusive(void);
726static void WALInsertLockRelease(void);
727static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt);
728
729/*
730 * Insert an XLOG record represented by an already-constructed chain of data
731 * chunks. This is a low-level routine; to construct the WAL record header
732 * and data, use the higher-level routines in xloginsert.c.
733 *
734 * If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this
735 * WAL record applies to, that were not included in the record as full page
736 * images. If fpw_lsn <= RedoRecPtr, the function does not perform the
737 * insertion and returns InvalidXLogRecPtr. The caller can then recalculate
738 * which pages need a full-page image, and retry. If fpw_lsn is invalid, the
739 * record is always inserted.
740 *
741 * 'flags' gives more in-depth control on the record being inserted. See
742 * XLogSetRecordFlags() for details.
743 *
744 * 'topxid_included' tells whether the top-transaction id is logged along with
745 * current subtransaction. See XLogRecordAssemble().
746 *
747 * The first XLogRecData in the chain must be for the record header, and its
748 * data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and
749 * xl_crc fields in the header, the rest of the header must already be filled
750 * by the caller.
751 *
752 * Returns XLOG pointer to end of record (beginning of next record).
753 * This can be used as LSN for data pages affected by the logged action.
754 * (LSN is the XLOG point up to which the XLOG must be flushed to disk
755 * before the data page can be written out. This implements the basic
756 * WAL rule "write the log before the data".)
757 */
760 XLogRecPtr fpw_lsn,
761 uint8 flags,
762 int num_fpi,
763 bool topxid_included)
764{
766 pg_crc32c rdata_crc;
767 bool inserted;
768 XLogRecord *rechdr = (XLogRecord *) rdata->data;
769 uint8 info = rechdr->xl_info & ~XLR_INFO_MASK;
771 XLogRecPtr StartPos;
772 XLogRecPtr EndPos;
773 bool prevDoPageWrites = doPageWrites;
774 TimeLineID insertTLI;
775
776 /* Does this record type require special handling? */
777 if (unlikely(rechdr->xl_rmid == RM_XLOG_ID))
778 {
779 if (info == XLOG_SWITCH)
781 else if (info == XLOG_CHECKPOINT_REDO)
783 }
784
785 /* we assume that all of the record header is in the first chunk */
786 Assert(rdata->len >= SizeOfXLogRecord);
787
788 /* cross-check on whether we should be here or not */
789 if (!XLogInsertAllowed())
790 elog(ERROR, "cannot make new WAL entries during recovery");
791
792 /*
793 * Given that we're not in recovery, InsertTimeLineID is set and can't
794 * change, so we can read it without a lock.
795 */
796 insertTLI = XLogCtl->InsertTimeLineID;
797
798 /*----------
799 *
800 * We have now done all the preparatory work we can without holding a
801 * lock or modifying shared state. From here on, inserting the new WAL
802 * record to the shared WAL buffer cache is a two-step process:
803 *
804 * 1. Reserve the right amount of space from the WAL. The current head of
805 * reserved space is kept in Insert->CurrBytePos, and is protected by
806 * insertpos_lck.
807 *
808 * 2. Copy the record to the reserved WAL space. This involves finding the
809 * correct WAL buffer containing the reserved space, and copying the
810 * record in place. This can be done concurrently in multiple processes.
811 *
812 * To keep track of which insertions are still in-progress, each concurrent
813 * inserter acquires an insertion lock. In addition to just indicating that
814 * an insertion is in progress, the lock tells others how far the inserter
815 * has progressed. There is a small fixed number of insertion locks,
816 * determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page
817 * boundary, it updates the value stored in the lock to the how far it has
818 * inserted, to allow the previous buffer to be flushed.
819 *
820 * Holding onto an insertion lock also protects RedoRecPtr and
821 * fullPageWrites from changing until the insertion is finished.
822 *
823 * Step 2 can usually be done completely in parallel. If the required WAL
824 * page is not initialized yet, you have to go through AdvanceXLInsertBuffer,
825 * which will ensure it is initialized. But the WAL writer tries to do that
826 * ahead of insertions to avoid that from happening in the critical path.
827 *
828 *----------
829 */
831
832 if (likely(class == WALINSERT_NORMAL))
833 {
835
836 /*
837 * Check to see if my copy of RedoRecPtr is out of date. If so, may
838 * have to go back and have the caller recompute everything. This can
839 * only happen just after a checkpoint, so it's better to be slow in
840 * this case and fast otherwise.
841 *
842 * Also check to see if fullPageWrites was just turned on or there's a
843 * running backup (which forces full-page writes); if we weren't
844 * already doing full-page writes then go back and recompute.
845 *
846 * If we aren't doing full-page writes then RedoRecPtr doesn't
847 * actually affect the contents of the XLOG record, so we'll update
848 * our local copy but not force a recomputation. (If doPageWrites was
849 * just turned off, we could recompute the record without full pages,
850 * but we choose not to bother.)
851 */
852 if (RedoRecPtr != Insert->RedoRecPtr)
853 {
854 Assert(RedoRecPtr < Insert->RedoRecPtr);
855 RedoRecPtr = Insert->RedoRecPtr;
856 }
857 doPageWrites = (Insert->fullPageWrites || Insert->runningBackups > 0);
858
859 if (doPageWrites &&
860 (!prevDoPageWrites ||
861 (fpw_lsn != InvalidXLogRecPtr && fpw_lsn <= RedoRecPtr)))
862 {
863 /*
864 * Oops, some buffer now needs to be backed up that the caller
865 * didn't back up. Start over.
866 */
869 return InvalidXLogRecPtr;
870 }
871
872 /*
873 * Reserve space for the record in the WAL. This also sets the xl_prev
874 * pointer.
875 */
876 ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
877 &rechdr->xl_prev);
878
879 /* Normal records are always inserted. */
880 inserted = true;
881 }
882 else if (class == WALINSERT_SPECIAL_SWITCH)
883 {
884 /*
885 * In order to insert an XLOG_SWITCH record, we need to hold all of
886 * the WAL insertion locks, not just one, so that no one else can
887 * begin inserting a record until we've figured out how much space
888 * remains in the current WAL segment and claimed all of it.
889 *
890 * Nonetheless, this case is simpler than the normal cases handled
891 * below, which must check for changes in doPageWrites and RedoRecPtr.
892 * Those checks are only needed for records that can contain buffer
893 * references, and an XLOG_SWITCH record never does.
894 */
895 Assert(fpw_lsn == InvalidXLogRecPtr);
897 inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev);
898 }
899 else
900 {
902
903 /*
904 * We need to update both the local and shared copies of RedoRecPtr,
905 * which means that we need to hold all the WAL insertion locks.
906 * However, there can't be any buffer references, so as above, we need
907 * not check RedoRecPtr before inserting the record; we just need to
908 * update it afterwards.
909 */
910 Assert(fpw_lsn == InvalidXLogRecPtr);
912 ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
913 &rechdr->xl_prev);
914 RedoRecPtr = Insert->RedoRecPtr = StartPos;
915 inserted = true;
916 }
917
918 if (inserted)
919 {
920 /*
921 * Now that xl_prev has been filled in, calculate CRC of the record
922 * header.
923 */
924 rdata_crc = rechdr->xl_crc;
925 COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc));
926 FIN_CRC32C(rdata_crc);
927 rechdr->xl_crc = rdata_crc;
928
929 /*
930 * All the record data, including the header, is now ready to be
931 * inserted. Copy the record in the space reserved.
932 */
934 class == WALINSERT_SPECIAL_SWITCH, rdata,
935 StartPos, EndPos, insertTLI);
936
937 /*
938 * Unless record is flagged as not important, update LSN of last
939 * important record in the current slot. When holding all locks, just
940 * update the first one.
941 */
942 if ((flags & XLOG_MARK_UNIMPORTANT) == 0)
943 {
944 int lockno = holdingAllLocks ? 0 : MyLockNo;
945
946 WALInsertLocks[lockno].l.lastImportantAt = StartPos;
947 }
948 }
949 else
950 {
951 /*
952 * This was an xlog-switch record, but the current insert location was
953 * already exactly at the beginning of a segment, so there was no need
954 * to do anything.
955 */
956 }
957
958 /*
959 * Done! Let others know that we're finished.
960 */
962
964
966
967 /*
968 * Mark top transaction id is logged (if needed) so that we should not try
969 * to log it again with the next WAL record in the current subtransaction.
970 */
971 if (topxid_included)
973
974 /*
975 * Update shared LogwrtRqst.Write, if we crossed page boundary.
976 */
977 if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
978 {
980 /* advance global request to include new block(s) */
981 if (XLogCtl->LogwrtRqst.Write < EndPos)
982 XLogCtl->LogwrtRqst.Write = EndPos;
985 }
986
987 /*
988 * If this was an XLOG_SWITCH record, flush the record and the empty
989 * padding space that fills the rest of the segment, and perform
990 * end-of-segment actions (eg, notifying archiver).
991 */
992 if (class == WALINSERT_SPECIAL_SWITCH)
993 {
994 TRACE_POSTGRESQL_WAL_SWITCH();
995 XLogFlush(EndPos);
996
997 /*
998 * Even though we reserved the rest of the segment for us, which is
999 * reflected in EndPos, we return a pointer to just the end of the
1000 * xlog-switch record.
1001 */
1002 if (inserted)
1003 {
1004 EndPos = StartPos + SizeOfXLogRecord;
1005 if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
1006 {
1007 uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size);
1008
1009 if (offset == EndPos % XLOG_BLCKSZ)
1010 EndPos += SizeOfXLogLongPHD;
1011 else
1012 EndPos += SizeOfXLogShortPHD;
1013 }
1014 }
1015 }
1016
1017#ifdef WAL_DEBUG
1018 if (XLOG_DEBUG)
1019 {
1020 static XLogReaderState *debug_reader = NULL;
1021 XLogRecord *record;
1022 DecodedXLogRecord *decoded;
1024 StringInfoData recordBuf;
1025 char *errormsg = NULL;
1026 MemoryContext oldCxt;
1027
1028 oldCxt = MemoryContextSwitchTo(walDebugCxt);
1029
1031 appendStringInfo(&buf, "INSERT @ %X/%X: ", LSN_FORMAT_ARGS(EndPos));
1032
1033 /*
1034 * We have to piece together the WAL record data from the XLogRecData
1035 * entries, so that we can pass it to the rm_desc function as one
1036 * contiguous chunk.
1037 */
1038 initStringInfo(&recordBuf);
1039 for (; rdata != NULL; rdata = rdata->next)
1040 appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len);
1041
1042 /* We also need temporary space to decode the record. */
1043 record = (XLogRecord *) recordBuf.data;
1044 decoded = (DecodedXLogRecord *)
1046
1047 if (!debug_reader)
1048 debug_reader = XLogReaderAllocate(wal_segment_size, NULL,
1049 XL_ROUTINE(.page_read = NULL,
1050 .segment_open = NULL,
1051 .segment_close = NULL),
1052 NULL);
1053 if (!debug_reader)
1054 {
1055 appendStringInfoString(&buf, "error decoding record: out of memory while allocating a WAL reading processor");
1056 }
1057 else if (!DecodeXLogRecord(debug_reader,
1058 decoded,
1059 record,
1060 EndPos,
1061 &errormsg))
1062 {
1063 appendStringInfo(&buf, "error decoding record: %s",
1064 errormsg ? errormsg : "no error message");
1065 }
1066 else
1067 {
1068 appendStringInfoString(&buf, " - ");
1069
1070 debug_reader->record = decoded;
1071 xlog_outdesc(&buf, debug_reader);
1072 debug_reader->record = NULL;
1073 }
1074 elog(LOG, "%s", buf.data);
1075
1076 pfree(decoded);
1077 pfree(buf.data);
1078 pfree(recordBuf.data);
1079 MemoryContextSwitchTo(oldCxt);
1080 }
1081#endif
1082
1083 /*
1084 * Update our global variables
1085 */
1086 ProcLastRecPtr = StartPos;
1087 XactLastRecEnd = EndPos;
1088
1089 /* Report WAL traffic to the instrumentation. */
1090 if (inserted)
1091 {
1092 pgWalUsage.wal_bytes += rechdr->xl_tot_len;
1094 pgWalUsage.wal_fpi += num_fpi;
1095 }
1096
1097 return EndPos;
1098}
1099
1100/*
1101 * Reserves the right amount of space for a record of given size from the WAL.
1102 * *StartPos is set to the beginning of the reserved section, *EndPos to
1103 * its end+1. *PrevPtr is set to the beginning of the previous record; it is
1104 * used to set the xl_prev of this record.
1105 *
1106 * This is the performance critical part of XLogInsert that must be serialized
1107 * across backends. The rest can happen mostly in parallel. Try to keep this
1108 * section as short as possible, insertpos_lck can be heavily contended on a
1109 * busy system.
1110 *
1111 * NB: The space calculation here must match the code in CopyXLogRecordToWAL,
1112 * where we actually copy the record to the reserved space.
1113 *
1114 * NB: Testing shows that XLogInsertRecord runs faster if this code is inlined;
1115 * however, because there are two call sites, the compiler is reluctant to
1116 * inline. We use pg_attribute_always_inline here to try to convince it.
1117 */
1120 XLogRecPtr *PrevPtr)
1121{
1123 uint64 startbytepos;
1124 uint64 endbytepos;
1125 uint64 prevbytepos;
1126
1127 size = MAXALIGN(size);
1128
1129 /* All (non xlog-switch) records should contain data. */
1130 Assert(size > SizeOfXLogRecord);
1131
1132 /*
1133 * The duration the spinlock needs to be held is minimized by minimizing
1134 * the calculations that have to be done while holding the lock. The
1135 * current tip of reserved WAL is kept in CurrBytePos, as a byte position
1136 * that only counts "usable" bytes in WAL, that is, it excludes all WAL
1137 * page headers. The mapping between "usable" byte positions and physical
1138 * positions (XLogRecPtrs) can be done outside the locked region, and
1139 * because the usable byte position doesn't include any headers, reserving
1140 * X bytes from WAL is almost as simple as "CurrBytePos += X".
1141 */
1142 SpinLockAcquire(&Insert->insertpos_lck);
1143
1144 startbytepos = Insert->CurrBytePos;
1145 endbytepos = startbytepos + size;
1146 prevbytepos = Insert->PrevBytePos;
1147 Insert->CurrBytePos = endbytepos;
1148 Insert->PrevBytePos = startbytepos;
1149
1150 SpinLockRelease(&Insert->insertpos_lck);
1151
1152 *StartPos = XLogBytePosToRecPtr(startbytepos);
1153 *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1154 *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1155
1156 /*
1157 * Check that the conversions between "usable byte positions" and
1158 * XLogRecPtrs work consistently in both directions.
1159 */
1160 Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1161 Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1162 Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1163}
1164
1165/*
1166 * Like ReserveXLogInsertLocation(), but for an xlog-switch record.
1167 *
1168 * A log-switch record is handled slightly differently. The rest of the
1169 * segment will be reserved for this insertion, as indicated by the returned
1170 * *EndPos value. However, if we are already at the beginning of the current
1171 * segment, *StartPos and *EndPos are set to the current location without
1172 * reserving any space, and the function returns false.
1173*/
1174static bool
1176{
1178 uint64 startbytepos;
1179 uint64 endbytepos;
1180 uint64 prevbytepos;
1182 XLogRecPtr ptr;
1183 uint32 segleft;
1184
1185 /*
1186 * These calculations are a bit heavy-weight to be done while holding a
1187 * spinlock, but since we're holding all the WAL insertion locks, there
1188 * are no other inserters competing for it. GetXLogInsertRecPtr() does
1189 * compete for it, but that's not called very frequently.
1190 */
1191 SpinLockAcquire(&Insert->insertpos_lck);
1192
1193 startbytepos = Insert->CurrBytePos;
1194
1195 ptr = XLogBytePosToEndRecPtr(startbytepos);
1196 if (XLogSegmentOffset(ptr, wal_segment_size) == 0)
1197 {
1198 SpinLockRelease(&Insert->insertpos_lck);
1199 *EndPos = *StartPos = ptr;
1200 return false;
1201 }
1202
1203 endbytepos = startbytepos + size;
1204 prevbytepos = Insert->PrevBytePos;
1205
1206 *StartPos = XLogBytePosToRecPtr(startbytepos);
1207 *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1208
1210 if (segleft != wal_segment_size)
1211 {
1212 /* consume the rest of the segment */
1213 *EndPos += segleft;
1214 endbytepos = XLogRecPtrToBytePos(*EndPos);
1215 }
1216 Insert->CurrBytePos = endbytepos;
1217 Insert->PrevBytePos = startbytepos;
1218
1219 SpinLockRelease(&Insert->insertpos_lck);
1220
1221 *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1222
1224 Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1225 Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1226 Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1227
1228 return true;
1229}
1230
1231/*
1232 * Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved
1233 * area in the WAL.
1234 */
1235static void
1236CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata,
1237 XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
1238{
1239 char *currpos;
1240 int freespace;
1241 int written;
1242 XLogRecPtr CurrPos;
1243 XLogPageHeader pagehdr;
1244
1245 /*
1246 * Get a pointer to the right place in the right WAL buffer to start
1247 * inserting to.
1248 */
1249 CurrPos = StartPos;
1250 currpos = GetXLogBuffer(CurrPos, tli);
1251 freespace = INSERT_FREESPACE(CurrPos);
1252
1253 /*
1254 * there should be enough space for at least the first field (xl_tot_len)
1255 * on this page.
1256 */
1257 Assert(freespace >= sizeof(uint32));
1258
1259 /* Copy record data */
1260 written = 0;
1261 while (rdata != NULL)
1262 {
1263 const char *rdata_data = rdata->data;
1264 int rdata_len = rdata->len;
1265
1266 while (rdata_len > freespace)
1267 {
1268 /*
1269 * Write what fits on this page, and continue on the next page.
1270 */
1271 Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0);
1272 memcpy(currpos, rdata_data, freespace);
1273 rdata_data += freespace;
1274 rdata_len -= freespace;
1275 written += freespace;
1276 CurrPos += freespace;
1277
1278 /*
1279 * Get pointer to beginning of next page, and set the xlp_rem_len
1280 * in the page header. Set XLP_FIRST_IS_CONTRECORD.
1281 *
1282 * It's safe to set the contrecord flag and xlp_rem_len without a
1283 * lock on the page. All the other flags were already set when the
1284 * page was initialized, in AdvanceXLInsertBuffer, and we're the
1285 * only backend that needs to set the contrecord flag.
1286 */
1287 currpos = GetXLogBuffer(CurrPos, tli);
1288 pagehdr = (XLogPageHeader) currpos;
1289 pagehdr->xlp_rem_len = write_len - written;
1291
1292 /* skip over the page header */
1293 if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0)
1294 {
1295 CurrPos += SizeOfXLogLongPHD;
1296 currpos += SizeOfXLogLongPHD;
1297 }
1298 else
1299 {
1300 CurrPos += SizeOfXLogShortPHD;
1301 currpos += SizeOfXLogShortPHD;
1302 }
1303 freespace = INSERT_FREESPACE(CurrPos);
1304 }
1305
1306 Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0);
1307 memcpy(currpos, rdata_data, rdata_len);
1308 currpos += rdata_len;
1309 CurrPos += rdata_len;
1310 freespace -= rdata_len;
1311 written += rdata_len;
1312
1313 rdata = rdata->next;
1314 }
1315 Assert(written == write_len);
1316
1317 /*
1318 * If this was an xlog-switch, it's not enough to write the switch record,
1319 * we also have to consume all the remaining space in the WAL segment. We
1320 * have already reserved that space, but we need to actually fill it.
1321 */
1322 if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0)
1323 {
1324 /* An xlog-switch record doesn't contain any data besides the header */
1325 Assert(write_len == SizeOfXLogRecord);
1326
1327 /* Assert that we did reserve the right amount of space */
1329
1330 /* Use up all the remaining space on the current page */
1331 CurrPos += freespace;
1332
1333 /*
1334 * Cause all remaining pages in the segment to be flushed, leaving the
1335 * XLog position where it should be, at the start of the next segment.
1336 * We do this one page at a time, to make sure we don't deadlock
1337 * against ourselves if wal_buffers < wal_segment_size.
1338 */
1339 while (CurrPos < EndPos)
1340 {
1341 /*
1342 * The minimal action to flush the page would be to call
1343 * WALInsertLockUpdateInsertingAt(CurrPos) followed by
1344 * AdvanceXLInsertBuffer(...). The page would be left initialized
1345 * mostly to zeros, except for the page header (always the short
1346 * variant, as this is never a segment's first page).
1347 *
1348 * The large vistas of zeros are good for compressibility, but the
1349 * headers interrupting them every XLOG_BLCKSZ (with values that
1350 * differ from page to page) are not. The effect varies with
1351 * compression tool, but bzip2 for instance compresses about an
1352 * order of magnitude worse if those headers are left in place.
1353 *
1354 * Rather than complicating AdvanceXLInsertBuffer itself (which is
1355 * called in heavily-loaded circumstances as well as this lightly-
1356 * loaded one) with variant behavior, we just use GetXLogBuffer
1357 * (which itself calls the two methods we need) to get the pointer
1358 * and zero most of the page. Then we just zero the page header.
1359 */
1360 currpos = GetXLogBuffer(CurrPos, tli);
1361 MemSet(currpos, 0, SizeOfXLogShortPHD);
1362
1363 CurrPos += XLOG_BLCKSZ;
1364 }
1365 }
1366 else
1367 {
1368 /* Align the end position, so that the next record starts aligned */
1369 CurrPos = MAXALIGN64(CurrPos);
1370 }
1371
1372 if (CurrPos != EndPos)
1373 ereport(PANIC,
1375 errmsg_internal("space reserved for WAL record does not match what was written"));
1376}
1377
1378/*
1379 * Acquire a WAL insertion lock, for inserting to WAL.
1380 */
1381static void
1383{
1384 bool immed;
1385
1386 /*
1387 * It doesn't matter which of the WAL insertion locks we acquire, so try
1388 * the one we used last time. If the system isn't particularly busy, it's
1389 * a good bet that it's still available, and it's good to have some
1390 * affinity to a particular lock so that you don't unnecessarily bounce
1391 * cache lines between processes when there's no contention.
1392 *
1393 * If this is the first time through in this backend, pick a lock
1394 * (semi-)randomly. This allows the locks to be used evenly if you have a
1395 * lot of very short connections.
1396 */
1397 static int lockToTry = -1;
1398
1399 if (lockToTry == -1)
1400 lockToTry = MyProcNumber % NUM_XLOGINSERT_LOCKS;
1401 MyLockNo = lockToTry;
1402
1403 /*
1404 * The insertingAt value is initially set to 0, as we don't know our
1405 * insert location yet.
1406 */
1408 if (!immed)
1409 {
1410 /*
1411 * If we couldn't get the lock immediately, try another lock next
1412 * time. On a system with more insertion locks than concurrent
1413 * inserters, this causes all the inserters to eventually migrate to a
1414 * lock that no-one else is using. On a system with more inserters
1415 * than locks, it still helps to distribute the inserters evenly
1416 * across the locks.
1417 */
1418 lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS;
1419 }
1420}
1421
1422/*
1423 * Acquire all WAL insertion locks, to prevent other backends from inserting
1424 * to WAL.
1425 */
1426static void
1428{
1429 int i;
1430
1431 /*
1432 * When holding all the locks, all but the last lock's insertingAt
1433 * indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real
1434 * XLogRecPtr value, to make sure that no-one blocks waiting on those.
1435 */
1436 for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++)
1437 {
1442 }
1443 /* Variable value reset to 0 at release */
1445
1446 holdingAllLocks = true;
1447}
1448
1449/*
1450 * Release our insertion lock (or locks, if we're holding them all).
1451 *
1452 * NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the
1453 * next time the lock is acquired.
1454 */
1455static void
1457{
1458 if (holdingAllLocks)
1459 {
1460 int i;
1461
1462 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1465 0);
1466
1467 holdingAllLocks = false;
1468 }
1469 else
1470 {
1473 0);
1474 }
1475}
1476
1477/*
1478 * Update our insertingAt value, to let others know that we've finished
1479 * inserting up to that point.
1480 */
1481static void
1483{
1484 if (holdingAllLocks)
1485 {
1486 /*
1487 * We use the last lock to mark our actual position, see comments in
1488 * WALInsertLockAcquireExclusive.
1489 */
1492 insertingAt);
1493 }
1494 else
1497 insertingAt);
1498}
1499
1500/*
1501 * Wait for any WAL insertions < upto to finish.
1502 *
1503 * Returns the location of the oldest insertion that is still in-progress.
1504 * Any WAL prior to that point has been fully copied into WAL buffers, and
1505 * can be flushed out to disk. Because this waits for any insertions older
1506 * than 'upto' to finish, the return value is always >= 'upto'.
1507 *
1508 * Note: When you are about to write out WAL, you must call this function
1509 * *before* acquiring WALWriteLock, to avoid deadlocks. This function might
1510 * need to wait for an insertion to finish (or at least advance to next
1511 * uninitialized page), and the inserter might need to evict an old WAL buffer
1512 * to make room for a new one, which in turn requires WALWriteLock.
1513 */
1514static XLogRecPtr
1516{
1517 uint64 bytepos;
1518 XLogRecPtr inserted;
1519 XLogRecPtr reservedUpto;
1520 XLogRecPtr finishedUpto;
1522 int i;
1523
1524 if (MyProc == NULL)
1525 elog(PANIC, "cannot wait without a PGPROC structure");
1526
1527 /*
1528 * Check if there's any work to do. Use a barrier to ensure we get the
1529 * freshest value.
1530 */
1532 if (upto <= inserted)
1533 return inserted;
1534
1535 /* Read the current insert position */
1536 SpinLockAcquire(&Insert->insertpos_lck);
1537 bytepos = Insert->CurrBytePos;
1538 SpinLockRelease(&Insert->insertpos_lck);
1539 reservedUpto = XLogBytePosToEndRecPtr(bytepos);
1540
1541 /*
1542 * No-one should request to flush a piece of WAL that hasn't even been
1543 * reserved yet. However, it can happen if there is a block with a bogus
1544 * LSN on disk, for example. XLogFlush checks for that situation and
1545 * complains, but only after the flush. Here we just assume that to mean
1546 * that all WAL that has been reserved needs to be finished. In this
1547 * corner-case, the return value can be smaller than 'upto' argument.
1548 */
1549 if (upto > reservedUpto)
1550 {
1551 ereport(LOG,
1552 (errmsg("request to flush past end of generated WAL; request %X/%X, current position %X/%X",
1553 LSN_FORMAT_ARGS(upto), LSN_FORMAT_ARGS(reservedUpto))));
1554 upto = reservedUpto;
1555 }
1556
1557 /*
1558 * Loop through all the locks, sleeping on any in-progress insert older
1559 * than 'upto'.
1560 *
1561 * finishedUpto is our return value, indicating the point upto which all
1562 * the WAL insertions have been finished. Initialize it to the head of
1563 * reserved WAL, and as we iterate through the insertion locks, back it
1564 * out for any insertion that's still in progress.
1565 */
1566 finishedUpto = reservedUpto;
1567 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1568 {
1569 XLogRecPtr insertingat = InvalidXLogRecPtr;
1570
1571 do
1572 {
1573 /*
1574 * See if this insertion is in progress. LWLockWaitForVar will
1575 * wait for the lock to be released, or for the 'value' to be set
1576 * by a LWLockUpdateVar call. When a lock is initially acquired,
1577 * its value is 0 (InvalidXLogRecPtr), which means that we don't
1578 * know where it's inserting yet. We will have to wait for it. If
1579 * it's a small insertion, the record will most likely fit on the
1580 * same page and the inserter will release the lock without ever
1581 * calling LWLockUpdateVar. But if it has to sleep, it will
1582 * advertise the insertion point with LWLockUpdateVar before
1583 * sleeping.
1584 *
1585 * In this loop we are only waiting for insertions that started
1586 * before WaitXLogInsertionsToFinish was called. The lack of
1587 * memory barriers in the loop means that we might see locks as
1588 * "unused" that have since become used. This is fine because
1589 * they only can be used for later insertions that we would not
1590 * want to wait on anyway. Not taking a lock to acquire the
1591 * current insertingAt value means that we might see older
1592 * insertingAt values. This is also fine, because if we read a
1593 * value too old, we will add ourselves to the wait queue, which
1594 * contains atomic operations.
1595 */
1596 if (LWLockWaitForVar(&WALInsertLocks[i].l.lock,
1598 insertingat, &insertingat))
1599 {
1600 /* the lock was free, so no insertion in progress */
1601 insertingat = InvalidXLogRecPtr;
1602 break;
1603 }
1604
1605 /*
1606 * This insertion is still in progress. Have to wait, unless the
1607 * inserter has proceeded past 'upto'.
1608 */
1609 } while (insertingat < upto);
1610
1611 if (insertingat != InvalidXLogRecPtr && insertingat < finishedUpto)
1612 finishedUpto = insertingat;
1613 }
1614
1615 /*
1616 * Advance the limit we know to have been inserted and return the freshest
1617 * value we know of, which might be beyond what we requested if somebody
1618 * is concurrently doing this with an 'upto' pointer ahead of us.
1619 */
1621 finishedUpto);
1622
1623 return finishedUpto;
1624}
1625
1626/*
1627 * Get a pointer to the right location in the WAL buffer containing the
1628 * given XLogRecPtr.
1629 *
1630 * If the page is not initialized yet, it is initialized. That might require
1631 * evicting an old dirty buffer from the buffer cache, which means I/O.
1632 *
1633 * The caller must ensure that the page containing the requested location
1634 * isn't evicted yet, and won't be evicted. The way to ensure that is to
1635 * hold onto a WAL insertion lock with the insertingAt position set to
1636 * something <= ptr. GetXLogBuffer() will update insertingAt if it needs
1637 * to evict an old page from the buffer. (This means that once you call
1638 * GetXLogBuffer() with a given 'ptr', you must not access anything before
1639 * that point anymore, and must not call GetXLogBuffer() with an older 'ptr'
1640 * later, because older buffers might be recycled already)
1641 */
1642static char *
1644{
1645 int idx;
1646 XLogRecPtr endptr;
1647 static uint64 cachedPage = 0;
1648 static char *cachedPos = NULL;
1649 XLogRecPtr expectedEndPtr;
1650
1651 /*
1652 * Fast path for the common case that we need to access again the same
1653 * page as last time.
1654 */
1655 if (ptr / XLOG_BLCKSZ == cachedPage)
1656 {
1657 Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1658 Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1659 return cachedPos + ptr % XLOG_BLCKSZ;
1660 }
1661
1662 /*
1663 * The XLog buffer cache is organized so that a page is always loaded to a
1664 * particular buffer. That way we can easily calculate the buffer a given
1665 * page must be loaded into, from the XLogRecPtr alone.
1666 */
1667 idx = XLogRecPtrToBufIdx(ptr);
1668
1669 /*
1670 * See what page is loaded in the buffer at the moment. It could be the
1671 * page we're looking for, or something older. It can't be anything newer
1672 * - that would imply the page we're looking for has already been written
1673 * out to disk and evicted, and the caller is responsible for making sure
1674 * that doesn't happen.
1675 *
1676 * We don't hold a lock while we read the value. If someone is just about
1677 * to initialize or has just initialized the page, it's possible that we
1678 * get InvalidXLogRecPtr. That's ok, we'll grab the mapping lock (in
1679 * AdvanceXLInsertBuffer) and retry if we see anything other than the page
1680 * we're looking for.
1681 */
1682 expectedEndPtr = ptr;
1683 expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ;
1684
1686 if (expectedEndPtr != endptr)
1687 {
1688 XLogRecPtr initializedUpto;
1689
1690 /*
1691 * Before calling AdvanceXLInsertBuffer(), which can block, let others
1692 * know how far we're finished with inserting the record.
1693 *
1694 * NB: If 'ptr' points to just after the page header, advertise a
1695 * position at the beginning of the page rather than 'ptr' itself. If
1696 * there are no other insertions running, someone might try to flush
1697 * up to our advertised location. If we advertised a position after
1698 * the page header, someone might try to flush the page header, even
1699 * though page might actually not be initialized yet. As the first
1700 * inserter on the page, we are effectively responsible for making
1701 * sure that it's initialized, before we let insertingAt to move past
1702 * the page header.
1703 */
1704 if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD &&
1705 XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ)
1706 initializedUpto = ptr - SizeOfXLogShortPHD;
1707 else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD &&
1708 XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ)
1709 initializedUpto = ptr - SizeOfXLogLongPHD;
1710 else
1711 initializedUpto = ptr;
1712
1713 WALInsertLockUpdateInsertingAt(initializedUpto);
1714
1715 AdvanceXLInsertBuffer(ptr, tli, false);
1717
1718 if (expectedEndPtr != endptr)
1719 elog(PANIC, "could not find WAL buffer for %X/%X",
1720 LSN_FORMAT_ARGS(ptr));
1721 }
1722 else
1723 {
1724 /*
1725 * Make sure the initialization of the page is visible to us, and
1726 * won't arrive later to overwrite the WAL data we write on the page.
1727 */
1729 }
1730
1731 /*
1732 * Found the buffer holding this page. Return a pointer to the right
1733 * offset within the page.
1734 */
1735 cachedPage = ptr / XLOG_BLCKSZ;
1736 cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1737
1738 Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1739 Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1740
1741 return cachedPos + ptr % XLOG_BLCKSZ;
1742}
1743
1744/*
1745 * Read WAL data directly from WAL buffers, if available. Returns the number
1746 * of bytes read successfully.
1747 *
1748 * Fewer than 'count' bytes may be read if some of the requested WAL data has
1749 * already been evicted.
1750 *
1751 * No locks are taken.
1752 *
1753 * Caller should ensure that it reads no further than LogwrtResult.Write
1754 * (which should have been updated by the caller when determining how far to
1755 * read). The 'tli' argument is only used as a convenient safety check so that
1756 * callers do not read from WAL buffers on a historical timeline.
1757 */
1758Size
1759WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count,
1760 TimeLineID tli)
1761{
1762 char *pdst = dstbuf;
1763 XLogRecPtr recptr = startptr;
1764 XLogRecPtr inserted;
1765 Size nbytes = count;
1766
1768 return 0;
1769
1770 Assert(!XLogRecPtrIsInvalid(startptr));
1771
1772 /*
1773 * Caller should ensure that the requested data has been inserted into WAL
1774 * buffers before we try to read it.
1775 */
1777 if (startptr + count > inserted)
1778 ereport(ERROR,
1779 errmsg("cannot read past end of generated WAL: requested %X/%X, current position %X/%X",
1780 LSN_FORMAT_ARGS(startptr + count),
1781 LSN_FORMAT_ARGS(inserted)));
1782
1783 /*
1784 * Loop through the buffers without a lock. For each buffer, atomically
1785 * read and verify the end pointer, then copy the data out, and finally
1786 * re-read and re-verify the end pointer.
1787 *
1788 * Once a page is evicted, it never returns to the WAL buffers, so if the
1789 * end pointer matches the expected end pointer before and after we copy
1790 * the data, then the right page must have been present during the data
1791 * copy. Read barriers are necessary to ensure that the data copy actually
1792 * happens between the two verification steps.
1793 *
1794 * If either verification fails, we simply terminate the loop and return
1795 * with the data that had been already copied out successfully.
1796 */
1797 while (nbytes > 0)
1798 {
1799 uint32 offset = recptr % XLOG_BLCKSZ;
1800 int idx = XLogRecPtrToBufIdx(recptr);
1801 XLogRecPtr expectedEndPtr;
1802 XLogRecPtr endptr;
1803 const char *page;
1804 const char *psrc;
1805 Size npagebytes;
1806
1807 /*
1808 * Calculate the end pointer we expect in the xlblocks array if the
1809 * correct page is present.
1810 */
1811 expectedEndPtr = recptr + (XLOG_BLCKSZ - offset);
1812
1813 /*
1814 * First verification step: check that the correct page is present in
1815 * the WAL buffers.
1816 */
1818 if (expectedEndPtr != endptr)
1819 break;
1820
1821 /*
1822 * The correct page is present (or was at the time the endptr was
1823 * read; must re-verify later). Calculate pointer to source data and
1824 * determine how much data to read from this page.
1825 */
1826 page = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1827 psrc = page + offset;
1828 npagebytes = Min(nbytes, XLOG_BLCKSZ - offset);
1829
1830 /*
1831 * Ensure that the data copy and the first verification step are not
1832 * reordered.
1833 */
1835
1836 /* data copy */
1837 memcpy(pdst, psrc, npagebytes);
1838
1839 /*
1840 * Ensure that the data copy and the second verification step are not
1841 * reordered.
1842 */
1844
1845 /*
1846 * Second verification step: check that the page we read from wasn't
1847 * evicted while we were copying the data.
1848 */
1850 if (expectedEndPtr != endptr)
1851 break;
1852
1853 pdst += npagebytes;
1854 recptr += npagebytes;
1855 nbytes -= npagebytes;
1856 }
1857
1858 Assert(pdst - dstbuf <= count);
1859
1860 return pdst - dstbuf;
1861}
1862
1863/*
1864 * Converts a "usable byte position" to XLogRecPtr. A usable byte position
1865 * is the position starting from the beginning of WAL, excluding all WAL
1866 * page headers.
1867 */
1868static XLogRecPtr
1870{
1871 uint64 fullsegs;
1872 uint64 fullpages;
1873 uint64 bytesleft;
1874 uint32 seg_offset;
1875 XLogRecPtr result;
1876
1877 fullsegs = bytepos / UsableBytesInSegment;
1878 bytesleft = bytepos % UsableBytesInSegment;
1879
1880 if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1881 {
1882 /* fits on first page of segment */
1883 seg_offset = bytesleft + SizeOfXLogLongPHD;
1884 }
1885 else
1886 {
1887 /* account for the first page on segment with long header */
1888 seg_offset = XLOG_BLCKSZ;
1889 bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1890
1891 fullpages = bytesleft / UsableBytesInPage;
1892 bytesleft = bytesleft % UsableBytesInPage;
1893
1894 seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1895 }
1896
1897 XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1898
1899 return result;
1900}
1901
1902/*
1903 * Like XLogBytePosToRecPtr, but if the position is at a page boundary,
1904 * returns a pointer to the beginning of the page (ie. before page header),
1905 * not to where the first xlog record on that page would go to. This is used
1906 * when converting a pointer to the end of a record.
1907 */
1908static XLogRecPtr
1910{
1911 uint64 fullsegs;
1912 uint64 fullpages;
1913 uint64 bytesleft;
1914 uint32 seg_offset;
1915 XLogRecPtr result;
1916
1917 fullsegs = bytepos / UsableBytesInSegment;
1918 bytesleft = bytepos % UsableBytesInSegment;
1919
1920 if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1921 {
1922 /* fits on first page of segment */
1923 if (bytesleft == 0)
1924 seg_offset = 0;
1925 else
1926 seg_offset = bytesleft + SizeOfXLogLongPHD;
1927 }
1928 else
1929 {
1930 /* account for the first page on segment with long header */
1931 seg_offset = XLOG_BLCKSZ;
1932 bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1933
1934 fullpages = bytesleft / UsableBytesInPage;
1935 bytesleft = bytesleft % UsableBytesInPage;
1936
1937 if (bytesleft == 0)
1938 seg_offset += fullpages * XLOG_BLCKSZ + bytesleft;
1939 else
1940 seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1941 }
1942
1943 XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1944
1945 return result;
1946}
1947
1948/*
1949 * Convert an XLogRecPtr to a "usable byte position".
1950 */
1951static uint64
1953{
1954 uint64 fullsegs;
1955 uint32 fullpages;
1956 uint32 offset;
1957 uint64 result;
1958
1959 XLByteToSeg(ptr, fullsegs, wal_segment_size);
1960
1961 fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ;
1962 offset = ptr % XLOG_BLCKSZ;
1963
1964 if (fullpages == 0)
1965 {
1966 result = fullsegs * UsableBytesInSegment;
1967 if (offset > 0)
1968 {
1969 Assert(offset >= SizeOfXLogLongPHD);
1970 result += offset - SizeOfXLogLongPHD;
1971 }
1972 }
1973 else
1974 {
1975 result = fullsegs * UsableBytesInSegment +
1976 (XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */
1977 (fullpages - 1) * UsableBytesInPage; /* full pages */
1978 if (offset > 0)
1979 {
1980 Assert(offset >= SizeOfXLogShortPHD);
1981 result += offset - SizeOfXLogShortPHD;
1982 }
1983 }
1984
1985 return result;
1986}
1987
1988/*
1989 * Initialize XLOG buffers, writing out old buffers if they still contain
1990 * unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is
1991 * true, initialize as many pages as we can without having to write out
1992 * unwritten data. Any new pages are initialized to zeros, with pages headers
1993 * initialized properly.
1994 */
1995static void
1996AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
1997{
1999 int nextidx;
2000 XLogRecPtr OldPageRqstPtr;
2001 XLogwrtRqst WriteRqst;
2002 XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr;
2003 XLogRecPtr NewPageBeginPtr;
2004 XLogPageHeader NewPage;
2005 XLogRecPtr ReservedPtr;
2006 int npages pg_attribute_unused() = 0;
2007
2008 /*
2009 * We must run the loop below inside the critical section as we expect
2010 * XLogCtl->InitializedUpTo to eventually keep up. The most of callers
2011 * already run inside the critical section. Except for WAL writer, which
2012 * passed 'opportunistic == true', and therefore we don't perform
2013 * operations that could error out.
2014 *
2015 * Start an explicit critical section anyway though.
2016 */
2017 Assert(CritSectionCount > 0 || opportunistic);
2019
2020 /*--
2021 * Loop till we get all the pages in WAL buffer before 'upto' reserved for
2022 * initialization. Multiple process can initialize different buffers with
2023 * this loop in parallel as following.
2024 *
2025 * 1. Reserve page for initialization using XLogCtl->InitializeReserved.
2026 * 2. Initialize the reserved page.
2027 * 3. Attempt to advance XLogCtl->InitializedUpTo,
2028 */
2030 while (upto >= ReservedPtr || opportunistic)
2031 {
2032 Assert(ReservedPtr % XLOG_BLCKSZ == 0);
2033
2034 /*
2035 * Get ending-offset of the buffer page we need to replace.
2036 *
2037 * We don't lookup into xlblocks, but rather calculate position we
2038 * must wait to be written. If it was written, xlblocks will have this
2039 * position (or uninitialized)
2040 */
2041 if (ReservedPtr + XLOG_BLCKSZ > XLogCtl->InitializedFrom + XLOG_BLCKSZ * XLOGbuffers)
2042 OldPageRqstPtr = ReservedPtr + XLOG_BLCKSZ - (XLogRecPtr) XLOG_BLCKSZ * XLOGbuffers;
2043 else
2044 OldPageRqstPtr = InvalidXLogRecPtr;
2045
2046 if (LogwrtResult.Write < OldPageRqstPtr && opportunistic)
2047 {
2048 /*
2049 * If we just want to pre-initialize as much as we can without
2050 * flushing, give up now.
2051 */
2052 upto = ReservedPtr - 1;
2053 break;
2054 }
2055
2056 /*
2057 * Attempt to reserve the page for initialization. Failure means that
2058 * this page got reserved by another process.
2059 */
2061 &ReservedPtr,
2062 ReservedPtr + XLOG_BLCKSZ))
2063 continue;
2064
2065 /*
2066 * Wait till page gets correctly initialized up to OldPageRqstPtr.
2067 */
2068 nextidx = XLogRecPtrToBufIdx(ReservedPtr);
2069 while (pg_atomic_read_u64(&XLogCtl->InitializedUpTo) < OldPageRqstPtr)
2070 ConditionVariableSleep(&XLogCtl->InitializedUpToCondVar, WAIT_EVENT_WAL_BUFFER_INIT);
2072 Assert(pg_atomic_read_u64(&XLogCtl->xlblocks[nextidx]) == OldPageRqstPtr);
2073
2074 /* Fall through if it's already written out. */
2075 if (LogwrtResult.Write < OldPageRqstPtr)
2076 {
2077 /* Nope, got work to do. */
2078
2079 /* Advance shared memory write request position */
2081 if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr)
2082 XLogCtl->LogwrtRqst.Write = OldPageRqstPtr;
2084
2085 /*
2086 * Acquire an up-to-date LogwrtResult value and see if we still
2087 * need to write it or if someone else already did.
2088 */
2090 if (LogwrtResult.Write < OldPageRqstPtr)
2091 {
2092 WaitXLogInsertionsToFinish(OldPageRqstPtr);
2093
2094 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
2095
2097 if (LogwrtResult.Write >= OldPageRqstPtr)
2098 {
2099 /* OK, someone wrote it already */
2100 LWLockRelease(WALWriteLock);
2101 }
2102 else
2103 {
2104 /* Have to write it ourselves */
2105 TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
2106 WriteRqst.Write = OldPageRqstPtr;
2107 WriteRqst.Flush = 0;
2108 XLogWrite(WriteRqst, tli, false);
2109 LWLockRelease(WALWriteLock);
2111 TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
2112 }
2113 }
2114 }
2115
2116 /*
2117 * Now the next buffer slot is free and we can set it up to be the
2118 * next output page.
2119 */
2120 NewPageBeginPtr = ReservedPtr;
2121 NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ;
2122
2123 NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
2124
2125 /*
2126 * Mark the xlblock with InvalidXLogRecPtr and issue a write barrier
2127 * before initializing. Otherwise, the old page may be partially
2128 * zeroed but look valid.
2129 */
2132
2133 /*
2134 * Be sure to re-zero the buffer so that bytes beyond what we've
2135 * written will look like zeroes and not valid XLOG records...
2136 */
2137 MemSet(NewPage, 0, XLOG_BLCKSZ);
2138
2139 /*
2140 * Fill the new page's header
2141 */
2142 NewPage->xlp_magic = XLOG_PAGE_MAGIC;
2143
2144 /* NewPage->xlp_info = 0; */ /* done by memset */
2145 NewPage->xlp_tli = tli;
2146 NewPage->xlp_pageaddr = NewPageBeginPtr;
2147
2148 /* NewPage->xlp_rem_len = 0; */ /* done by memset */
2149
2150 /*
2151 * If online backup is not in progress, mark the header to indicate
2152 * that WAL records beginning in this page have removable backup
2153 * blocks. This allows the WAL archiver to know whether it is safe to
2154 * compress archived WAL data by transforming full-block records into
2155 * the non-full-block format. It is sufficient to record this at the
2156 * page level because we force a page switch (in fact a segment
2157 * switch) when starting a backup, so the flag will be off before any
2158 * records can be written during the backup. At the end of a backup,
2159 * the last page will be marked as all unsafe when perhaps only part
2160 * is unsafe, but at worst the archiver would miss the opportunity to
2161 * compress a few records.
2162 */
2163 if (Insert->runningBackups == 0)
2164 NewPage->xlp_info |= XLP_BKP_REMOVABLE;
2165
2166 /*
2167 * If first page of an XLOG segment file, make it a long header.
2168 */
2169 if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0)
2170 {
2171 XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
2172
2173 NewLongPage->xlp_sysid = ControlFile->system_identifier;
2174 NewLongPage->xlp_seg_size = wal_segment_size;
2175 NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
2176 NewPage->xlp_info |= XLP_LONG_HEADER;
2177 }
2178
2179 /*
2180 * Make sure the initialization of the page becomes visible to others
2181 * before the xlblocks update. GetXLogBuffer() reads xlblocks without
2182 * holding a lock.
2183 */
2185
2186 /*-----
2187 * Update the value of XLogCtl->xlblocks[nextidx] and try to advance
2188 * XLogCtl->InitializedUpTo in a lock-less manner.
2189 *
2190 * First, let's provide a formal proof of the algorithm. Let it be 'n'
2191 * process with the following variables in shared memory:
2192 * f - an array of 'n' boolean flags,
2193 * v - atomic integer variable.
2194 *
2195 * Also, let
2196 * i - a number of a process,
2197 * j - local integer variable,
2198 * CAS(var, oldval, newval) - compare-and-swap atomic operation
2199 * returning true on success,
2200 * write_barrier()/read_barrier() - memory barriers.
2201 *
2202 * The pseudocode for each process is the following.
2203 *
2204 * j := i
2205 * f[i] := true
2206 * write_barrier()
2207 * while CAS(v, j, j + 1):
2208 * j := j + 1
2209 * read_barrier()
2210 * if not f[j]:
2211 * break
2212 *
2213 * Let's prove that v eventually reaches the value of n.
2214 * 1. Prove by contradiction. Assume v doesn't reach n and stucks
2215 * on k, where k < n.
2216 * 2. Process k attempts CAS(v, k, k + 1). 1). If, as we assumed, v
2217 * gets stuck at k, then this CAS operation must fail. Therefore,
2218 * v < k when process k attempts CAS(v, k, k + 1).
2219 * 3. If, as we assumed, v gets stuck at k, then the value k of v
2220 * must be achieved by some process m, where m < k. The process
2221 * m must observe f[k] == false. Otherwise, it will later attempt
2222 * CAS(v, k, k + 1) with success.
2223 * 4. Therefore, corresponding read_barrier() (while j == k) on
2224 * process m reached before write_barrier() of process k. But then
2225 * process k attempts CAS(v, k, k + 1) after process m successfully
2226 * incremented v to k, and that CAS operation must succeed.
2227 * That leads to a contradiction. So, there is no such k (k < n)
2228 * where v gets stuck. Q.E.D.
2229 *
2230 * To apply this proof to the code below, we assume
2231 * XLogCtl->InitializedUpTo will play the role of v with XLOG_BLCKSZ
2232 * granularity. We also assume setting XLogCtl->xlblocks[nextidx] to
2233 * NewPageEndPtr to play the role of setting f[i] to true. Also, note
2234 * that processes can't concurrently map different xlog locations to
2235 * the same nextidx because we previously requested that
2236 * XLogCtl->InitializedUpTo >= OldPageRqstPtr. So, a xlog buffer can
2237 * be taken for initialization only once the previous initialization
2238 * takes effect on XLogCtl->InitializedUpTo.
2239 */
2240
2241 pg_atomic_write_u64(&XLogCtl->xlblocks[nextidx], NewPageEndPtr);
2242
2244
2245 while (pg_atomic_compare_exchange_u64(&XLogCtl->InitializedUpTo, &NewPageBeginPtr, NewPageEndPtr))
2246 {
2247 NewPageBeginPtr = NewPageEndPtr;
2248 NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ;
2249 nextidx = XLogRecPtrToBufIdx(NewPageBeginPtr);
2250
2252
2253 if (pg_atomic_read_u64(&XLogCtl->xlblocks[nextidx]) != NewPageEndPtr)
2254 {
2255 /*
2256 * Page at nextidx wasn't initialized yet, so we can't move
2257 * InitializedUpto further. It will be moved by backend which
2258 * will initialize nextidx.
2259 */
2261 break;
2262 }
2263 }
2264
2265 npages++;
2266 }
2267
2269
2270 /*
2271 * All the pages in WAL buffer before 'upto' were reserved for
2272 * initialization. However, some pages might be reserved by concurrent
2273 * processes. Wait till they finish initialization.
2274 */
2275 while (upto >= pg_atomic_read_u64(&XLogCtl->InitializedUpTo))
2276 ConditionVariableSleep(&XLogCtl->InitializedUpToCondVar, WAIT_EVENT_WAL_BUFFER_INIT);
2278
2280
2281#ifdef WAL_DEBUG
2282 if (XLOG_DEBUG && npages > 0)
2283 {
2284 elog(DEBUG1, "initialized %d pages, up to %X/%X",
2285 npages, LSN_FORMAT_ARGS(NewPageEndPtr));
2286 }
2287#endif
2288}
2289
2290/*
2291 * Calculate CheckPointSegments based on max_wal_size_mb and
2292 * checkpoint_completion_target.
2293 */
2294static void
2296{
2297 double target;
2298
2299 /*-------
2300 * Calculate the distance at which to trigger a checkpoint, to avoid
2301 * exceeding max_wal_size_mb. This is based on two assumptions:
2302 *
2303 * a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept
2304 * WAL for two checkpoint cycles to allow us to recover from the
2305 * secondary checkpoint if the first checkpoint failed, though we
2306 * only did this on the primary anyway, not on standby. Keeping just
2307 * one checkpoint simplifies processing and reduces disk space in
2308 * many smaller databases.)
2309 * b) during checkpoint, we consume checkpoint_completion_target *
2310 * number of segments consumed between checkpoints.
2311 *-------
2312 */
2313 target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) /
2315
2316 /* round down */
2317 CheckPointSegments = (int) target;
2318
2319 if (CheckPointSegments < 1)
2321}
2322
2323void
2325{
2328}
2329
2330void
2332{
2335}
2336
2337bool
2339{
2341 {
2342 GUC_check_errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.");
2343 return false;
2344 }
2345
2346 return true;
2347}
2348
2349/*
2350 * GUC check_hook for max_slot_wal_keep_size
2351 *
2352 * We don't allow the value of max_slot_wal_keep_size other than -1 during the
2353 * binary upgrade. See start_postmaster() in pg_upgrade for more details.
2354 */
2355bool
2357{
2358 if (IsBinaryUpgrade && *newval != -1)
2359 {
2360 GUC_check_errdetail("\"%s\" must be set to -1 during binary upgrade mode.",
2361 "max_slot_wal_keep_size");
2362 return false;
2363 }
2364
2365 return true;
2366}
2367
2368/*
2369 * At a checkpoint, how many WAL segments to recycle as preallocated future
2370 * XLOG segments? Returns the highest segment that should be preallocated.
2371 */
2372static XLogSegNo
2374{
2375 XLogSegNo minSegNo;
2376 XLogSegNo maxSegNo;
2377 double distance;
2378 XLogSegNo recycleSegNo;
2379
2380 /*
2381 * Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb
2382 * correspond to. Always recycle enough segments to meet the minimum, and
2383 * remove enough segments to stay below the maximum.
2384 */
2385 minSegNo = lastredoptr / wal_segment_size +
2387 maxSegNo = lastredoptr / wal_segment_size +
2389
2390 /*
2391 * Between those limits, recycle enough segments to get us through to the
2392 * estimated end of next checkpoint.
2393 *
2394 * To estimate where the next checkpoint will finish, assume that the
2395 * system runs steadily consuming CheckPointDistanceEstimate bytes between
2396 * every checkpoint.
2397 */
2399 /* add 10% for good measure. */
2400 distance *= 1.10;
2401
2402 recycleSegNo = (XLogSegNo) ceil(((double) lastredoptr + distance) /
2404
2405 if (recycleSegNo < minSegNo)
2406 recycleSegNo = minSegNo;
2407 if (recycleSegNo > maxSegNo)
2408 recycleSegNo = maxSegNo;
2409
2410 return recycleSegNo;
2411}
2412
2413/*
2414 * Check whether we've consumed enough xlog space that a checkpoint is needed.
2415 *
2416 * new_segno indicates a log file that has just been filled up (or read
2417 * during recovery). We measure the distance from RedoRecPtr to new_segno
2418 * and see if that exceeds CheckPointSegments.
2419 *
2420 * Note: it is caller's responsibility that RedoRecPtr is up-to-date.
2421 */
2422bool
2424{
2425 XLogSegNo old_segno;
2426
2428
2429 if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1))
2430 return true;
2431 return false;
2432}
2433
2434/*
2435 * Write and/or fsync the log at least as far as WriteRqst indicates.
2436 *
2437 * If flexible == true, we don't have to write as far as WriteRqst, but
2438 * may stop at any convenient boundary (such as a cache or logfile boundary).
2439 * This option allows us to avoid uselessly issuing multiple writes when a
2440 * single one would do.
2441 *
2442 * Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst)
2443 * must be called before grabbing the lock, to make sure the data is ready to
2444 * write.
2445 */
2446static void
2447XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
2448{
2449 bool ispartialpage;
2450 bool last_iteration;
2451 bool finishing_seg;
2452 int curridx;
2453 int npages;
2454 int startidx;
2455 uint32 startoffset;
2456
2457 /* We should always be inside a critical section here */
2459
2460 /*
2461 * Update local LogwrtResult (caller probably did this already, but...)
2462 */
2464
2465 /*
2466 * Since successive pages in the xlog cache are consecutively allocated,
2467 * we can usually gather multiple pages together and issue just one
2468 * write() call. npages is the number of pages we have determined can be
2469 * written together; startidx is the cache block index of the first one,
2470 * and startoffset is the file offset at which it should go. The latter
2471 * two variables are only valid when npages > 0, but we must initialize
2472 * all of them to keep the compiler quiet.
2473 */
2474 npages = 0;
2475 startidx = 0;
2476 startoffset = 0;
2477
2478 /*
2479 * Within the loop, curridx is the cache block index of the page to
2480 * consider writing. Begin at the buffer containing the next unwritten
2481 * page, or last partially written page.
2482 */
2484
2485 while (LogwrtResult.Write < WriteRqst.Write)
2486 {
2487 /*
2488 * Make sure we're not ahead of the insert process. This could happen
2489 * if we're passed a bogus WriteRqst.Write that is past the end of the
2490 * last page that's been initialized by AdvanceXLInsertBuffer.
2491 */
2492 XLogRecPtr EndPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[curridx]);
2493
2494 if (LogwrtResult.Write >= EndPtr)
2495 elog(PANIC, "xlog write request %X/%X is past end of log %X/%X",
2497 LSN_FORMAT_ARGS(EndPtr));
2498
2499 /* Advance LogwrtResult.Write to end of current buffer page */
2500 LogwrtResult.Write = EndPtr;
2501 ispartialpage = WriteRqst.Write < LogwrtResult.Write;
2502
2505 {
2506 /*
2507 * Switch to new logfile segment. We cannot have any pending
2508 * pages here (since we dump what we have at segment end).
2509 */
2510 Assert(npages == 0);
2511 if (openLogFile >= 0)
2512 XLogFileClose();
2515 openLogTLI = tli;
2516
2517 /* create/use new log file */
2520 }
2521
2522 /* Make sure we have the current logfile open */
2523 if (openLogFile < 0)
2524 {
2527 openLogTLI = tli;
2530 }
2531
2532 /* Add current page to the set of pending pages-to-dump */
2533 if (npages == 0)
2534 {
2535 /* first of group */
2536 startidx = curridx;
2537 startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ,
2539 }
2540 npages++;
2541
2542 /*
2543 * Dump the set if this will be the last loop iteration, or if we are
2544 * at the last page of the cache area (since the next page won't be
2545 * contiguous in memory), or if we are at the end of the logfile
2546 * segment.
2547 */
2548 last_iteration = WriteRqst.Write <= LogwrtResult.Write;
2549
2550 finishing_seg = !ispartialpage &&
2551 (startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size;
2552
2553 if (last_iteration ||
2554 curridx == XLogCtl->XLogCacheBlck ||
2555 finishing_seg)
2556 {
2557 char *from;
2558 Size nbytes;
2559 Size nleft;
2560 ssize_t written;
2562
2563 /* OK to write the page(s) */
2564 from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
2565 nbytes = npages * (Size) XLOG_BLCKSZ;
2566 nleft = nbytes;
2567 do
2568 {
2569 errno = 0;
2570
2571 /*
2572 * Measure I/O timing to write WAL data, for pg_stat_io.
2573 */
2575
2576 pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE);
2577 written = pg_pwrite(openLogFile, from, nleft, startoffset);
2579
2581 IOOP_WRITE, start, 1, written);
2582
2583 if (written <= 0)
2584 {
2585 char xlogfname[MAXFNAMELEN];
2586 int save_errno;
2587
2588 if (errno == EINTR)
2589 continue;
2590
2591 save_errno = errno;
2592 XLogFileName(xlogfname, tli, openLogSegNo,
2594 errno = save_errno;
2595 ereport(PANIC,
2597 errmsg("could not write to log file \"%s\" at offset %u, length %zu: %m",
2598 xlogfname, startoffset, nleft)));
2599 }
2600 nleft -= written;
2601 from += written;
2602 startoffset += written;
2603 } while (nleft > 0);
2604
2605 npages = 0;
2606
2607 /*
2608 * If we just wrote the whole last page of a logfile segment,
2609 * fsync the segment immediately. This avoids having to go back
2610 * and re-open prior segments when an fsync request comes along
2611 * later. Doing it here ensures that one and only one backend will
2612 * perform this fsync.
2613 *
2614 * This is also the right place to notify the Archiver that the
2615 * segment is ready to copy to archival storage, and to update the
2616 * timer for archive_timeout, and to signal for a checkpoint if
2617 * too many logfile segments have been used since the last
2618 * checkpoint.
2619 */
2620 if (finishing_seg)
2621 {
2623
2624 /* signal that we need to wakeup walsenders later */
2626
2627 LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
2628
2629 if (XLogArchivingActive())
2631
2632 XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
2634
2635 /*
2636 * Request a checkpoint if we've consumed too much xlog since
2637 * the last one. For speed, we first check using the local
2638 * copy of RedoRecPtr, which might be out of date; if it looks
2639 * like a checkpoint is needed, forcibly update RedoRecPtr and
2640 * recheck.
2641 */
2643 {
2644 (void) GetRedoRecPtr();
2647 }
2648 }
2649 }
2650
2651 if (ispartialpage)
2652 {
2653 /* Only asked to write a partial page */
2654 LogwrtResult.Write = WriteRqst.Write;
2655 break;
2656 }
2657 curridx = NextBufIdx(curridx);
2658
2659 /* If flexible, break out of loop as soon as we wrote something */
2660 if (flexible && npages == 0)
2661 break;
2662 }
2663
2664 Assert(npages == 0);
2665
2666 /*
2667 * If asked to flush, do so
2668 */
2669 if (LogwrtResult.Flush < WriteRqst.Flush &&
2671 {
2672 /*
2673 * Could get here without iterating above loop, in which case we might
2674 * have no open file or the wrong one. However, we do not need to
2675 * fsync more than one file.
2676 */
2679 {
2680 if (openLogFile >= 0 &&
2683 XLogFileClose();
2684 if (openLogFile < 0)
2685 {
2688 openLogTLI = tli;
2691 }
2692
2694 }
2695
2696 /* signal that we need to wakeup walsenders later */
2698
2700 }
2701
2702 /*
2703 * Update shared-memory status
2704 *
2705 * We make sure that the shared 'request' values do not fall behind the
2706 * 'result' values. This is not absolutely essential, but it saves some
2707 * code in a couple of places.
2708 */
2715
2716 /*
2717 * We write Write first, bar, then Flush. When reading, the opposite must
2718 * be done (with a matching barrier in between), so that we always see a
2719 * Flush value that trails behind the Write value seen.
2720 */
2724
2725#ifdef USE_ASSERT_CHECKING
2726 {
2730
2736
2737 /* WAL written to disk is always ahead of WAL flushed */
2738 Assert(Write >= Flush);
2739
2740 /* WAL inserted to buffers is always ahead of WAL written */
2741 Assert(Insert >= Write);
2742 }
2743#endif
2744}
2745
2746/*
2747 * Record the LSN for an asynchronous transaction commit/abort
2748 * and nudge the WALWriter if there is work for it to do.
2749 * (This should not be called for synchronous commits.)
2750 */
2751void
2753{
2754 XLogRecPtr WriteRqstPtr = asyncXactLSN;
2755 bool sleeping;
2756 bool wakeup = false;
2757 XLogRecPtr prevAsyncXactLSN;
2758
2760 sleeping = XLogCtl->WalWriterSleeping;
2761 prevAsyncXactLSN = XLogCtl->asyncXactLSN;
2762 if (XLogCtl->asyncXactLSN < asyncXactLSN)
2763 XLogCtl->asyncXactLSN = asyncXactLSN;
2765
2766 /*
2767 * If somebody else already called this function with a more aggressive
2768 * LSN, they will have done what we needed (and perhaps more).
2769 */
2770 if (asyncXactLSN <= prevAsyncXactLSN)
2771 return;
2772
2773 /*
2774 * If the WALWriter is sleeping, kick it to make it come out of low-power
2775 * mode, so that this async commit will reach disk within the expected
2776 * amount of time. Otherwise, determine whether it has enough WAL
2777 * available to flush, the same way that XLogBackgroundFlush() does.
2778 */
2779 if (sleeping)
2780 wakeup = true;
2781 else
2782 {
2783 int flushblocks;
2784
2786
2787 flushblocks =
2788 WriteRqstPtr / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
2789
2790 if (WalWriterFlushAfter == 0 || flushblocks >= WalWriterFlushAfter)
2791 wakeup = true;
2792 }
2793
2794 if (wakeup)
2795 {
2796 volatile PROC_HDR *procglobal = ProcGlobal;
2797 ProcNumber walwriterProc = procglobal->walwriterProc;
2798
2799 if (walwriterProc != INVALID_PROC_NUMBER)
2800 SetLatch(&GetPGProcByNumber(walwriterProc)->procLatch);
2801 }
2802}
2803
2804/*
2805 * Record the LSN up to which we can remove WAL because it's not required by
2806 * any replication slot.
2807 */
2808void
2810{
2814}
2815
2816
2817/*
2818 * Return the oldest LSN we must retain to satisfy the needs of some
2819 * replication slot.
2820 */
2821static XLogRecPtr
2823{
2824 XLogRecPtr retval;
2825
2829
2830 return retval;
2831}
2832
2833/*
2834 * Advance minRecoveryPoint in control file.
2835 *
2836 * If we crash during recovery, we must reach this point again before the
2837 * database is consistent.
2838 *
2839 * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
2840 * is only updated if it's not already greater than or equal to 'lsn'.
2841 */
2842static void
2844{
2845 /* Quick check using our local copy of the variable */
2846 if (!updateMinRecoveryPoint || (!force && lsn <= LocalMinRecoveryPoint))
2847 return;
2848
2849 /*
2850 * An invalid minRecoveryPoint means that we need to recover all the WAL,
2851 * i.e., we're doing crash recovery. We never modify the control file's
2852 * value in that case, so we can short-circuit future checks here too. The
2853 * local values of minRecoveryPoint and minRecoveryPointTLI should not be
2854 * updated until crash recovery finishes. We only do this for the startup
2855 * process as it should not update its own reference of minRecoveryPoint
2856 * until it has finished crash recovery to make sure that all WAL
2857 * available is replayed in this case. This also saves from extra locks
2858 * taken on the control file from the startup process.
2859 */
2861 {
2862 updateMinRecoveryPoint = false;
2863 return;
2864 }
2865
2866 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
2867
2868 /* update local copy */
2871
2873 updateMinRecoveryPoint = false;
2874 else if (force || LocalMinRecoveryPoint < lsn)
2875 {
2876 XLogRecPtr newMinRecoveryPoint;
2877 TimeLineID newMinRecoveryPointTLI;
2878
2879 /*
2880 * To avoid having to update the control file too often, we update it
2881 * all the way to the last record being replayed, even though 'lsn'
2882 * would suffice for correctness. This also allows the 'force' case
2883 * to not need a valid 'lsn' value.
2884 *
2885 * Another important reason for doing it this way is that the passed
2886 * 'lsn' value could be bogus, i.e., past the end of available WAL, if
2887 * the caller got it from a corrupted heap page. Accepting such a
2888 * value as the min recovery point would prevent us from coming up at
2889 * all. Instead, we just log a warning and continue with recovery.
2890 * (See also the comments about corrupt LSNs in XLogFlush.)
2891 */
2892 newMinRecoveryPoint = GetCurrentReplayRecPtr(&newMinRecoveryPointTLI);
2893 if (!force && newMinRecoveryPoint < lsn)
2894 elog(WARNING,
2895 "xlog min recovery request %X/%X is past current point %X/%X",
2896 LSN_FORMAT_ARGS(lsn), LSN_FORMAT_ARGS(newMinRecoveryPoint));
2897
2898 /* update control file */
2899 if (ControlFile->minRecoveryPoint < newMinRecoveryPoint)
2900 {
2901 ControlFile->minRecoveryPoint = newMinRecoveryPoint;
2902 ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI;
2904 LocalMinRecoveryPoint = newMinRecoveryPoint;
2905 LocalMinRecoveryPointTLI = newMinRecoveryPointTLI;
2906
2908 (errmsg_internal("updated min recovery point to %X/%X on timeline %u",
2909 LSN_FORMAT_ARGS(newMinRecoveryPoint),
2910 newMinRecoveryPointTLI)));
2911 }
2912 }
2913 LWLockRelease(ControlFileLock);
2914}
2915
2916/*
2917 * Ensure that all XLOG data through the given position is flushed to disk.
2918 *
2919 * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
2920 * already held, and we try to avoid acquiring it if possible.
2921 */
2922void
2924{
2925 XLogRecPtr WriteRqstPtr;
2926 XLogwrtRqst WriteRqst;
2927 TimeLineID insertTLI = XLogCtl->InsertTimeLineID;
2928
2929 /*
2930 * During REDO, we are reading not writing WAL. Therefore, instead of
2931 * trying to flush the WAL, we should update minRecoveryPoint instead. We
2932 * test XLogInsertAllowed(), not InRecovery, because we need checkpointer
2933 * to act this way too, and because when it tries to write the
2934 * end-of-recovery checkpoint, it should indeed flush.
2935 */
2936 if (!XLogInsertAllowed())
2937 {
2938 UpdateMinRecoveryPoint(record, false);
2939 return;
2940 }
2941
2942 /* Quick exit if already known flushed */
2943 if (record <= LogwrtResult.Flush)
2944 return;
2945
2946#ifdef WAL_DEBUG
2947 if (XLOG_DEBUG)
2948 elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X",
2949 LSN_FORMAT_ARGS(record),
2952#endif
2953
2955
2956 /*
2957 * Since fsync is usually a horribly expensive operation, we try to
2958 * piggyback as much data as we can on each fsync: if we see any more data
2959 * entered into the xlog buffer, we'll write and fsync that too, so that
2960 * the final value of LogwrtResult.Flush is as large as possible. This
2961 * gives us some chance of avoiding another fsync immediately after.
2962 */
2963
2964 /* initialize to given target; may increase below */
2965 WriteRqstPtr = record;
2966
2967 /*
2968 * Now wait until we get the write lock, or someone else does the flush
2969 * for us.
2970 */
2971 for (;;)
2972 {
2973 XLogRecPtr insertpos;
2974
2975 /* done already? */
2977 if (record <= LogwrtResult.Flush)
2978 break;
2979
2980 /*
2981 * Before actually performing the write, wait for all in-flight
2982 * insertions to the pages we're about to write to finish.
2983 */
2985 if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write)
2986 WriteRqstPtr = XLogCtl->LogwrtRqst.Write;
2988 insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr);
2989
2990 /*
2991 * Try to get the write lock. If we can't get it immediately, wait
2992 * until it's released, and recheck if we still need to do the flush
2993 * or if the backend that held the lock did it for us already. This
2994 * helps to maintain a good rate of group committing when the system
2995 * is bottlenecked by the speed of fsyncing.
2996 */
2997 if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE))
2998 {
2999 /*
3000 * The lock is now free, but we didn't acquire it yet. Before we
3001 * do, loop back to check if someone else flushed the record for
3002 * us already.
3003 */
3004 continue;
3005 }
3006
3007 /* Got the lock; recheck whether request is satisfied */
3009 if (record <= LogwrtResult.Flush)
3010 {
3011 LWLockRelease(WALWriteLock);
3012 break;
3013 }
3014
3015 /*
3016 * Sleep before flush! By adding a delay here, we may give further
3017 * backends the opportunity to join the backlog of group commit
3018 * followers; this can significantly improve transaction throughput,
3019 * at the risk of increasing transaction latency.
3020 *
3021 * We do not sleep if enableFsync is not turned on, nor if there are
3022 * fewer than CommitSiblings other backends with active transactions.
3023 */
3024 if (CommitDelay > 0 && enableFsync &&
3026 {
3028
3029 /*
3030 * Re-check how far we can now flush the WAL. It's generally not
3031 * safe to call WaitXLogInsertionsToFinish while holding
3032 * WALWriteLock, because an in-progress insertion might need to
3033 * also grab WALWriteLock to make progress. But we know that all
3034 * the insertions up to insertpos have already finished, because
3035 * that's what the earlier WaitXLogInsertionsToFinish() returned.
3036 * We're only calling it again to allow insertpos to be moved
3037 * further forward, not to actually wait for anyone.
3038 */
3039 insertpos = WaitXLogInsertionsToFinish(insertpos);
3040 }
3041
3042 /* try to write/flush later additions to XLOG as well */
3043 WriteRqst.Write = insertpos;
3044 WriteRqst.Flush = insertpos;
3045
3046 XLogWrite(WriteRqst, insertTLI, false);
3047
3048 LWLockRelease(WALWriteLock);
3049 /* done */
3050 break;
3051 }
3052
3054
3055 /* wake up walsenders now that we've released heavily contended locks */
3057
3058 /*
3059 * If we still haven't flushed to the request point then we have a
3060 * problem; most likely, the requested flush point is past end of XLOG.
3061 * This has been seen to occur when a disk page has a corrupted LSN.
3062 *
3063 * Formerly we treated this as a PANIC condition, but that hurts the
3064 * system's robustness rather than helping it: we do not want to take down
3065 * the whole system due to corruption on one data page. In particular, if
3066 * the bad page is encountered again during recovery then we would be
3067 * unable to restart the database at all! (This scenario actually
3068 * happened in the field several times with 7.1 releases.) As of 8.4, bad
3069 * LSNs encountered during recovery are UpdateMinRecoveryPoint's problem;
3070 * the only time we can reach here during recovery is while flushing the
3071 * end-of-recovery checkpoint record, and we don't expect that to have a
3072 * bad LSN.
3073 *
3074 * Note that for calls from xact.c, the ERROR will be promoted to PANIC
3075 * since xact.c calls this routine inside a critical section. However,
3076 * calls from bufmgr.c are not within critical sections and so we will not
3077 * force a restart for a bad LSN on a data page.
3078 */
3079 if (LogwrtResult.Flush < record)
3080 elog(ERROR,
3081 "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X",
3082 LSN_FORMAT_ARGS(record),
3084}
3085
3086/*
3087 * Write & flush xlog, but without specifying exactly where to.
3088 *
3089 * We normally write only completed blocks; but if there is nothing to do on
3090 * that basis, we check for unwritten async commits in the current incomplete
3091 * block, and write through the latest one of those. Thus, if async commits
3092 * are not being used, we will write complete blocks only.
3093 *
3094 * If, based on the above, there's anything to write we do so immediately. But
3095 * to avoid calling fsync, fdatasync et. al. at a rate that'd impact
3096 * concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's
3097 * more than wal_writer_flush_after unflushed blocks.
3098 *
3099 * We can guarantee that async commits reach disk after at most three
3100 * wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite
3101 * to write "flexibly", meaning it can stop at the end of the buffer ring;
3102 * this makes a difference only with very high load or long wal_writer_delay,
3103 * but imposes one extra cycle for the worst case for async commits.)
3104 *
3105 * This routine is invoked periodically by the background walwriter process.
3106 *
3107 * Returns true if there was any work to do, even if we skipped flushing due
3108 * to wal_writer_delay/wal_writer_flush_after.
3109 */
3110bool
3112{
3113 XLogwrtRqst WriteRqst;
3114 bool flexible = true;
3115 static TimestampTz lastflush;
3117 int flushblocks;
3118 TimeLineID insertTLI;
3119
3120 /* XLOG doesn't need flushing during recovery */
3121 if (RecoveryInProgress())
3122 return false;
3123
3124 /*
3125 * Since we're not in recovery, InsertTimeLineID is set and can't change,
3126 * so we can read it without a lock.
3127 */
3128 insertTLI = XLogCtl->InsertTimeLineID;
3129
3130 /* read updated LogwrtRqst */
3132 WriteRqst = XLogCtl->LogwrtRqst;
3134
3135 /* back off to last completed page boundary */
3136 WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ;
3137
3138 /* if we have already flushed that far, consider async commit records */
3140 if (WriteRqst.Write <= LogwrtResult.Flush)
3141 {
3143 WriteRqst.Write = XLogCtl->asyncXactLSN;
3145 flexible = false; /* ensure it all gets written */
3146 }
3147
3148 /*
3149 * If already known flushed, we're done. Just need to check if we are
3150 * holding an open file handle to a logfile that's no longer in use,
3151 * preventing the file from being deleted.
3152 */
3153 if (WriteRqst.Write <= LogwrtResult.Flush)
3154 {
3155 if (openLogFile >= 0)
3156 {
3159 {
3160 XLogFileClose();
3161 }
3162 }
3163 return false;
3164 }
3165
3166 /*
3167 * Determine how far to flush WAL, based on the wal_writer_delay and
3168 * wal_writer_flush_after GUCs.
3169 *
3170 * Note that XLogSetAsyncXactLSN() performs similar calculation based on
3171 * wal_writer_flush_after, to decide when to wake us up. Make sure the
3172 * logic is the same in both places if you change this.
3173 */
3175 flushblocks =
3176 WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
3177
3178 if (WalWriterFlushAfter == 0 || lastflush == 0)
3179 {
3180 /* first call, or block based limits disabled */
3181 WriteRqst.Flush = WriteRqst.Write;
3182 lastflush = now;
3183 }
3184 else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay))
3185 {
3186 /*
3187 * Flush the writes at least every WalWriterDelay ms. This is
3188 * important to bound the amount of time it takes for an asynchronous
3189 * commit to hit disk.
3190 */
3191 WriteRqst.Flush = WriteRqst.Write;
3192 lastflush = now;
3193 }
3194 else if (flushblocks >= WalWriterFlushAfter)
3195 {
3196 /* exceeded wal_writer_flush_after blocks, flush */
3197 WriteRqst.Flush = WriteRqst.Write;
3198 lastflush = now;
3199 }
3200 else
3201 {
3202 /* no flushing, this time round */
3203 WriteRqst.Flush = 0;
3204 }
3205
3206#ifdef WAL_DEBUG
3207 if (XLOG_DEBUG)
3208 elog(LOG, "xlog bg flush request write %X/%X; flush: %X/%X, current is write %X/%X; flush %X/%X",
3209 LSN_FORMAT_ARGS(WriteRqst.Write),
3210 LSN_FORMAT_ARGS(WriteRqst.Flush),
3213#endif
3214
3216
3217 /* now wait for any in-progress insertions to finish and get write lock */
3219 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
3221 if (WriteRqst.Write > LogwrtResult.Write ||
3222 WriteRqst.Flush > LogwrtResult.Flush)
3223 {
3224 XLogWrite(WriteRqst, insertTLI, flexible);
3225 }
3226 LWLockRelease(WALWriteLock);
3227
3229
3230 /* wake up walsenders now that we've released heavily contended locks */
3232
3233 /*
3234 * Great, done. To take some work off the critical path, try to initialize
3235 * as many of the no-longer-needed WAL buffers for future use as we can.
3236 */
3237 AdvanceXLInsertBuffer(InvalidXLogRecPtr, insertTLI, true);
3238
3239 /*
3240 * If we determined that we need to write data, but somebody else
3241 * wrote/flushed already, it should be considered as being active, to
3242 * avoid hibernating too early.
3243 */
3244 return true;
3245}
3246
3247/*
3248 * Test whether XLOG data has been flushed up to (at least) the given position.
3249 *
3250 * Returns true if a flush is still needed. (It may be that someone else
3251 * is already in process of flushing that far, however.)
3252 */
3253bool
3255{
3256 /*
3257 * During recovery, we don't flush WAL but update minRecoveryPoint
3258 * instead. So "needs flush" is taken to mean whether minRecoveryPoint
3259 * would need to be updated.
3260 */
3261 if (RecoveryInProgress())
3262 {
3263 /*
3264 * An invalid minRecoveryPoint means that we need to recover all the
3265 * WAL, i.e., we're doing crash recovery. We never modify the control
3266 * file's value in that case, so we can short-circuit future checks
3267 * here too. This triggers a quick exit path for the startup process,
3268 * which cannot update its local copy of minRecoveryPoint as long as
3269 * it has not replayed all WAL available when doing crash recovery.
3270 */
3272 updateMinRecoveryPoint = false;
3273
3274 /* Quick exit if already known to be updated or cannot be updated */
3276 return false;
3277
3278 /*
3279 * Update local copy of minRecoveryPoint. But if the lock is busy,
3280 * just return a conservative guess.
3281 */
3282 if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED))
3283 return true;
3286 LWLockRelease(ControlFileLock);
3287
3288 /*
3289 * Check minRecoveryPoint for any other process than the startup
3290 * process doing crash recovery, which should not update the control
3291 * file value if crash recovery is still running.
3292 */
3294 updateMinRecoveryPoint = false;
3295
3296 /* check again */
3298 return false;
3299 else
3300 return true;
3301 }
3302
3303 /* Quick exit if already known flushed */
3304 if (record <= LogwrtResult.Flush)
3305 return false;
3306
3307 /* read LogwrtResult and update local state */
3309
3310 /* check again */
3311 if (record <= LogwrtResult.Flush)
3312 return false;
3313
3314 return true;
3315}
3316
3317/*
3318 * Try to make a given XLOG file segment exist.
3319 *
3320 * logsegno: identify segment.
3321 *
3322 * *added: on return, true if this call raised the number of extant segments.
3323 *
3324 * path: on return, this char[MAXPGPATH] has the path to the logsegno file.
3325 *
3326 * Returns -1 or FD of opened file. A -1 here is not an error; a caller
3327 * wanting an open segment should attempt to open "path", which usually will
3328 * succeed. (This is weird, but it's efficient for the callers.)
3329 */
3330static int
3332 bool *added, char *path)
3333{
3334 char tmppath[MAXPGPATH];
3335 XLogSegNo installed_segno;
3336 XLogSegNo max_segno;
3337 int fd;
3338 int save_errno;
3339 int open_flags = O_RDWR | O_CREAT | O_EXCL | PG_BINARY;
3340 instr_time io_start;
3341
3342 Assert(logtli != 0);
3343
3344 XLogFilePath(path, logtli, logsegno, wal_segment_size);
3345
3346 /*
3347 * Try to use existent file (checkpoint maker may have created it already)
3348 */
3349 *added = false;
3350 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3352 if (fd < 0)
3353 {
3354 if (errno != ENOENT)
3355 ereport(ERROR,
3357 errmsg("could not open file \"%s\": %m", path)));
3358 }
3359 else
3360 return fd;
3361
3362 /*
3363 * Initialize an empty (all zeroes) segment. NOTE: it is possible that
3364 * another process is doing the same thing. If so, we will end up
3365 * pre-creating an extra log segment. That seems OK, and better than
3366 * holding the lock throughout this lengthy process.
3367 */
3368 elog(DEBUG2, "creating and filling new WAL file");
3369
3370 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3371
3372 unlink(tmppath);
3373
3375 open_flags |= PG_O_DIRECT;
3376
3377 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3378 fd = BasicOpenFile(tmppath, open_flags);
3379 if (fd < 0)
3380 ereport(ERROR,
3382 errmsg("could not create file \"%s\": %m", tmppath)));
3383
3384 /* Measure I/O timing when initializing segment */
3386
3387 pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE);
3388 save_errno = 0;
3389 if (wal_init_zero)
3390 {
3391 ssize_t rc;
3392
3393 /*
3394 * Zero-fill the file. With this setting, we do this the hard way to
3395 * ensure that all the file space has really been allocated. On
3396 * platforms that allow "holes" in files, just seeking to the end
3397 * doesn't allocate intermediate space. This way, we know that we
3398 * have all the space and (after the fsync below) that all the
3399 * indirect blocks are down on disk. Therefore, fdatasync(2) or
3400 * O_DSYNC will be sufficient to sync future writes to the log file.
3401 */
3403
3404 if (rc < 0)
3405 save_errno = errno;
3406 }
3407 else
3408 {
3409 /*
3410 * Otherwise, seeking to the end and writing a solitary byte is
3411 * enough.
3412 */
3413 errno = 0;
3414 if (pg_pwrite(fd, "\0", 1, wal_segment_size - 1) != 1)
3415 {
3416 /* if write didn't set errno, assume no disk space */
3417 save_errno = errno ? errno : ENOSPC;
3418 }
3419 }
3421
3422 /*
3423 * A full segment worth of data is written when using wal_init_zero. One
3424 * byte is written when not using it.
3425 */
3427 io_start, 1,
3429
3430 if (save_errno)
3431 {
3432 /*
3433 * If we fail to make the file, delete it to release disk space
3434 */
3435 unlink(tmppath);
3436
3437 close(fd);
3438
3439 errno = save_errno;
3440
3441 ereport(ERROR,
3443 errmsg("could not write to file \"%s\": %m", tmppath)));
3444 }
3445
3446 /* Measure I/O timing when flushing segment */
3448
3449 pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC);
3450 if (pg_fsync(fd) != 0)
3451 {
3452 save_errno = errno;
3453 close(fd);
3454 errno = save_errno;
3455 ereport(ERROR,
3457 errmsg("could not fsync file \"%s\": %m", tmppath)));
3458 }
3460
3462 IOOP_FSYNC, io_start, 1, 0);
3463
3464 if (close(fd) != 0)
3465 ereport(ERROR,
3467 errmsg("could not close file \"%s\": %m", tmppath)));
3468
3469 /*
3470 * Now move the segment into place with its final name. Cope with
3471 * possibility that someone else has created the file while we were
3472 * filling ours: if so, use ours to pre-create a future log segment.
3473 */
3474 installed_segno = logsegno;
3475
3476 /*
3477 * XXX: What should we use as max_segno? We used to use XLOGfileslop when
3478 * that was a constant, but that was always a bit dubious: normally, at a
3479 * checkpoint, XLOGfileslop was the offset from the checkpoint record, but
3480 * here, it was the offset from the insert location. We can't do the
3481 * normal XLOGfileslop calculation here because we don't have access to
3482 * the prior checkpoint's redo location. So somewhat arbitrarily, just use
3483 * CheckPointSegments.
3484 */
3485 max_segno = logsegno + CheckPointSegments;
3486 if (InstallXLogFileSegment(&installed_segno, tmppath, true, max_segno,
3487 logtli))
3488 {
3489 *added = true;
3490 elog(DEBUG2, "done creating and filling new WAL file");
3491 }
3492 else
3493 {
3494 /*
3495 * No need for any more future segments, or InstallXLogFileSegment()
3496 * failed to rename the file into place. If the rename failed, a
3497 * caller opening the file may fail.
3498 */
3499 unlink(tmppath);
3500 elog(DEBUG2, "abandoned new WAL file");
3501 }
3502
3503 return -1;
3504}
3505
3506/*
3507 * Create a new XLOG file segment, or open a pre-existing one.
3508 *
3509 * logsegno: identify segment to be created/opened.
3510 *
3511 * Returns FD of opened file.
3512 *
3513 * Note: errors here are ERROR not PANIC because we might or might not be
3514 * inside a critical section (eg, during checkpoint there is no reason to
3515 * take down the system on failure). They will promote to PANIC if we are
3516 * in a critical section.
3517 */
3518int
3520{
3521 bool ignore_added;
3522 char path[MAXPGPATH];
3523 int fd;
3524
3525 Assert(logtli != 0);
3526
3527 fd = XLogFileInitInternal(logsegno, logtli, &ignore_added, path);
3528 if (fd >= 0)
3529 return fd;
3530
3531 /* Now open original target segment (might not be file I just made) */
3532 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3534 if (fd < 0)
3535 ereport(ERROR,
3537 errmsg("could not open file \"%s\": %m", path)));
3538 return fd;
3539}
3540
3541/*
3542 * Create a new XLOG file segment by copying a pre-existing one.
3543 *
3544 * destsegno: identify segment to be created.
3545 *
3546 * srcTLI, srcsegno: identify segment to be copied (could be from
3547 * a different timeline)
3548 *
3549 * upto: how much of the source file to copy (the rest is filled with
3550 * zeros)
3551 *
3552 * Currently this is only used during recovery, and so there are no locking
3553 * considerations. But we should be just as tense as XLogFileInit to avoid
3554 * emplacing a bogus file.
3555 */
3556static void
3558 TimeLineID srcTLI, XLogSegNo srcsegno,
3559 int upto)
3560{
3561 char path[MAXPGPATH];
3562 char tmppath[MAXPGPATH];
3563 PGAlignedXLogBlock buffer;
3564 int srcfd;
3565 int fd;
3566 int nbytes;
3567
3568 /*
3569 * Open the source file
3570 */
3571 XLogFilePath(path, srcTLI, srcsegno, wal_segment_size);
3572 srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
3573 if (srcfd < 0)
3574 ereport(ERROR,
3576 errmsg("could not open file \"%s\": %m", path)));
3577
3578 /*
3579 * Copy into a temp file name.
3580 */
3581 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3582
3583 unlink(tmppath);
3584
3585 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3586 fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
3587 if (fd < 0)
3588 ereport(ERROR,
3590 errmsg("could not create file \"%s\": %m", tmppath)));
3591
3592 /*
3593 * Do the data copying.
3594 */
3595 for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer))
3596 {
3597 int nread;
3598
3599 nread = upto - nbytes;
3600
3601 /*
3602 * The part that is not read from the source file is filled with
3603 * zeros.
3604 */
3605 if (nread < sizeof(buffer))
3606 memset(buffer.data, 0, sizeof(buffer));
3607
3608 if (nread > 0)
3609 {
3610 int r;
3611
3612 if (nread > sizeof(buffer))
3613 nread = sizeof(buffer);
3614 pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ);
3615 r = read(srcfd, buffer.data, nread);
3616 if (r != nread)
3617 {
3618 if (r < 0)
3619 ereport(ERROR,
3621 errmsg("could not read file \"%s\": %m",
3622 path)));
3623 else
3624 ereport(ERROR,
3626 errmsg("could not read file \"%s\": read %d of %zu",
3627 path, r, (Size) nread)));
3628 }
3630 }
3631 errno = 0;
3632 pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE);
3633 if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer))
3634 {
3635 int save_errno = errno;
3636
3637 /*
3638 * If we fail to make the file, delete it to release disk space
3639 */
3640 unlink(tmppath);
3641 /* if write didn't set errno, assume problem is no disk space */
3642 errno = save_errno ? save_errno : ENOSPC;
3643
3644 ereport(ERROR,
3646 errmsg("could not write to file \"%s\": %m", tmppath)));
3647 }
3649 }
3650
3651 pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC);
3652 if (pg_fsync(fd) != 0)
3655 errmsg("could not fsync file \"%s\": %m", tmppath)));
3657
3658 if (CloseTransientFile(fd) != 0)
3659 ereport(ERROR,
3661 errmsg("could not close file \"%s\": %m", tmppath)));
3662
3663 if (CloseTransientFile(srcfd) != 0)
3664 ereport(ERROR,
3666 errmsg("could not close file \"%s\": %m", path)));
3667
3668 /*
3669 * Now move the segment into place with its final name.
3670 */
3671 if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, destTLI))
3672 elog(ERROR, "InstallXLogFileSegment should not have failed");
3673}
3674
3675/*
3676 * Install a new XLOG segment file as a current or future log segment.
3677 *
3678 * This is used both to install a newly-created segment (which has a temp
3679 * filename while it's being created) and to recycle an old segment.
3680 *
3681 * *segno: identify segment to install as (or first possible target).
3682 * When find_free is true, this is modified on return to indicate the
3683 * actual installation location or last segment searched.
3684 *
3685 * tmppath: initial name of file to install. It will be renamed into place.
3686 *
3687 * find_free: if true, install the new segment at the first empty segno
3688 * number at or after the passed numbers. If false, install the new segment
3689 * exactly where specified, deleting any existing segment file there.
3690 *
3691 * max_segno: maximum segment number to install the new file as. Fail if no
3692 * free slot is found between *segno and max_segno. (Ignored when find_free
3693 * is false.)
3694 *
3695 * tli: The timeline on which the new segment should be installed.
3696 *
3697 * Returns true if the file was installed successfully. false indicates that
3698 * max_segno limit was exceeded, the startup process has disabled this
3699 * function for now, or an error occurred while renaming the file into place.
3700 */
3701static bool
3702InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
3703 bool find_free, XLogSegNo max_segno, TimeLineID tli)
3704{
3705 char path[MAXPGPATH];
3706 struct stat stat_buf;
3707
3708 Assert(tli != 0);
3709
3710 XLogFilePath(path, tli, *segno, wal_segment_size);
3711
3712 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
3714 {
3715 LWLockRelease(ControlFileLock);
3716 return false;
3717 }
3718
3719 if (!find_free)
3720 {
3721 /* Force installation: get rid of any pre-existing segment file */
3722 durable_unlink(path, DEBUG1);
3723 }
3724 else
3725 {
3726 /* Find a free slot to put it in */
3727 while (stat(path, &stat_buf) == 0)
3728 {
3729 if ((*segno) >= max_segno)
3730 {
3731 /* Failed to find a free slot within specified range */
3732 LWLockRelease(ControlFileLock);
3733 return false;
3734 }
3735 (*segno)++;
3736 XLogFilePath(path, tli, *segno, wal_segment_size);
3737 }
3738 }
3739
3740 Assert(access(path, F_OK) != 0 && errno == ENOENT);
3741 if (durable_rename(tmppath, path, LOG) != 0)
3742 {
3743 LWLockRelease(ControlFileLock);
3744 /* durable_rename already emitted log message */
3745 return false;
3746 }
3747
3748 LWLockRelease(ControlFileLock);
3749
3750 return true;
3751}
3752
3753/*
3754 * Open a pre-existing logfile segment for writing.
3755 */
3756int
3758{
3759 char path[MAXPGPATH];
3760 int fd;
3761
3762 XLogFilePath(path, tli, segno, wal_segment_size);
3763
3764 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3766 if (fd < 0)
3767 ereport(PANIC,
3769 errmsg("could not open file \"%s\": %m", path)));
3770
3771 return fd;
3772}
3773
3774/*
3775 * Close the current logfile segment for writing.
3776 */
3777static void
3779{
3780 Assert(openLogFile >= 0);
3781
3782 /*
3783 * WAL segment files will not be re-read in normal operation, so we advise
3784 * the OS to release any cached pages. But do not do so if WAL archiving
3785 * or streaming is active, because archiver and walsender process could
3786 * use the cache to read the WAL segment.
3787 */
3788#if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
3789 if (!XLogIsNeeded() && (io_direct_flags & IO_DIRECT_WAL) == 0)
3790 (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
3791#endif
3792
3793 if (close(openLogFile) != 0)
3794 {
3795 char xlogfname[MAXFNAMELEN];
3796 int save_errno = errno;
3797
3799 errno = save_errno;
3800 ereport(PANIC,
3802 errmsg("could not close file \"%s\": %m", xlogfname)));
3803 }
3804
3805 openLogFile = -1;
3807}
3808
3809/*
3810 * Preallocate log files beyond the specified log endpoint.
3811 *
3812 * XXX this is currently extremely conservative, since it forces only one
3813 * future log segment to exist, and even that only if we are 75% done with
3814 * the current one. This is only appropriate for very low-WAL-volume systems.
3815 * High-volume systems will be OK once they've built up a sufficient set of
3816 * recycled log segments, but the startup transient is likely to include
3817 * a lot of segment creations by foreground processes, which is not so good.
3818 *
3819 * XLogFileInitInternal() can ereport(ERROR). All known causes indicate big
3820 * trouble; for example, a full filesystem is one cause. The checkpoint WAL
3821 * and/or ControlFile updates already completed. If a RequestCheckpoint()
3822 * initiated the present checkpoint and an ERROR ends this function, the
3823 * command that called RequestCheckpoint() fails. That's not ideal, but it's
3824 * not worth contorting more functions to use caller-specified elevel values.
3825 * (With or without RequestCheckpoint(), an ERROR forestalls some inessential
3826 * reporting and resource reclamation.)
3827 */
3828static void
3830{
3831 XLogSegNo _logSegNo;
3832 int lf;
3833 bool added;
3834 char path[MAXPGPATH];
3835 uint64 offset;
3836
3838 return; /* unlocked check says no */
3839
3840 XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size);
3841 offset = XLogSegmentOffset(endptr - 1, wal_segment_size);
3842 if (offset >= (uint32) (0.75 * wal_segment_size))
3843 {
3844 _logSegNo++;
3845 lf = XLogFileInitInternal(_logSegNo, tli, &added, path);
3846 if (lf >= 0)
3847 close(lf);
3848 if (added)
3850 }
3851}
3852
3853/*
3854 * Throws an error if the given log segment has already been removed or
3855 * recycled. The caller should only pass a segment that it knows to have
3856 * existed while the server has been running, as this function always
3857 * succeeds if no WAL segments have been removed since startup.
3858 * 'tli' is only used in the error message.
3859 *
3860 * Note: this function guarantees to keep errno unchanged on return.
3861 * This supports callers that use this to possibly deliver a better
3862 * error message about a missing file, while still being able to throw
3863 * a normal file-access error afterwards, if this does return.
3864 */
3865void
3867{
3868 int save_errno = errno;
3869 XLogSegNo lastRemovedSegNo;
3870
3872 lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3874
3875 if (segno <= lastRemovedSegNo)
3876 {
3877 char filename[MAXFNAMELEN];
3878
3880 errno = save_errno;
3881 ereport(ERROR,
3883 errmsg("requested WAL segment %s has already been removed",
3884 filename)));
3885 }
3886 errno = save_errno;
3887}
3888
3889/*
3890 * Return the last WAL segment removed, or 0 if no segment has been removed
3891 * since startup.
3892 *
3893 * NB: the result can be out of date arbitrarily fast, the caller has to deal
3894 * with that.
3895 */
3898{
3899 XLogSegNo lastRemovedSegNo;
3900
3902 lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3904
3905 return lastRemovedSegNo;
3906}
3907
3908/*
3909 * Return the oldest WAL segment on the given TLI that still exists in
3910 * XLOGDIR, or 0 if none.
3911 */
3914{
3915 DIR *xldir;
3916 struct dirent *xlde;
3917 XLogSegNo oldest_segno = 0;
3918
3919 xldir = AllocateDir(XLOGDIR);
3920 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3921 {
3922 TimeLineID file_tli;
3923 XLogSegNo file_segno;
3924
3925 /* Ignore files that are not XLOG segments. */
3926 if (!IsXLogFileName(xlde->d_name))
3927 continue;
3928
3929 /* Parse filename to get TLI and segno. */
3930 XLogFromFileName(xlde->d_name, &file_tli, &file_segno,
3932
3933 /* Ignore anything that's not from the TLI of interest. */
3934 if (tli != file_tli)
3935 continue;
3936
3937 /* If it's the oldest so far, update oldest_segno. */
3938 if (oldest_segno == 0 || file_segno < oldest_segno)
3939 oldest_segno = file_segno;
3940 }
3941
3942 FreeDir(xldir);
3943 return oldest_segno;
3944}
3945
3946/*
3947 * Update the last removed segno pointer in shared memory, to reflect that the
3948 * given XLOG file has been removed.
3949 */
3950static void
3952{
3953 uint32 tli;
3954 XLogSegNo segno;
3955
3957
3959 if (segno > XLogCtl->lastRemovedSegNo)
3960 XLogCtl->lastRemovedSegNo = segno;
3962}
3963
3964/*
3965 * Remove all temporary log files in pg_wal
3966 *
3967 * This is called at the beginning of recovery after a previous crash,
3968 * at a point where no other processes write fresh WAL data.
3969 */
3970static void
3972{
3973 DIR *xldir;
3974 struct dirent *xlde;
3975
3976 elog(DEBUG2, "removing all temporary WAL segments");
3977
3978 xldir = AllocateDir(XLOGDIR);
3979 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3980 {
3981 char path[MAXPGPATH];
3982
3983 if (strncmp(xlde->d_name, "xlogtemp.", 9) != 0)
3984 continue;
3985
3986 snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
3987 unlink(path);
3988 elog(DEBUG2, "removed temporary WAL segment \"%s\"", path);
3989 }
3990 FreeDir(xldir);
3991}
3992
3993/*
3994 * Recycle or remove all log files older or equal to passed segno.
3995 *
3996 * endptr is current (or recent) end of xlog, and lastredoptr is the
3997 * redo pointer of the last checkpoint. These are used to determine
3998 * whether we want to recycle rather than delete no-longer-wanted log files.
3999 *
4000 * insertTLI is the current timeline for XLOG insertion. Any recycled
4001 * segments should be reused for this timeline.
4002 */
4003static void
4005 TimeLineID insertTLI)
4006{
4007 DIR *xldir;
4008 struct dirent *xlde;
4009 char lastoff[MAXFNAMELEN];
4010 XLogSegNo endlogSegNo;
4011 XLogSegNo recycleSegNo;
4012
4013 /* Initialize info about where to try to recycle to */
4014 XLByteToSeg(endptr, endlogSegNo, wal_segment_size);
4015 recycleSegNo = XLOGfileslop(lastredoptr);
4016
4017 /*
4018 * Construct a filename of the last segment to be kept. The timeline ID
4019 * doesn't matter, we ignore that in the comparison. (During recovery,
4020 * InsertTimeLineID isn't set, so we can't use that.)
4021 */
4022 XLogFileName(lastoff, 0, segno, wal_segment_size);
4023
4024 elog(DEBUG2, "attempting to remove WAL segments older than log file %s",
4025 lastoff);
4026
4027 xldir = AllocateDir(XLOGDIR);
4028
4029 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
4030 {
4031 /* Ignore files that are not XLOG segments */
4032 if (!IsXLogFileName(xlde->d_name) &&
4034 continue;
4035
4036 /*
4037 * We ignore the timeline part of the XLOG segment identifiers in
4038 * deciding whether a segment is still needed. This ensures that we
4039 * won't prematurely remove a segment from a parent timeline. We could
4040 * probably be a little more proactive about removing segments of
4041 * non-parent timelines, but that would be a whole lot more
4042 * complicated.
4043 *
4044 * We use the alphanumeric sorting property of the filenames to decide
4045 * which ones are earlier than the lastoff segment.
4046 */
4047 if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
4048 {
4049 if (XLogArchiveCheckDone(xlde->d_name))
4050 {
4051 /* Update the last removed location in shared memory first */
4053
4054 RemoveXlogFile(xlde, recycleSegNo, &endlogSegNo, insertTLI);
4055 }
4056 }
4057 }
4058
4059 FreeDir(xldir);
4060}
4061
4062/*
4063 * Recycle or remove WAL files that are not part of the given timeline's
4064 * history.
4065 *
4066 * This is called during recovery, whenever we switch to follow a new
4067 * timeline, and at the end of recovery when we create a new timeline. We
4068 * wouldn't otherwise care about extra WAL files lying in pg_wal, but they
4069 * might be leftover pre-allocated or recycled WAL segments on the old timeline
4070 * that we haven't used yet, and contain garbage. If we just leave them in
4071 * pg_wal, they will eventually be archived, and we can't let that happen.
4072 * Files that belong to our timeline history are valid, because we have
4073 * successfully replayed them, but from others we can't be sure.
4074 *
4075 * 'switchpoint' is the current point in WAL where we switch to new timeline,
4076 * and 'newTLI' is the new timeline we switch to.
4077 */
4078void
4080{
4081 DIR *xldir;
4082 struct dirent *xlde;
4083 char switchseg[MAXFNAMELEN];
4084 XLogSegNo endLogSegNo;
4085 XLogSegNo switchLogSegNo;
4086 XLogSegNo recycleSegNo;
4087
4088 /*
4089 * Initialize info about where to begin the work. This will recycle,
4090 * somewhat arbitrarily, 10 future segments.
4091 */
4092 XLByteToPrevSeg(switchpoint, switchLogSegNo, wal_segment_size);
4093 XLByteToSeg(switchpoint, endLogSegNo, wal_segment_size);
4094 recycleSegNo = endLogSegNo + 10;
4095
4096 /*
4097 * Construct a filename of the last segment to be kept.
4098 */
4099 XLogFileName(switchseg, newTLI, switchLogSegNo, wal_segment_size);
4100
4101 elog(DEBUG2, "attempting to remove WAL segments newer than log file %s",
4102 switchseg);
4103
4104 xldir = AllocateDir(XLOGDIR);
4105
4106 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
4107 {
4108 /* Ignore files that are not XLOG segments */
4109 if (!IsXLogFileName(xlde->d_name))
4110 continue;
4111
4112 /*
4113 * Remove files that are on a timeline older than the new one we're
4114 * switching to, but with a segment number >= the first segment on the
4115 * new timeline.
4116 */
4117 if (strncmp(xlde->d_name, switchseg, 8) < 0 &&
4118 strcmp(xlde->d_name + 8, switchseg + 8) > 0)
4119 {
4120 /*
4121 * If the file has already been marked as .ready, however, don't
4122 * remove it yet. It should be OK to remove it - files that are
4123 * not part of our timeline history are not required for recovery
4124 * - but seems safer to let them be archived and removed later.
4125 */
4126 if (!XLogArchiveIsReady(xlde->d_name))
4127 RemoveXlogFile(xlde, recycleSegNo, &endLogSegNo, newTLI);
4128 }
4129 }
4130
4131 FreeDir(xldir);
4132}
4133
4134/*
4135 * Recycle or remove a log file that's no longer needed.
4136 *
4137 * segment_de is the dirent structure of the segment to recycle or remove.
4138 * recycleSegNo is the segment number to recycle up to. endlogSegNo is
4139 * the segment number of the current (or recent) end of WAL.
4140 *
4141 * endlogSegNo gets incremented if the segment is recycled so as it is not
4142 * checked again with future callers of this function.
4143 *
4144 * insertTLI is the current timeline for XLOG insertion. Any recycled segments
4145 * should be used for this timeline.
4146 */
4147static void
4148RemoveXlogFile(const struct dirent *segment_de,
4149 XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
4150 TimeLineID insertTLI)
4151{
4152 char path[MAXPGPATH];
4153#ifdef WIN32
4154 char newpath[MAXPGPATH];
4155#endif
4156 const char *segname = segment_de->d_name;
4157
4158 snprintf(path, MAXPGPATH, XLOGDIR "/%s", segname);
4159
4160 /*
4161 * Before deleting the file, see if it can be recycled as a future log
4162 * segment. Only recycle normal files, because we don't want to recycle
4163 * symbolic links pointing to a separate archive directory.
4164 */
4165 if (wal_recycle &&
4166 *endlogSegNo <= recycleSegNo &&
4167 XLogCtl->InstallXLogFileSegmentActive && /* callee rechecks this */
4168 get_dirent_type(path, segment_de, false, DEBUG2) == PGFILETYPE_REG &&
4169 InstallXLogFileSegment(endlogSegNo, path,
4170 true, recycleSegNo, insertTLI))
4171 {
4173 (errmsg_internal("recycled write-ahead log file \"%s\"",
4174 segname)));
4176 /* Needn't recheck that slot on future iterations */
4177 (*endlogSegNo)++;
4178 }
4179 else
4180 {
4181 /* No need for any more future segments, or recycling failed ... */
4182 int rc;
4183
4185 (errmsg_internal("removing write-ahead log file \"%s\"",
4186 segname)));
4187
4188#ifdef WIN32
4189
4190 /*
4191 * On Windows, if another process (e.g another backend) holds the file
4192 * open in FILE_SHARE_DELETE mode, unlink will succeed, but the file
4193 * will still show up in directory listing until the last handle is
4194 * closed. To avoid confusing the lingering deleted file for a live
4195 * WAL file that needs to be archived, rename it before deleting it.
4196 *
4197 * If another process holds the file open without FILE_SHARE_DELETE
4198 * flag, rename will fail. We'll try again at the next checkpoint.
4199 */
4200 snprintf(newpath, MAXPGPATH, "%s.deleted", path);
4201 if (rename(path, newpath) != 0)
4202 {
4203 ereport(LOG,
4205 errmsg("could not rename file \"%s\": %m",
4206 path)));
4207 return;
4208 }
4209 rc = durable_unlink(newpath, LOG);
4210#else
4211 rc = durable_unlink(path, LOG);
4212#endif
4213 if (rc != 0)
4214 {
4215 /* Message already logged by durable_unlink() */
4216 return;
4217 }
4219 }
4220
4221 XLogArchiveCleanup(segname);
4222}
4223
4224/*
4225 * Verify whether pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
4226 * If the latter do not exist, recreate them.
4227 *
4228 * It is not the goal of this function to verify the contents of these
4229 * directories, but to help in cases where someone has performed a cluster
4230 * copy for PITR purposes but omitted pg_wal from the copy.
4231 *
4232 * We could also recreate pg_wal if it doesn't exist, but a deliberate
4233 * policy decision was made not to. It is fairly common for pg_wal to be
4234 * a symlink, and if that was the DBA's intent then automatically making a
4235 * plain directory would result in degraded performance with no notice.
4236 */
4237static void
4239{
4240 char path[MAXPGPATH];
4241 struct stat stat_buf;
4242
4243 /* Check for pg_wal; if it doesn't exist, error out */
4244 if (stat(XLOGDIR, &stat_buf) != 0 ||
4245 !S_ISDIR(stat_buf.st_mode))
4246 ereport(FATAL,
4248 errmsg("required WAL directory \"%s\" does not exist",
4249 XLOGDIR)));
4250
4251 /* Check for archive_status */
4252 snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
4253 if (stat(path, &stat_buf) == 0)
4254 {
4255 /* Check for weird cases where it exists but isn't a directory */
4256 if (!S_ISDIR(stat_buf.st_mode))
4257 ereport(FATAL,
4259 errmsg("required WAL directory \"%s\" does not exist",
4260 path)));
4261 }
4262 else
4263 {
4264 ereport(LOG,
4265 (errmsg("creating missing WAL directory \"%s\"", path)));
4266 if (MakePGDirectory(path) < 0)
4267 ereport(FATAL,
4269 errmsg("could not create missing directory \"%s\": %m",
4270 path)));
4271 }
4272
4273 /* Check for summaries */
4274 snprintf(path, MAXPGPATH, XLOGDIR "/summaries");
4275 if (stat(path, &stat_buf) == 0)
4276 {
4277 /* Check for weird cases where it exists but isn't a directory */
4278 if (!S_ISDIR(stat_buf.st_mode))
4279 ereport(FATAL,
4280 (errmsg("required WAL directory \"%s\" does not exist",
4281 path)));
4282 }
4283 else
4284 {
4285 ereport(LOG,
4286 (errmsg("creating missing WAL directory \"%s\"", path)));
4287 if (MakePGDirectory(path) < 0)
4288 ereport(FATAL,
4289 (errmsg("could not create missing directory \"%s\": %m",
4290 path)));
4291 }
4292}
4293
4294/*
4295 * Remove previous backup history files. This also retries creation of
4296 * .ready files for any backup history files for which XLogArchiveNotify
4297 * failed earlier.
4298 */
4299static void
4301{
4302 DIR *xldir;
4303 struct dirent *xlde;
4304 char path[MAXPGPATH + sizeof(XLOGDIR)];
4305
4306 xldir = AllocateDir(XLOGDIR);
4307
4308 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
4309 {
4311 {
4312 if (XLogArchiveCheckDone(xlde->d_name))
4313 {
4314 elog(DEBUG2, "removing WAL backup history file \"%s\"",
4315 xlde->d_name);
4316 snprintf(path, sizeof(path), XLOGDIR "/%s", xlde->d_name);
4317 unlink(path);
4319 }
4320 }
4321 }
4322
4323 FreeDir(xldir);
4324}
4325
4326/*
4327 * I/O routines for pg_control
4328 *
4329 * *ControlFile is a buffer in shared memory that holds an image of the
4330 * contents of pg_control. WriteControlFile() initializes pg_control
4331 * given a preloaded buffer, ReadControlFile() loads the buffer from
4332 * the pg_control file (during postmaster or standalone-backend startup),
4333 * and UpdateControlFile() rewrites pg_control after we modify xlog state.
4334 * InitControlFile() fills the buffer with initial values.
4335 *
4336 * For simplicity, WriteControlFile() initializes the fields of pg_control
4337 * that are related to checking backend/database compatibility, and
4338 * ReadControlFile() verifies they are correct. We could split out the
4339 * I/O and compatibility-check functions, but there seems no need currently.
4340 */
4341
4342static void
4343InitControlFile(uint64 sysidentifier, uint32 data_checksum_version)
4344{
4345 char mock_auth_nonce[MOCK_AUTH_NONCE_LEN];
4346
4347 /*
4348 * Generate a random nonce. This is used for authentication requests that
4349 * will fail because the user does not exist. The nonce is used to create
4350 * a genuine-looking password challenge for the non-existent user, in lieu
4351 * of an actual stored password.
4352 */
4353 if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN))
4354 ereport(PANIC,
4355 (errcode(ERRCODE_INTERNAL_ERROR),
4356 errmsg("could not generate secret authorization token")));
4357
4358 memset(ControlFile, 0, sizeof(ControlFileData));
4359 /* Initialize pg_control status fields */
4360 ControlFile->system_identifier = sysidentifier;
4364
4365 /* Set important parameter values for use when replaying WAL */
4374 ControlFile->data_checksum_version = data_checksum_version;
4375}
4376
4377static void
4379{
4380 int fd;
4381 char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */
4382
4383 /*
4384 * Initialize version and compatibility-check fields
4385 */
4388
4389 ControlFile->maxAlign = MAXIMUM_ALIGNOF;
4391
4392 ControlFile->blcksz = BLCKSZ;
4393 ControlFile->relseg_size = RELSEG_SIZE;
4394 ControlFile->xlog_blcksz = XLOG_BLCKSZ;
4396
4399
4402
4404
4405 /*
4406 * Initialize the default 'char' signedness.
4407 *
4408 * The signedness of the char type is implementation-defined. For instance
4409 * on x86 architecture CPUs, the char data type is typically treated as
4410 * signed by default, whereas on aarch architecture CPUs, it is typically
4411 * treated as unsigned by default. In v17 or earlier, we accidentally let
4412 * C implementation signedness affect persistent data. This led to
4413 * inconsistent results when comparing char data across different
4414 * platforms.
4415 *
4416 * This flag can be used as a hint to ensure consistent behavior for
4417 * pre-v18 data files that store data sorted by the 'char' type on disk,
4418 * especially in cross-platform replication scenarios.
4419 *
4420 * Newly created database clusters unconditionally set the default char
4421 * signedness to true. pg_upgrade changes this flag for clusters that were
4422 * initialized on signedness=false platforms. As a result,
4423 * signedness=false setting will become rare over time. If we had known
4424 * about this problem during the last development cycle that forced initdb
4425 * (v8.3), we would have made all clusters signed or all clusters
4426 * unsigned. Making pg_upgrade the only source of signedness=false will
4427 * cause the population of database clusters to converge toward that
4428 * retrospective ideal.
4429 */
4431
4432 /* Contents are protected with a CRC */
4436 offsetof(ControlFileData, crc));
4438
4439 /*
4440 * We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding
4441 * the excess over sizeof(ControlFileData). This reduces the odds of
4442 * premature-EOF errors when reading pg_control. We'll still fail when we
4443 * check the contents of the file, but hopefully with a more specific
4444 * error than "couldn't read pg_control".
4445 */
4446 memset(buffer, 0, PG_CONTROL_FILE_SIZE);
4447 memcpy(buffer, ControlFile, sizeof(ControlFileData));
4448
4450 O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
4451 if (fd < 0)
4452 ereport(PANIC,
4454 errmsg("could not create file \"%s\": %m",
4456
4457 errno = 0;
4458 pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE);
4460 {
4461 /* if write didn't set errno, assume problem is no disk space */
4462 if (errno == 0)
4463 errno = ENOSPC;
4464 ereport(PANIC,
4466 errmsg("could not write to file \"%s\": %m",
4468 }
4470
4471 pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC);
4472 if (pg_fsync(fd) != 0)
4473 ereport(PANIC,
4475 errmsg("could not fsync file \"%s\": %m",
4478
4479 if (close(fd) != 0)
4480 ereport(PANIC,
4482 errmsg("could not close file \"%s\": %m",
4484}
4485
4486static void
4488{
4489 pg_crc32c crc;
4490 int fd;
4491 char wal_segsz_str[20];
4492 int r;
4493
4494 /*
4495 * Read data...
4496 */
4498 O_RDWR | PG_BINARY);
4499 if (fd < 0)
4500 ereport(PANIC,
4502 errmsg("could not open file \"%s\": %m",
4504
4505 pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ);
4506 r = read(fd, ControlFile, sizeof(ControlFileData));
4507 if (r != sizeof(ControlFileData))
4508 {
4509 if (r < 0)
4510 ereport(PANIC,
4512 errmsg("could not read file \"%s\": %m",
4514 else
4515 ereport(PANIC,
4517 errmsg("could not read file \"%s\": read %d of %zu",
4518 XLOG_CONTROL_FILE, r, sizeof(ControlFileData))));
4519 }
4521
4522 close(fd);
4523
4524 /*
4525 * Check for expected pg_control format version. If this is wrong, the
4526 * CRC check will likely fail because we'll be checking the wrong number
4527 * of bytes. Complaining about wrong version will probably be more
4528 * enlightening than complaining about wrong CRC.
4529 */
4530
4532 ereport(FATAL,
4533 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4534 errmsg("database files are incompatible with server"),
4535 errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
4536 " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
4539 errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
4540
4542 ereport(FATAL,
4543 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4544 errmsg("database files are incompatible with server"),
4545 errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
4546 " but the server was compiled with PG_CONTROL_VERSION %d.",
4548 errhint("It looks like you need to initdb.")));
4549
4550 /* Now check the CRC. */
4554 offsetof(ControlFileData, crc));
4555 FIN_CRC32C(crc);
4556
4557 if (!EQ_CRC32C(crc, ControlFile->crc))
4558 ereport(FATAL,
4559 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4560 errmsg("incorrect checksum in control file")));
4561
4562 /*
4563 * Do compatibility checking immediately. If the database isn't
4564 * compatible with the backend executable, we want to abort before we can
4565 * possibly do any damage.
4566 */
4568 ereport(FATAL,
4569 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4570 errmsg("database files are incompatible with server"),
4571 /* translator: %s is a variable name and %d is its value */
4572 errdetail("The database cluster was initialized with %s %d,"
4573 " but the server was compiled with %s %d.",
4574 "CATALOG_VERSION_NO", ControlFile->catalog_version_no,
4575 "CATALOG_VERSION_NO", CATALOG_VERSION_NO),
4576 errhint("It looks like you need to initdb.")));
4577 if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
4578 ereport(FATAL,
4579 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4580 errmsg("database files are incompatible with server"),
4581 /* translator: %s is a variable name and %d is its value */
4582 errdetail("The database cluster was initialized with %s %d,"
4583 " but the server was compiled with %s %d.",
4584 "MAXALIGN", ControlFile->maxAlign,
4585 "MAXALIGN", MAXIMUM_ALIGNOF),
4586 errhint("It looks like you need to initdb.")));
4588 ereport(FATAL,
4589 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4590 errmsg("database files are incompatible with server"),
4591 errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
4592 errhint("It looks like you need to initdb.")));
4593 if (ControlFile->blcksz != BLCKSZ)
4594 ereport(FATAL,
4595 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4596 errmsg("database files are incompatible with server"),
4597 /* translator: %s is a variable name and %d is its value */
4598 errdetail("The database cluster was initialized with %s %d,"
4599 " but the server was compiled with %s %d.",
4600 "BLCKSZ", ControlFile->blcksz,
4601 "BLCKSZ", BLCKSZ),
4602 errhint("It looks like you need to recompile or initdb.")));
4603 if (ControlFile->relseg_size != RELSEG_SIZE)
4604 ereport(FATAL,
4605 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4606 errmsg("database files are incompatible with server"),
4607 /* translator: %s is a variable name and %d is its value */
4608 errdetail("The database cluster was initialized with %s %d,"
4609 " but the server was compiled with %s %d.",
4610 "RELSEG_SIZE", ControlFile->relseg_size,
4611 "RELSEG_SIZE", RELSEG_SIZE),
4612 errhint("It looks like you need to recompile or initdb.")));
4613 if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
4614 ereport(FATAL,
4615 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4616 errmsg("database files are incompatible with server"),
4617 /* translator: %s is a variable name and %d is its value */
4618 errdetail("The database cluster was initialized with %s %d,"
4619 " but the server was compiled with %s %d.",
4620 "XLOG_BLCKSZ", ControlFile->xlog_blcksz,
4621 "XLOG_BLCKSZ", XLOG_BLCKSZ),
4622 errhint("It looks like you need to recompile or initdb.")));
4624 ereport(FATAL,
4625 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4626 errmsg("database files are incompatible with server"),
4627 /* translator: %s is a variable name and %d is its value */
4628 errdetail("The database cluster was initialized with %s %d,"
4629 " but the server was compiled with %s %d.",
4630 "NAMEDATALEN", ControlFile->nameDataLen,
4631 "NAMEDATALEN", NAMEDATALEN),
4632 errhint("It looks like you need to recompile or initdb.")));
4634 ereport(FATAL,
4635 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4636 errmsg("database files are incompatible with server"),
4637 /* translator: %s is a variable name and %d is its value */
4638 errdetail("The database cluster was initialized with %s %d,"
4639 " but the server was compiled with %s %d.",
4640 "INDEX_MAX_KEYS", ControlFile->indexMaxKeys,
4641 "INDEX_MAX_KEYS", INDEX_MAX_KEYS),
4642 errhint("It looks like you need to recompile or initdb.")));
4644 ereport(FATAL,
4645 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4646 errmsg("database files are incompatible with server"),
4647 /* translator: %s is a variable name and %d is its value */
4648 errdetail("The database cluster was initialized with %s %d,"
4649 " but the server was compiled with %s %d.",
4650 "TOAST_MAX_CHUNK_SIZE", ControlFile->toast_max_chunk_size,
4651 "TOAST_MAX_CHUNK_SIZE", (int) TOAST_MAX_CHUNK_SIZE),
4652 errhint("It looks like you need to recompile or initdb.")));
4654 ereport(FATAL,
4655 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4656 errmsg("database files are incompatible with server"),
4657 /* translator: %s is a variable name and %d is its value */
4658 errdetail("The database cluster was initialized with %s %d,"
4659 " but the server was compiled with %s %d.",
4660 "LOBLKSIZE", ControlFile->loblksize,
4661 "LOBLKSIZE", (int) LOBLKSIZE),
4662 errhint("It looks like you need to recompile or initdb.")));
4663
4664#ifdef USE_FLOAT8_BYVAL
4665 if (ControlFile->float8ByVal != true)
4666 ereport(FATAL,
4667 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4668 errmsg("database files are incompatible with server"),
4669 errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL"
4670 " but the server was compiled with USE_FLOAT8_BYVAL."),
4671 errhint("It looks like you need to recompile or initdb.")));
4672#else
4673 if (ControlFile->float8ByVal != false)
4674 ereport(FATAL,
4675 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4676 errmsg("database files are incompatible with server"),
4677 errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL"
4678 " but the server was compiled without USE_FLOAT8_BYVAL."),
4679 errhint("It looks like you need to recompile or initdb.")));
4680#endif
4681
4683
4685 ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4686 errmsg_plural("invalid WAL segment size in control file (%d byte)",
4687 "invalid WAL segment size in control file (%d bytes)",
4690 errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.")));
4691
4692 snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d", wal_segment_size);
4693 SetConfigOption("wal_segment_size", wal_segsz_str, PGC_INTERNAL,
4695
4696 /* check and update variables dependent on wal_segment_size */
4698 ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4699 /* translator: both %s are GUC names */
4700 errmsg("\"%s\" must be at least twice \"%s\"",
4701 "min_wal_size", "wal_segment_size")));
4702
4704 ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4705 /* translator: both %s are GUC names */
4706 errmsg("\"%s\" must be at least twice \"%s\"",
4707 "max_wal_size", "wal_segment_size")));
4708
4710 (wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) -
4712
4714
4715 /* Make the initdb settings visible as GUC variables, too */
4716 SetConfigOption("data_checksums", DataChecksumsEnabled() ? "yes" : "no",
4718}
4719
4720/*
4721 * Utility wrapper to update the control file. Note that the control
4722 * file gets flushed.
4723 */
4724static void
4726{
4728}
4729
4730/*
4731 * Returns the unique system identifier from control file.
4732 */
4733uint64
4735{
4736 Assert(ControlFile != NULL);
4738}
4739
4740/*
4741 * Returns the random nonce from control file.
4742 */
4743char *
4745{
4746 Assert(ControlFile != NULL);
4748}
4749
4750/*
4751 * Are checksums enabled for data pages?
4752 */
4753bool
4755{
4756 Assert(ControlFile != NULL);
4757 return (ControlFile->data_checksum_version > 0);
4758}
4759
4760/*
4761 * Return true if the cluster was initialized on a platform where the
4762 * default signedness of char is "signed". This function exists for code
4763 * that deals with pre-v18 data files that store data sorted by the 'char'
4764 * type on disk (e.g., GIN and GiST indexes). See the comments in
4765 * WriteControlFile() for details.
4766 */
4767bool
4769{
4771}
4772
4773/*
4774 * Returns a fake LSN for unlogged relations.
4775 *
4776 * Each call generates an LSN that is greater than any previous value
4777 * returned. The current counter value is saved and restored across clean
4778 * shutdowns, but like unlogged relations, does not survive a crash. This can
4779 * be used in lieu of real LSN values returned by XLogInsert, if you need an
4780 * LSN-like increasing sequence of numbers without writing any WAL.
4781 */
4784{
4786}
4787
4788/*
4789 * Auto-tune the number of XLOG buffers.
4790 *
4791 * The preferred setting for wal_buffers is about 3% of shared_buffers, with
4792 * a maximum of one XLOG segment (there is little reason to think that more
4793 * is helpful, at least so long as we force an fsync when switching log files)
4794 * and a minimum of 8 blocks (which was the default value prior to PostgreSQL
4795 * 9.1, when auto-tuning was added).
4796 *
4797 * This should not be called until NBuffers has received its final value.
4798 */
4799static int
4801{
4802 int xbuffers;
4803
4804 xbuffers = NBuffers / 32;
4805 if (xbuffers > (wal_segment_size / XLOG_BLCKSZ))
4806 xbuffers = (wal_segment_size / XLOG_BLCKSZ);
4807 if (xbuffers < 8)
4808 xbuffers = 8;
4809 return xbuffers;
4810}
4811
4812/*
4813 * GUC check_hook for wal_buffers
4814 */
4815bool
4817{
4818 /*
4819 * -1 indicates a request for auto-tune.
4820 */
4821 if (*newval == -1)
4822 {
4823 /*
4824 * If we haven't yet changed the boot_val default of -1, just let it
4825 * be. We'll fix it when XLOGShmemSize is called.
4826 */
4827 if (XLOGbuffers == -1)
4828 return true;
4829
4830 /* Otherwise, substitute the auto-tune value */
4832 }
4833
4834 /*
4835 * We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL
4836 * 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer
4837 * the case, we just silently treat such values as a request for the
4838 * minimum. (We could throw an error instead, but that doesn't seem very
4839 * helpful.)
4840 */
4841 if (*newval < 4)
4842 *newval = 4;
4843
4844 return true;
4845}
4846
4847/*
4848 * GUC check_hook for wal_consistency_checking
4849 */
4850bool
4852{
4853 char *rawstring;
4854 List *elemlist;
4855 ListCell *l;
4856 bool newwalconsistency[RM_MAX_ID + 1];
4857
4858 /* Initialize the array */
4859 MemSet(newwalconsistency, 0, (RM_MAX_ID + 1) * sizeof(bool));
4860
4861 /* Need a modifiable copy of string */
4862 rawstring = pstrdup(*newval);
4863
4864 /* Parse string into list of identifiers */
4865 if (!SplitIdentifierString(rawstring, ',', &elemlist))
4866 {
4867 /* syntax error in list */
4868 GUC_check_errdetail("List syntax is invalid.");
4869 pfree(rawstring);
4870 list_free(elemlist);
4871 return false;
4872 }
4873
4874 foreach(l, elemlist)
4875 {
4876 char *tok = (char *) lfirst(l);
4877 int rmid;
4878
4879 /* Check for 'all'. */
4880 if (pg_strcasecmp(tok, "all") == 0)
4881 {
4882 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4883 if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL)
4884 newwalconsistency[rmid] = true;
4885 }
4886 else
4887 {
4888 /* Check if the token matches any known resource manager. */
4889 bool found = false;
4890
4891 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4892 {
4893 if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL &&
4894 pg_strcasecmp(tok, GetRmgr(rmid).rm_name) == 0)
4895 {
4896 newwalconsistency[rmid] = true;
4897 found = true;
4898 break;
4899 }
4900 }
4901 if (!found)
4902 {
4903 /*
4904 * During startup, it might be a not-yet-loaded custom
4905 * resource manager. Defer checking until
4906 * InitializeWalConsistencyChecking().
4907 */
4909 {
4911 }
4912 else
4913 {
4914 GUC_check_errdetail("Unrecognized key word: \"%s\".", tok);
4915 pfree(rawstring);
4916 list_free(elemlist);
4917 return false;
4918 }
4919 }
4920 }
4921 }
4922
4923 pfree(rawstring);
4924 list_free(elemlist);
4925
4926 /* assign new value */
4927 *extra = guc_malloc(LOG, (RM_MAX_ID + 1) * sizeof(bool));
4928 if (!*extra)
4929 return false;
4930 memcpy(*extra, newwalconsistency, (RM_MAX_ID + 1) * sizeof(bool));
4931 return true;
4932}
4933
4934/*
4935 * GUC assign_hook for wal_consistency_checking
4936 */
4937void
4939{
4940 /*
4941 * If some checks were deferred, it's possible that the checks will fail
4942 * later during InitializeWalConsistencyChecking(). But in that case, the
4943 * postmaster will exit anyway, so it's safe to proceed with the
4944 * assignment.
4945 *
4946 * Any built-in resource managers specified are assigned immediately,
4947 * which affects WAL created before shared_preload_libraries are
4948 * processed. Any custom resource managers specified won't be assigned
4949 * until after shared_preload_libraries are processed, but that's OK
4950 * because WAL for a custom resource manager can't be written before the
4951 * module is loaded anyway.
4952 */
4954}
4955
4956/*
4957 * InitializeWalConsistencyChecking: run after loading custom resource managers
4958 *
4959 * If any unknown resource managers were specified in the
4960 * wal_consistency_checking GUC, processing was deferred. Now that
4961 * shared_preload_libraries have been loaded, process wal_consistency_checking
4962 * again.
4963 */
4964void
4966{
4968
4970 {
4971 struct config_generic *guc;
4972
4973 guc = find_option("wal_consistency_checking", false, false, ERROR);
4974
4976
4977 set_config_option_ext("wal_consistency_checking",
4979 guc->scontext, guc->source, guc->srole,
4980 GUC_ACTION_SET, true, ERROR, false);
4981
4982 /* checking should not be deferred again */
4984 }
4985}
4986
4987/*
4988 * GUC show_hook for archive_command
4989 */
4990const char *
4992{
4993 if (XLogArchivingActive())
4994 return XLogArchiveCommand;
4995 else
4996 return "(disabled)";
4997}
4998
4999/*
5000 * GUC show_hook for in_hot_standby
5001 */
5002const char *
5004{
5005 /*
5006 * We display the actual state based on shared memory, so that this GUC
5007 * reports up-to-date state if examined intra-query. The underlying
5008 * variable (in_hot_standby_guc) changes only when we transmit a new value
5009 * to the client.
5010 */
5011 return RecoveryInProgress() ? "on" : "off";
5012}
5013
5014/*
5015 * Read the control file, set respective GUCs.
5016 *
5017 * This is to be called during startup, including a crash recovery cycle,
5018 * unless in bootstrap mode, where no control file yet exists. As there's no
5019 * usable shared memory yet (its sizing can depend on the contents of the
5020 * control file!), first store the contents in local memory. XLOGShmemInit()
5021 * will then copy it to shared memory later.
5022 *
5023 * reset just controls whether previous contents are to be expected (in the
5024 * reset case, there's a dangling pointer into old shared memory), or not.
5025 */
5026void
5028{
5029 Assert(reset || ControlFile == NULL);
5032}
5033
5034/*
5035 * Get the wal_level from the control file. For a standby, this value should be
5036 * considered as its active wal_level, because it may be different from what
5037 * was originally configured on standby.
5038 */
5041{
5042 return ControlFile->wal_level;
5043}
5044
5045/*
5046 * Initialization of shared memory for XLOG
5047 */
5048Size
5050{
5051 Size size;
5052
5053 /*
5054 * If the value of wal_buffers is -1, use the preferred auto-tune value.
5055 * This isn't an amazingly clean place to do this, but we must wait till
5056 * NBuffers has received its final value, and must do it before using the
5057 * value of XLOGbuffers to do anything important.
5058 *
5059 * We prefer to report this value's source as PGC_S_DYNAMIC_DEFAULT.
5060 * However, if the DBA explicitly set wal_buffers = -1 in the config file,
5061 * then PGC_S_DYNAMIC_DEFAULT will fail to override that and we must force
5062 * the matter with PGC_S_OVERRIDE.
5063 */
5064 if (XLOGbuffers == -1)
5065 {
5066 char buf[32];
5067
5068 snprintf(buf, sizeof(buf), "%d", XLOGChooseNumBuffers());
5069 SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
5071 if (XLOGbuffers == -1) /* failed to apply it? */
5072 SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
5074 }
5075 Assert(XLOGbuffers > 0);
5076
5077 /* XLogCtl */
5078 size = sizeof(XLogCtlData);
5079
5080 /* WAL insertion locks, plus alignment */
5081 size = add_size(size, mul_size(sizeof(WALInsertLockPadded), NUM_XLOGINSERT_LOCKS + 1));
5082 /* xlblocks array */
5083 size = add_size(size, mul_size(sizeof(pg_atomic_uint64), XLOGbuffers));
5084 /* extra alignment padding for XLOG I/O buffers */
5085 size = add_size(size, Max(XLOG_BLCKSZ, PG_IO_ALIGN_SIZE));
5086 /* and the buffers themselves */
5087 size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
5088
5089 /*
5090 * Note: we don't count ControlFileData, it comes out of the "slop factor"
5091 * added by CreateSharedMemoryAndSemaphores. This lets us use this
5092 * routine again below to compute the actual allocation size.
5093 */
5094
5095 return size;
5096}
5097
5098void
5100{
5101 bool foundCFile,
5102 foundXLog;
5103 char *allocptr;
5104 int i;
5105 ControlFileData *localControlFile;
5106
5107#ifdef WAL_DEBUG
5108
5109 /*
5110 * Create a memory context for WAL debugging that's exempt from the normal
5111 * "no pallocs in critical section" rule. Yes, that can lead to a PANIC if
5112 * an allocation fails, but wal_debug is not for production use anyway.
5113 */
5114 if (walDebugCxt == NULL)
5115 {
5117 "WAL Debug",
5119 MemoryContextAllowInCriticalSection(walDebugCxt, true);
5120 }
5121#endif
5122
5123
5124 XLogCtl = (XLogCtlData *)
5125 ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
5126
5127 localControlFile = ControlFile;
5129 ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
5130
5131 if (foundCFile || foundXLog)
5132 {
5133 /* both should be present or neither */
5134 Assert(foundCFile && foundXLog);
5135
5136 /* Initialize local copy of WALInsertLocks */
5138
5139 if (localControlFile)
5140 pfree(localControlFile);
5141 return;
5142 }
5143 memset(XLogCtl, 0, sizeof(XLogCtlData));
5144
5145 /*
5146 * Already have read control file locally, unless in bootstrap mode. Move
5147 * contents into shared memory.
5148 */
5149 if (localControlFile)
5150 {
5151 memcpy(ControlFile, localControlFile, sizeof(ControlFileData));
5152 pfree(localControlFile);
5153 }
5154
5155 /*
5156 * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
5157 * multiple of the alignment for same, so no extra alignment padding is
5158 * needed here.
5159 */
5160 allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
5161 XLogCtl->xlblocks = (pg_atomic_uint64 *) allocptr;
5162 allocptr += sizeof(pg_atomic_uint64) * XLOGbuffers;
5163
5164 for (i = 0; i < XLOGbuffers; i++)
5165 {
5167 }
5168
5169 /* WAL insertion locks. Ensure they're aligned to the full padded size */
5170 allocptr += sizeof(WALInsertLockPadded) -
5171 ((uintptr_t) allocptr) % sizeof(WALInsertLockPadded);
5173 (WALInsertLockPadded *) allocptr;
5174 allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS;
5175
5176 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
5177 {
5181 }
5182
5183 /*
5184 * Align the start of the page buffers to a full xlog block size boundary.
5185 * This simplifies some calculations in XLOG insertion. It is also
5186 * required for O_DIRECT.
5187 */
5188 allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr);
5189 XLogCtl->pages = allocptr;
5190 memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
5191
5192 /*
5193 * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
5194 * in additional info.)
5195 */
5199 XLogCtl->WalWriterSleeping = false;
5200
5207
5211}
5212
5213/*
5214 * This func must be called ONCE on system install. It creates pg_control
5215 * and the initial XLOG segment.
5216 */
5217void
5218BootStrapXLOG(uint32 data_checksum_version)
5219{
5220 CheckPoint checkPoint;
5221 char *buffer;
5222 XLogPageHeader page;
5223 XLogLongPageHeader longpage;
5224 XLogRecord *record;
5225 char *recptr;
5226 uint64 sysidentifier;
5227 struct timeval tv;
5228 pg_crc32c crc;
5229
5230 /* allow ordinary WAL segment creation, like StartupXLOG() would */
5232
5233 /*
5234 * Select a hopefully-unique system identifier code for this installation.
5235 * We use the result of gettimeofday(), including the fractional seconds
5236 * field, as being about as unique as we can easily get. (Think not to
5237 * use random(), since it hasn't been seeded and there's no portable way
5238 * to seed it other than the system clock value...) The upper half of the
5239 * uint64 value is just the tv_sec part, while the lower half contains the
5240 * tv_usec part (which must fit in 20 bits), plus 12 bits from our current
5241 * PID for a little extra uniqueness. A person knowing this encoding can
5242 * determine the initialization time of the installation, which could
5243 * perhaps be useful sometimes.
5244 */
5245 gettimeofday(&tv, NULL);
5246 sysidentifier = ((uint64) tv.tv_sec) << 32;
5247 sysidentifier |= ((uint64) tv.tv_usec) << 12;
5248 sysidentifier |= getpid() & 0xFFF;
5249
5250 /* page buffer must be aligned suitably for O_DIRECT */
5251 buffer = (char *) palloc(XLOG_BLCKSZ + XLOG_BLCKSZ);
5252 page = (XLogPageHeader) TYPEALIGN(XLOG_BLCKSZ, buffer);
5253 memset(page, 0, XLOG_BLCKSZ);
5254
5255 /*
5256 * Set up information for the initial checkpoint record
5257 *
5258 * The initial checkpoint record is written to the beginning of the WAL
5259 * segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not
5260 * used, so that we can use 0/0 to mean "before any valid WAL segment".
5261 */
5265 checkPoint.fullPageWrites = fullPageWrites;
5266 checkPoint.wal_level = wal_level;
5267 checkPoint.nextXid =
5269 checkPoint.nextOid = FirstGenbkiObjectId;
5270 checkPoint.nextMulti = FirstMultiXactId;
5271 checkPoint.nextMultiOffset = 0;
5273 checkPoint.oldestXidDB = Template1DbOid;
5274 checkPoint.oldestMulti = FirstMultiXactId;
5275 checkPoint.oldestMultiDB = Template1DbOid;
5278 checkPoint.time = (pg_time_t) time(NULL);
5280
5281 TransamVariables->nextXid = checkPoint.nextXid;
5282 TransamVariables->nextOid = checkPoint.nextOid;
5284 MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5285 AdvanceOldestClogXid(checkPoint.oldestXid);
5286 SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5287 SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
5289
5290 /* Set up the XLOG page header */
5291 page->xlp_magic = XLOG_PAGE_MAGIC;
5292 page->xlp_info = XLP_LONG_HEADER;
5295 longpage = (XLogLongPageHeader) page;
5296 longpage->xlp_sysid = sysidentifier;
5297 longpage->xlp_seg_size = wal_segment_size;
5298 longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
5299
5300 /* Insert the initial checkpoint record */
5301 recptr = ((char *) page + SizeOfXLogLongPHD);
5302 record = (XLogRecord *) recptr;
5303 record->xl_prev = 0;
5304 record->xl_xid = InvalidTransactionId;
5305 record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint);
5307 record->xl_rmid = RM_XLOG_ID;
5308 recptr += SizeOfXLogRecord;
5309 /* fill the XLogRecordDataHeaderShort struct */
5310 *(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT;
5311 *(recptr++) = sizeof(checkPoint);
5312 memcpy(recptr, &checkPoint, sizeof(checkPoint));
5313 recptr += sizeof(checkPoint);
5314 Assert(recptr - (char *) record == record->xl_tot_len);
5315
5317 COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord);
5318 COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc));
5319 FIN_CRC32C(crc);
5320 record->xl_crc = crc;
5321
5322 /* Create first XLOG segment file */
5325
5326 /*
5327 * We needn't bother with Reserve/ReleaseExternalFD here, since we'll
5328 * close the file again in a moment.
5329 */
5330
5331 /* Write the first page with the initial record */
5332 errno = 0;
5333 pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE);
5334 if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ)
5335 {
5336 /* if write didn't set errno, assume problem is no disk space */
5337 if (errno == 0)
5338 errno = ENOSPC;
5339 ereport(PANIC,
5341 errmsg("could not write bootstrap write-ahead log file: %m")));
5342 }
5344
5345 pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC);
5346 if (pg_fsync(openLogFile) != 0)
5347 ereport(PANIC,
5349 errmsg("could not fsync bootstrap write-ahead log file: %m")));
5351
5352 if (close(openLogFile) != 0)
5353 ereport(PANIC,
5355 errmsg("could not close bootstrap write-ahead log file: %m")));
5356
5357 openLogFile = -1;
5358
5359 /* Now create pg_control */
5360 InitControlFile(sysidentifier, data_checksum_version);
5361 ControlFile->time = checkPoint.time;
5362 ControlFile->checkPoint = checkPoint.redo;
5363 ControlFile->checkPointCopy = checkPoint;
5364
5365 /* some additional ControlFile fields are set in WriteControlFile() */
5367
5368 /* Bootstrap the commit log, too */
5369 BootStrapCLOG();
5373
5374 pfree(buffer);
5375
5376 /*
5377 * Force control file to be read - in contrast to normal processing we'd
5378 * otherwise never run the checks and GUC related initializations therein.
5379 */
5381}
5382
5383static char *
5385{
5386 char *buf = palloc(128);
5387
5388 pg_strftime(buf, 128,
5389 "%Y-%m-%d %H:%M:%S %Z",
5390 pg_localtime(&tnow, log_timezone));
5391
5392 return buf;
5393}
5394
5395/*
5396 * Initialize the first WAL segment on new timeline.
5397 */
5398static void
5400{
5401 char xlogfname[MAXFNAMELEN];
5402 XLogSegNo endLogSegNo;
5403 XLogSegNo startLogSegNo;
5404
5405 /* we always switch to a new timeline after archive recovery */
5406 Assert(endTLI != newTLI);
5407
5408 /*
5409 * Update min recovery point one last time.
5410 */
5412
5413 /*
5414 * Calculate the last segment on the old timeline, and the first segment
5415 * on the new timeline. If the switch happens in the middle of a segment,
5416 * they are the same, but if the switch happens exactly at a segment
5417 * boundary, startLogSegNo will be endLogSegNo + 1.
5418 */
5419 XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size);
5420 XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size);
5421
5422 /*
5423 * Initialize the starting WAL segment for the new timeline. If the switch
5424 * happens in the middle of a segment, copy data from the last WAL segment
5425 * of the old timeline up to the switch point, to the starting WAL segment
5426 * on the new timeline.
5427 */
5428 if (endLogSegNo == startLogSegNo)
5429 {
5430 /*
5431 * Make a copy of the file on the new timeline.
5432 *
5433 * Writing WAL isn't allowed yet, so there are no locking
5434 * considerations. But we should be just as tense as XLogFileInit to
5435 * avoid emplacing a bogus file.
5436 */
5437 XLogFileCopy(newTLI, endLogSegNo, endTLI, endLogSegNo,
5439 }
5440 else
5441 {
5442 /*
5443 * The switch happened at a segment boundary, so just create the next
5444 * segment on the new timeline.
5445 */
5446 int fd;
5447
5448 fd = XLogFileInit(startLogSegNo, newTLI);
5449
5450 if (close(fd) != 0)
5451 {
5452 int save_errno = errno;
5453
5454 XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5455 errno = save_errno;
5456 ereport(ERROR,
5458 errmsg("could not close file \"%s\": %m", xlogfname)));
5459 }
5460 }
5461
5462 /*
5463 * Let's just make real sure there are not .ready or .done flags posted
5464 * for the new segment.
5465 */
5466 XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5467 XLogArchiveCleanup(xlogfname);
5468}
5469
5470/*
5471 * Perform cleanup actions at the conclusion of archive recovery.
5472 */
5473static void
5475 TimeLineID newTLI)
5476{
5477 /*
5478 * Execute the recovery_end_command, if any.
5479 */
5480 if (recoveryEndCommand && strcmp(recoveryEndCommand, "") != 0)
5482 "recovery_end_command",
5483 true,
5484 WAIT_EVENT_RECOVERY_END_COMMAND);
5485
5486 /*
5487 * We switched to a new timeline. Clean up segments on the old timeline.
5488 *
5489 * If there are any higher-numbered segments on the old timeline, remove
5490 * them. They might contain valid WAL, but they might also be
5491 * pre-allocated files containing garbage. In any case, they are not part
5492 * of the new timeline's history so we don't need them.
5493 */
5494 RemoveNonParentXlogFiles(EndOfLog, newTLI);
5495
5496 /*
5497 * If the switch happened in the middle of a segment, what to do with the
5498 * last, partial segment on the old timeline? If we don't archive it, and
5499 * the server that created the WAL never archives it either (e.g. because
5500 * it was hit by a meteor), it will never make it to the archive. That's
5501 * OK from our point of view, because the new segment that we created with
5502 * the new TLI contains all the WAL from the old timeline up to the switch
5503 * point. But if you later try to do PITR to the "missing" WAL on the old
5504 * timeline, recovery won't find it in the archive. It's physically
5505 * present in the new file with new TLI, but recovery won't look there
5506 * when it's recovering to the older timeline. On the other hand, if we
5507 * archive the partial segment, and the original server on that timeline
5508 * is still running and archives the completed version of the same segment
5509 * later, it will fail. (We used to do that in 9.4 and below, and it
5510 * caused such problems).
5511 *
5512 * As a compromise, we rename the last segment with the .partial suffix,
5513 * and archive it. Archive recovery will never try to read .partial
5514 * segments, so they will normally go unused. But in the odd PITR case,
5515 * the administrator can copy them manually to the pg_wal directory
5516 * (removing the suffix). They can be useful in debugging, too.
5517 *
5518 * If a .done or .ready file already exists for the old timeline, however,
5519 * we had already determined that the segment is complete, so we can let
5520 * it be archived normally. (In particular, if it was restored from the
5521 * archive to begin with, it's expected to have a .done file).
5522 */
5523 if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 &&
5525 {
5526 char origfname[MAXFNAMELEN];
5527 XLogSegNo endLogSegNo;
5528
5529 XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size);
5530 XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size);
5531
5532 if (!XLogArchiveIsReadyOrDone(origfname))
5533 {
5534 char origpath[MAXPGPATH];
5535 char partialfname[MAXFNAMELEN];
5536 char partialpath[MAXPGPATH];
5537
5538 /*
5539 * If we're summarizing WAL, we can't rename the partial file
5540 * until the summarizer finishes with it, else it will fail.
5541 */
5542 if (summarize_wal)
5543 WaitForWalSummarization(EndOfLog);
5544
5545 XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size);
5546 snprintf(partialfname, MAXFNAMELEN, "%s.partial", origfname);
5547 snprintf(partialpath, MAXPGPATH, "%s.partial", origpath);
5548
5549 /*
5550 * Make sure there's no .done or .ready file for the .partial
5551 * file.
5552 */
5553 XLogArchiveCleanup(partialfname);
5554
5555 durable_rename(origpath, partialpath, ERROR);
5556 XLogArchiveNotify(partialfname);
5557 }
5558 }
5559}
5560
5561/*
5562 * Check to see if required parameters are set high enough on this server
5563 * for various aspects of recovery operation.
5564 *
5565 * Note that all the parameters which this function tests need to be
5566 * listed in Administrator's Overview section in high-availability.sgml.
5567 * If you change them, don't forget to update the list.
5568 */
5569static void
5571{
5572 /*
5573 * For archive recovery, the WAL must be generated with at least 'replica'
5574 * wal_level.
5575 */
5577 {
5578 ereport(FATAL,
5579 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5580 errmsg("WAL was generated with \"wal_level=minimal\", cannot continue recovering"),
5581 errdetail("This happens if you temporarily set \"wal_level=minimal\" on the server."),
5582 errhint("Use a backup taken after setting \"wal_level\" to higher than \"minimal\".")));
5583 }
5584
5585 /*
5586 * For Hot Standby, the WAL must be generated with 'replica' mode, and we
5587 * must have at least as many backend slots as the primary.
5588 */
5590 {
5591 /* We ignore autovacuum_worker_slots when we make this test. */
5592 RecoveryRequiresIntParameter("max_connections",
5595 RecoveryRequiresIntParameter("max_worker_processes",
5598 RecoveryRequiresIntParameter("max_wal_senders",
5601 RecoveryRequiresIntParameter("max_prepared_transactions",
5604 RecoveryRequiresIntParameter("max_locks_per_transaction",
5607 }
5608}
5609
5610/*
5611 * This must be called ONCE during postmaster or standalone-backend startup
5612 */
5613void
5615{
5617 CheckPoint checkPoint;
5618 bool wasShutdown;
5619 bool didCrash;
5620 bool haveTblspcMap;
5621 bool haveBackupLabel;
5622 XLogRecPtr EndOfLog;
5623 TimeLineID EndOfLogTLI;
5624 TimeLineID newTLI;
5625 bool performedWalRecovery;
5626 EndOfWalRecoveryInfo *endOfRecoveryInfo;
5629 TransactionId oldestActiveXID;
5630 bool promoted = false;
5631
5632 /*
5633 * We should have an aux process resource owner to use, and we should not
5634 * be in a transaction that's installed some other resowner.
5635 */
5637 Assert(CurrentResourceOwner == NULL ||
5640
5641 /*
5642 * Check that contents look valid.
5643 */
5645 ereport(FATAL,
5647 errmsg("control file contains invalid checkpoint location")));
5648
5649 switch (ControlFile->state)
5650 {
5651 case DB_SHUTDOWNED:
5652
5653 /*
5654 * This is the expected case, so don't be chatty in standalone
5655 * mode
5656 */
5658 (errmsg("database system was shut down at %s",
5660 break;
5661
5663 ereport(LOG,
5664 (errmsg("database system was shut down in recovery at %s",
5666 break;
5667
5668 case DB_SHUTDOWNING:
5669 ereport(LOG,
5670 (errmsg("database system shutdown was interrupted; last known up at %s",
5672 break;
5673
5675 ereport(LOG,
5676 (errmsg("database system was interrupted while in recovery at %s",
5678 errhint("This probably means that some data is corrupted and"
5679 " you will have to use the last backup for recovery.")));
5680 break;
5681
5683 ereport(LOG,
5684 (errmsg("database system was interrupted while in recovery at log time %s",
5686 errhint("If this has occurred more than once some data might be corrupted"
5687 " and you might need to choose an earlier recovery target.")));
5688 break;
5689
5690 case DB_IN_PRODUCTION:
5691 ereport(LOG,
5692 (errmsg("database system was interrupted; last known up at %s",
5694 break;
5695
5696 default:
5697 ereport(FATAL,
5699 errmsg("control file contains invalid database cluster state")));
5700 }
5701
5702 /* This is just to allow attaching to startup process with a debugger */
5703#ifdef XLOG_REPLAY_DELAY
5705 pg_usleep(60000000L);
5706#endif
5707
5708 /*
5709 * Verify that pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
5710 * In cases where someone has performed a copy for PITR, these directories
5711 * may have been excluded and need to be re-created.
5712 */
5714
5715 /* Set up timeout handler needed to report startup progress. */
5719
5720 /*----------
5721 * If we previously crashed, perform a couple of actions:
5722 *
5723 * - The pg_wal directory may still include some temporary WAL segments
5724 * used when creating a new segment, so perform some clean up to not
5725 * bloat this path. This is done first as there is no point to sync
5726 * this temporary data.
5727 *
5728 * - There might be data which we had written, intending to fsync it, but
5729 * which we had not actually fsync'd yet. Therefore, a power failure in
5730 * the near future might cause earlier unflushed writes to be lost, even
5731 * though more recent data written to disk from here on would be
5732 * persisted. To avoid that, fsync the entire data directory.
5733 */
5736 {
5739 didCrash = true;
5740 }
5741 else
5742 didCrash = false;
5743
5744 /*
5745 * Prepare for WAL recovery if needed.
5746 *
5747 * InitWalRecovery analyzes the control file and the backup label file, if
5748 * any. It updates the in-memory ControlFile buffer according to the
5749 * starting checkpoint, and sets InRecovery and ArchiveRecoveryRequested.
5750 * It also applies the tablespace map file, if any.
5751 */
5752 InitWalRecovery(ControlFile, &wasShutdown,
5753 &haveBackupLabel, &haveTblspcMap);
5754 checkPoint = ControlFile->checkPointCopy;
5755
5756 /* initialize shared memory variables from the checkpoint record */
5757 TransamVariables->nextXid = checkPoint.nextXid;
5758 TransamVariables->nextOid = checkPoint.nextOid;
5760 MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5761 AdvanceOldestClogXid(checkPoint.oldestXid);
5762 SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5763 SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
5765 checkPoint.newestCommitTsXid);
5766 XLogCtl->ckptFullXid = checkPoint.nextXid;
5767
5768 /*
5769 * Clear out any old relcache cache files. This is *necessary* if we do
5770 * any WAL replay, since that would probably result in the cache files
5771 * being out of sync with database reality. In theory we could leave them
5772 * in place if the database had been cleanly shut down, but it seems
5773 * safest to just remove them always and let them be rebuilt during the
5774 * first backend startup. These files needs to be removed from all
5775 * directories including pg_tblspc, however the symlinks are created only
5776 * after reading tablespace_map file in case of archive recovery from
5777 * backup, so needs to clear old relcache files here after creating
5778 * symlinks.
5779 */
5781
5782 /*
5783 * Initialize replication slots, before there's a chance to remove
5784 * required resources.
5785 */
5787
5788 /*
5789 * Startup logical state, needs to be setup now so we have proper data
5790 * during crash recovery.
5791 */
5793
5794 /*
5795 * Startup CLOG. This must be done after TransamVariables->nextXid has
5796 * been initialized and before we accept connections or begin WAL replay.
5797 */
5798 StartupCLOG();
5799
5800 /*
5801 * Startup MultiXact. We need to do this early to be able to replay
5802 * truncations.
5803 */
5805
5806 /*
5807 * Ditto for commit timestamps. Activate the facility if the setting is
5808 * enabled in the control file, as there should be no tracking of commit
5809 * timestamps done when the setting was disabled. This facility can be
5810 * started or stopped when replaying a XLOG_PARAMETER_CHANGE record.
5811 */
5814
5815 /*
5816 * Recover knowledge about replay progress of known replication partners.
5817 */
5819
5820 /*
5821 * Initialize unlogged LSN. On a clean shutdown, it's restored from the
5822 * control file. On recovery, all unlogged relations are blown away, so
5823 * the unlogged LSN counter can be reset too.
5824 */
5828 else
5831
5832 /*
5833 * Copy any missing timeline history files between 'now' and the recovery
5834 * target timeline from archive to pg_wal. While we don't need those files
5835 * ourselves - the history file of the recovery target timeline covers all
5836 * the previous timelines in the history too - a cascading standby server
5837 * might be interested in them. Or, if you archive the WAL from this
5838 * server to a different archive than the primary, it'd be good for all
5839 * the history files to get archived there after failover, so that you can
5840 * use one of the old timelines as a PITR target. Timeline history files
5841 * are small, so it's better to copy them unnecessarily than not copy them
5842 * and regret later.
5843 */
5845
5846 /*
5847 * Before running in recovery, scan pg_twophase and fill in its status to
5848 * be able to work on entries generated by redo. Doing a scan before
5849 * taking any recovery action has the merit to discard any 2PC files that
5850 * are newer than the first record to replay, saving from any conflicts at
5851 * replay. This avoids as well any subsequent scans when doing recovery
5852 * of the on-disk two-phase data.
5853 */
5855
5856 /*
5857 * When starting with crash recovery, reset pgstat data - it might not be
5858 * valid. Otherwise restore pgstat data. It's safe to do this here,
5859 * because postmaster will not yet have started any other processes.
5860 *
5861 * NB: Restoring replication slot stats relies on slot state to have
5862 * already been restored from disk.
5863 *
5864 * TODO: With a bit of extra work we could just start with a pgstat file
5865 * associated with the checkpoint redo location we're starting from.
5866 */
5867 if (didCrash)
5869 else
5871
5873
5876
5877 /* REDO */
5878 if (InRecovery)
5879 {
5880 /* Initialize state for RecoveryInProgress() */
5884 else
5887
5888 /*
5889 * Update pg_control to show that we are recovering and to show the
5890 * selected checkpoint as the place we are starting from. We also mark
5891 * pg_control with any minimum recovery stop point obtained from a
5892 * backup history file.
5893 *
5894 * No need to hold ControlFileLock yet, we aren't up far enough.
5895 */
5897
5898 /*
5899 * If there was a backup label file, it's done its job and the info
5900 * has now been propagated into pg_control. We must get rid of the
5901 * label file so that if we crash during recovery, we'll pick up at
5902 * the latest recovery restartpoint instead of going all the way back
5903 * to the backup start point. It seems prudent though to just rename
5904 * the file out of the way rather than delete it completely.
5905 */
5906 if (haveBackupLabel)
5907 {
5908 unlink(BACKUP_LABEL_OLD);
5910 }
5911
5912 /*
5913 * If there was a tablespace_map file, it's done its job and the
5914 * symlinks have been created. We must get rid of the map file so
5915 * that if we crash during recovery, we don't create symlinks again.
5916 * It seems prudent though to just rename the file out of the way
5917 * rather than delete it completely.
5918 */
5919 if (haveTblspcMap)
5920 {
5921 unlink(TABLESPACE_MAP_OLD);
5923 }
5924
5925 /*
5926 * Initialize our local copy of minRecoveryPoint. When doing crash
5927 * recovery we want to replay up to the end of WAL. Particularly, in
5928 * the case of a promoted standby minRecoveryPoint value in the
5929 * control file is only updated after the first checkpoint. However,
5930 * if the instance crashes before the first post-recovery checkpoint
5931 * is completed then recovery will use a stale location causing the
5932 * startup process to think that there are still invalid page
5933 * references when checking for data consistency.
5934 */
5936 {
5939 }
5940 else
5941 {
5944 }
5945
5946 /* Check that the GUCs used to generate the WAL allow recovery */
5948
5949 /*
5950 * We're in recovery, so unlogged relations may be trashed and must be
5951 * reset. This should be done BEFORE allowing Hot Standby
5952 * connections, so that read-only backends don't try to read whatever
5953 * garbage is left over from before.
5954 */
5956
5957 /*
5958 * Likewise, delete any saved transaction snapshot files that got left
5959 * behind by crashed backends.
5960 */
5962
5963 /*
5964 * Initialize for Hot Standby, if enabled. We won't let backends in
5965 * yet, not until we've reached the min recovery point specified in
5966 * control file and we've established a recovery snapshot from a
5967 * running-xacts WAL record.
5968 */
5970 {
5971 TransactionId *xids;
5972 int nxids;
5973
5975 (errmsg_internal("initializing for hot standby")));
5976
5978
5979 if (wasShutdown)
5980 oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
5981 else
5982 oldestActiveXID = checkPoint.oldestActiveXid;
5983 Assert(TransactionIdIsValid(oldestActiveXID));
5984
5985 /* Tell procarray about the range of xids it has to deal with */
5987
5988 /*
5989 * Startup subtrans only. CLOG, MultiXact and commit timestamp
5990 * have already been started up and other SLRUs are not maintained
5991 * during recovery and need not be started yet.
5992 */
5993 StartupSUBTRANS(oldestActiveXID);
5994
5995 /*
5996 * If we're beginning at a shutdown checkpoint, we know that
5997 * nothing was running on the primary at this point. So fake-up an
5998 * empty running-xacts record and use that here and now. Recover
5999 * additional standby state for prepared transactions.
6000 */
6001 if (wasShutdown)
6002 {
6004 TransactionId latestCompletedXid;
6005
6006 /* Update pg_subtrans entries for any prepared transactions */
6008
6009 /*
6010 * Construct a RunningTransactions snapshot representing a
6011 * shut down server, with only prepared transactions still
6012 * alive. We're never overflowed at this point because all
6013 * subxids are listed with their parent prepared transactions.
6014 */
6015 running.xcnt = nxids;
6016 running.subxcnt = 0;
6018 running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
6019 running.oldestRunningXid = oldestActiveXID;
6020 latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
6021 TransactionIdRetreat(latestCompletedXid);
6022 Assert(TransactionIdIsNormal(latestCompletedXid));
6023 running.latestCompletedXid = latestCompletedXid;
6024 running.xids = xids;
6025
6027 }
6028 }
6029
6030 /*
6031 * We're all set for replaying the WAL now. Do it.
6032 */
6034 performedWalRecovery = true;
6035 }
6036 else
6037 performedWalRecovery = false;
6038
6039 /*
6040 * Finish WAL recovery.
6041 */
6042 endOfRecoveryInfo = FinishWalRecovery();
6043 EndOfLog = endOfRecoveryInfo->endOfLog;
6044 EndOfLogTLI = endOfRecoveryInfo->endOfLogTLI;
6045 abortedRecPtr = endOfRecoveryInfo->abortedRecPtr;
6046 missingContrecPtr = endOfRecoveryInfo->missingContrecPtr;
6047
6048 /*
6049 * Reset ps status display, so as no information related to recovery shows
6050 * up.
6051 */
6052 set_ps_display("");
6053
6054 /*
6055 * When recovering from a backup (we are in recovery, and archive recovery
6056 * was requested), complain if we did not roll forward far enough to reach
6057 * the point where the database is consistent. For regular online
6058 * backup-from-primary, that means reaching the end-of-backup WAL record
6059 * (at which point we reset backupStartPoint to be Invalid), for
6060 * backup-from-replica (which can't inject records into the WAL stream),
6061 * that point is when we reach the minRecoveryPoint in pg_control (which
6062 * we purposefully copy last when backing up from a replica). For
6063 * pg_rewind (which creates a backup_label with a method of "pg_rewind")
6064 * or snapshot-style backups (which don't), backupEndRequired will be set
6065 * to false.
6066 *
6067 * Note: it is indeed okay to look at the local variable
6068 * LocalMinRecoveryPoint here, even though ControlFile->minRecoveryPoint
6069 * might be further ahead --- ControlFile->minRecoveryPoint cannot have
6070 * been advanced beyond the WAL we processed.
6071 */
6072 if (InRecovery &&
6073 (EndOfLog < LocalMinRecoveryPoint ||
6075 {
6076 /*
6077 * Ran off end of WAL before reaching end-of-backup WAL record, or
6078 * minRecoveryPoint. That's a bad sign, indicating that you tried to
6079 * recover from an online backup but never called pg_backup_stop(), or
6080 * you didn't archive all the WAL needed.
6081 */
6083 {
6085 ereport(FATAL,
6086 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
6087 errmsg("WAL ends before end of online backup"),
6088 errhint("All WAL generated while online backup was taken must be available at recovery.")));
6089 else
6090 ereport(FATAL,
6091 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
6092 errmsg("WAL ends before consistent recovery point")));
6093 }
6094 }
6095
6096 /*
6097 * Reset unlogged relations to the contents of their INIT fork. This is
6098 * done AFTER recovery is complete so as to include any unlogged relations
6099 * created during recovery, but BEFORE recovery is marked as having
6100 * completed successfully. Otherwise we'd not retry if any of the post
6101 * end-of-recovery steps fail.
6102 */
6103 if (InRecovery)
6105
6106 /*
6107 * Pre-scan prepared transactions to find out the range of XIDs present.
6108 * This information is not quite needed yet, but it is positioned here so
6109 * as potential problems are detected before any on-disk change is done.
6110 */
6111 oldestActiveXID = PrescanPreparedTransactions(NULL, NULL);
6112
6113 /*
6114 * Allow ordinary WAL segment creation before possibly switching to a new
6115 * timeline, which creates a new segment, and after the last ReadRecord().
6116 */
6118
6119 /*
6120 * Consider whether we need to assign a new timeline ID.
6121 *
6122 * If we did archive recovery, we always assign a new ID. This handles a
6123 * couple of issues. If we stopped short of the end of WAL during
6124 * recovery, then we are clearly generating a new timeline and must assign
6125 * it a unique new ID. Even if we ran to the end, modifying the current
6126 * last segment is problematic because it may result in trying to
6127 * overwrite an already-archived copy of that segment, and we encourage
6128 * DBAs to make their archive_commands reject that. We can dodge the
6129 * problem by making the new active segment have a new timeline ID.
6130 *
6131 * In a normal crash recovery, we can just extend the timeline we were in.
6132 */
6133 newTLI = endOfRecoveryInfo->lastRecTLI;
6135 {
6137 ereport(LOG,
6138 (errmsg("selected new timeline ID: %u", newTLI)));
6139
6140 /*
6141 * Make a writable copy of the last WAL segment. (Note that we also
6142 * have a copy of the last block of the old WAL in
6143 * endOfRecovery->lastPage; we will use that below.)
6144 */
6145 XLogInitNewTimeline(EndOfLogTLI, EndOfLog, newTLI);
6146
6147 /*
6148 * Remove the signal files out of the way, so that we don't
6149 * accidentally re-enter archive recovery mode in a subsequent crash.
6150 */
6151 if (endOfRecoveryInfo->standby_signal_file_found)
6153
6154 if (endOfRecoveryInfo->recovery_signal_file_found)
6156
6157 /*
6158 * Write the timeline history file, and have it archived. After this
6159 * point (or rather, as soon as the file is archived), the timeline
6160 * will appear as "taken" in the WAL archive and to any standby
6161 * servers. If we crash before actually switching to the new
6162 * timeline, standby servers will nevertheless think that we switched
6163 * to the new timeline, and will try to connect to the new timeline.
6164 * To minimize the window for that, try to do as little as possible
6165 * between here and writing the end-of-recovery record.
6166 */
6168 EndOfLog, endOfRecoveryInfo->recoveryStopReason);
6169
6170 ereport(LOG,
6171 (errmsg("archive recovery complete")));
6172 }
6173
6174 /* Save the selected TimeLineID in shared memory, too */
6176 XLogCtl->InsertTimeLineID = newTLI;
6177 XLogCtl->PrevTimeLineID = endOfRecoveryInfo->lastRecTLI;
6179
6180 /*
6181 * Actually, if WAL ended in an incomplete record, skip the parts that
6182 * made it through and start writing after the portion that persisted.
6183 * (It's critical to first write an OVERWRITE_CONTRECORD message, which
6184 * we'll do as soon as we're open for writing new WAL.)
6185 */
6187 {
6188 /*
6189 * We should only have a missingContrecPtr if we're not switching to a
6190 * new timeline. When a timeline switch occurs, WAL is copied from the
6191 * old timeline to the new only up to the end of the last complete
6192 * record, so there can't be an incomplete WAL record that we need to
6193 * disregard.
6194 */
6195 Assert(newTLI == endOfRecoveryInfo->lastRecTLI);
6197 EndOfLog = missingContrecPtr;
6198 }
6199
6200 /*
6201 * Prepare to write WAL starting at EndOfLog location, and init xlog
6202 * buffer cache using the block containing the last record from the
6203 * previous incarnation.
6204 */
6205 Insert = &XLogCtl->Insert;
6206 Insert->PrevBytePos = XLogRecPtrToBytePos(endOfRecoveryInfo->lastRec);
6207 Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog);
6208
6209 /*
6210 * Tricky point here: lastPage contains the *last* block that the LastRec
6211 * record spans, not the one it starts in. The last block is indeed the
6212 * one we want to use.
6213 */
6214 if (EndOfLog % XLOG_BLCKSZ != 0)
6215 {
6216 char *page;
6217 int len;
6218 int firstIdx;
6219
6220 firstIdx = XLogRecPtrToBufIdx(EndOfLog);
6221 len = EndOfLog - endOfRecoveryInfo->lastPageBeginPtr;
6222 Assert(len < XLOG_BLCKSZ);
6223
6224 /* Copy the valid part of the last block, and zero the rest */
6225 page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ];
6226 memcpy(page, endOfRecoveryInfo->lastPage, len);
6227 memset(page + len, 0, XLOG_BLCKSZ - len);
6228
6229 pg_atomic_write_u64(&XLogCtl->xlblocks[firstIdx], endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ);
6230 pg_atomic_write_u64(&XLogCtl->InitializedUpTo, endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ);
6231 XLogCtl->InitializedFrom = endOfRecoveryInfo->lastPageBeginPtr;
6232 }
6233 else
6234 {
6235 /*
6236 * There is no partial block to copy. Just set InitializedUpTo, and
6237 * let the first attempt to insert a log record to initialize the next
6238 * buffer.
6239 */
6241 XLogCtl->InitializedFrom = EndOfLog;
6242 }
6244
6245 /*
6246 * Update local and shared status. This is OK to do without any locks
6247 * because no other process can be reading or writing WAL yet.
6248 */
6249 LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
6253 XLogCtl->LogwrtRqst.Write = EndOfLog;
6254 XLogCtl->LogwrtRqst.Flush = EndOfLog;
6255
6256 /*
6257 * Preallocate additional log files, if wanted.
6258 */
6259 PreallocXlogFiles(EndOfLog, newTLI);
6260
6261 /*
6262 * Okay, we're officially UP.
6263 */
6264 InRecovery = false;
6265
6266 /* start the archive_timeout timer and LSN running */
6267 XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
6268 XLogCtl->lastSegSwitchLSN = EndOfLog;
6269
6270 /* also initialize latestCompletedXid, to nextXid - 1 */
6271 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
6274 LWLockRelease(ProcArrayLock);
6275
6276 /*
6277 * Start up subtrans, if not already done for hot standby. (commit
6278 * timestamps are started below, if necessary.)
6279 */
6281 StartupSUBTRANS(oldestActiveXID);
6282
6283 /*
6284 * Perform end of recovery actions for any SLRUs that need it.
6285 */
6286 TrimCLOG();
6287 TrimMultiXact();
6288
6289 /*
6290 * Reload shared-memory state for prepared transactions. This needs to
6291 * happen before renaming the last partial segment of the old timeline as
6292 * it may be possible that we have to recover some transactions from it.
6293 */
6295
6296 /* Shut down xlogreader */
6298
6299 /* Enable WAL writes for this backend only. */
6301
6302 /* If necessary, write overwrite-contrecord before doing anything else */
6304 {
6307 }
6308
6309 /*
6310 * Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE
6311 * record before resource manager writes cleanup WAL records or checkpoint
6312 * record is written.
6313 */
6314 Insert->fullPageWrites = lastFullPageWrites;
6316
6317 /*
6318 * Emit checkpoint or end-of-recovery record in XLOG, if required.
6319 */
6320 if (performedWalRecovery)
6321 promoted = PerformRecoveryXLogAction();
6322
6323 /*
6324 * If any of the critical GUCs have changed, log them before we allow
6325 * backends to write WAL.
6326 */
6328
6329 /* If this is archive recovery, perform post-recovery cleanup actions. */
6331 CleanupAfterArchiveRecovery(EndOfLogTLI, EndOfLog, newTLI);
6332
6333 /*
6334 * Local WAL inserts enabled, so it's time to finish initialization of
6335 * commit timestamp.
6336 */
6338
6339 /*
6340 * All done with end-of-recovery actions.
6341 *
6342 * Now allow backends to write WAL and update the control file status in
6343 * consequence. SharedRecoveryState, that controls if backends can write
6344 * WAL, is updated while holding ControlFileLock to prevent other backends
6345 * to look at an inconsistent state of the control file in shared memory.
6346 * There is still a small window during which backends can write WAL and
6347 * the control file is still referring to a system not in DB_IN_PRODUCTION
6348 * state while looking at the on-disk control file.
6349 *
6350 * Also, we use info_lck to update SharedRecoveryState to ensure that
6351 * there are no race conditions concerning visibility of other recent
6352 * updates to shared memory.
6353 */
6354 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6356
6360
6362 LWLockRelease(ControlFileLock);
6363
6364 /*
6365 * Shutdown the recovery environment. This must occur after
6366 * RecoverPreparedTransactions() (see notes in lock_twophase_recover())
6367 * and after switching SharedRecoveryState to RECOVERY_STATE_DONE so as
6368 * any session building a snapshot will not rely on KnownAssignedXids as
6369 * RecoveryInProgress() would return false at this stage. This is
6370 * particularly critical for prepared 2PC transactions, that would still
6371 * need to be included in snapshots once recovery has ended.
6372 */
6375
6376 /*
6377 * If there were cascading standby servers connected to us, nudge any wal
6378 * sender processes to notice that we've been promoted.
6379 */
6380 WalSndWakeup(true, true);
6381
6382 /*
6383 * If this was a promotion, request an (online) checkpoint now. This isn't
6384 * required for consistency, but the last restartpoint might be far back,
6385 * and in case of a crash, recovering from it might take a longer than is
6386 * appropriate now that we're not in standby mode anymore.
6387 */
6388 if (promoted)
6390}
6391
6392/*
6393 * Callback from PerformWalRecovery(), called when we switch from crash
6394 * recovery to archive recovery mode. Updates the control file accordingly.
6395 */
6396void
6398{
6399 /* initialize minRecoveryPoint to this record */
6400 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6402 if (ControlFile->minRecoveryPoint < EndRecPtr)
6403 {
6404 ControlFile->minRecoveryPoint = EndRecPtr;
6405 ControlFile->minRecoveryPointTLI = replayTLI;
6406 }
6407 /* update local copy */
6410
6411 /*
6412 * The startup process can update its local copy of minRecoveryPoint from
6413 * this point.
6414 */
6416
6418
6419 /*
6420 * We update SharedRecoveryState while holding the lock on ControlFileLock
6421 * so both states are consistent in shared memory.
6422 */
6426
6427 LWLockRelease(ControlFileLock);
6428}
6429
6430/*
6431 * Callback from PerformWalRecovery(), called when we reach the end of backup.
6432 * Updates the control file accordingly.
6433 */
6434void
6436{
6437 /*
6438 * We have reached the end of base backup, as indicated by pg_control. The
6439 * data on disk is now consistent (unless minRecoveryPoint is further
6440 * ahead, which can happen if we crashed during previous recovery). Reset
6441 * backupStartPoint and backupEndPoint, and update minRecoveryPoint to
6442 * make sure we don't allow starting up at an earlier point even if
6443 * recovery is stopped and restarted soon after this.
6444 */
6445 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6446
6447 if (ControlFile->minRecoveryPoint < EndRecPtr)
6448 {
6449 ControlFile->minRecoveryPoint = EndRecPtr;
6451 }
6452
6457
6458 LWLockRelease(ControlFileLock);
6459}
6460
6461/*
6462 * Perform whatever XLOG actions are necessary at end of REDO.
6463 *
6464 * The goal here is to make sure that we'll be able to recover properly if
6465 * we crash again. If we choose to write a checkpoint, we'll write a shutdown
6466 * checkpoint rather than an on-line one. This is not particularly critical,
6467 * but since we may be assigning a new TLI, using a shutdown checkpoint allows
6468 * us to have the rule that TLI only changes in shutdown checkpoints, which
6469 * allows some extra error checking in xlog_redo.
6470 */
6471static bool
6473{
6474 bool promoted = false;
6475
6476 /*
6477 * Perform a checkpoint to update all our recovery activity to disk.
6478 *
6479 * Note that we write a shutdown checkpoint rather than an on-line one.
6480 * This is not particularly critical, but since we may be assigning a new
6481 * TLI, using a shutdown checkpoint allows us to have the rule that TLI
6482 * only changes in shutdown checkpoints, which allows some extra error
6483 * checking in xlog_redo.
6484 *
6485 * In promotion, only create a lightweight end-of-recovery record instead
6486 * of a full checkpoint. A checkpoint is requested later, after we're
6487 * fully out of recovery mode and already accepting queries.
6488 */
6491 {
6492 promoted = true;
6493
6494 /*
6495 * Insert a special WAL record to mark the end of recovery, since we
6496 * aren't doing a checkpoint. That means that the checkpointer process
6497 * may likely be in the middle of a time-smoothed restartpoint and
6498 * could continue to be for minutes after this. That sounds strange,
6499 * but the effect is roughly the same and it would be stranger to try
6500 * to come out of the restartpoint and then checkpoint. We request a
6501 * checkpoint later anyway, just for safety.
6502 */
6504 }
6505 else
6506 {
6510 }
6511
6512 return promoted;
6513}
6514
6515/*
6516 * Is the system still in recovery?
6517 *
6518 * Unlike testing InRecovery, this works in any process that's connected to
6519 * shared memory.
6520 */
6521bool
6523{
6524 /*
6525 * We check shared state each time only until we leave recovery mode. We
6526 * can't re-enter recovery, so there's no need to keep checking after the
6527 * shared variable has once been seen false.
6528 */
6530 return false;
6531 else
6532 {
6533 /*
6534 * use volatile pointer to make sure we make a fresh read of the
6535 * shared variable.
6536 */
6537 volatile XLogCtlData *xlogctl = XLogCtl;
6538
6540
6541 /*
6542 * Note: We don't need a memory barrier when we're still in recovery.
6543 * We might exit recovery immediately after return, so the caller
6544 * can't rely on 'true' meaning that we're still in recovery anyway.
6545 */
6546
6548 }
6549}
6550
6551/*
6552 * Returns current recovery state from shared memory.
6553 *
6554 * This returned state is kept consistent with the contents of the control
6555 * file. See details about the possible values of RecoveryState in xlog.h.
6556 */
6559{
6560 RecoveryState retval;
6561
6563 retval = XLogCtl->SharedRecoveryState;
6565
6566 return retval;
6567}
6568
6569/*
6570 * Is this process allowed to insert new WAL records?
6571 *
6572 * Ordinarily this is essentially equivalent to !RecoveryInProgress().
6573 * But we also have provisions for forcing the result "true" or "false"
6574 * within specific processes regardless of the global state.
6575 */
6576bool
6578{
6579 /*
6580 * If value is "unconditionally true" or "unconditionally false", just
6581 * return it. This provides the normal fast path once recovery is known
6582 * done.
6583 */
6584 if (LocalXLogInsertAllowed >= 0)
6585 return (bool) LocalXLogInsertAllowed;
6586
6587 /*
6588 * Else, must check to see if we're still in recovery.
6589 */
6590 if (RecoveryInProgress())
6591 return false;
6592
6593 /*
6594 * On exit from recovery, reset to "unconditionally true", since there is
6595 * no need to keep checking.
6596 */
6598 return true;
6599}
6600
6601/*
6602 * Make XLogInsertAllowed() return true in the current process only.
6603 *
6604 * Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later,
6605 * and even call LocalSetXLogInsertAllowed() again after that.
6606 *
6607 * Returns the previous value of LocalXLogInsertAllowed.
6608 */
6609static int
6611{
6612 int oldXLogAllowed = LocalXLogInsertAllowed;
6613
6615
6616 return oldXLogAllowed;
6617}
6618
6619/*
6620 * Return the current Redo pointer from shared memory.
6621 *
6622 * As a side-effect, the local RedoRecPtr copy is updated.
6623 */
6626{
6627 XLogRecPtr ptr;
6628
6629 /*
6630 * The possibly not up-to-date copy in XlogCtl is enough. Even if we
6631 * grabbed a WAL insertion lock to read the authoritative value in
6632 * Insert->RedoRecPtr, someone might update it just after we've released
6633 * the lock.
6634 */
6636 ptr = XLogCtl->RedoRecPtr;
6638
6639 if (RedoRecPtr < ptr)
6640 RedoRecPtr = ptr;
6641
6642 return RedoRecPtr;
6643}
6644
6645/*
6646 * Return information needed to decide whether a modified block needs a
6647 * full-page image to be included in the WAL record.
6648 *
6649 * The returned values are cached copies from backend-private memory, and
6650 * possibly out-of-date or, indeed, uninitialized, in which case they will
6651 * be InvalidXLogRecPtr and false, respectively. XLogInsertRecord will
6652 * re-check them against up-to-date values, while holding the WAL insert lock.
6653 */
6654void
6655GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
6656{
6657 *RedoRecPtr_p = RedoRecPtr;
6658 *doPageWrites_p = doPageWrites;
6659}
6660
6661/*
6662 * GetInsertRecPtr -- Returns the current insert position.
6663 *
6664 * NOTE: The value *actually* returned is the position of the last full
6665 * xlog page. It lags behind the real insert position by at most 1 page.
6666 * For that, we don't need to scan through WAL insertion locks, and an
6667 * approximation is enough for the current usage of this function.
6668 */
6671{
6672 XLogRecPtr recptr;
6673
6675 recptr = XLogCtl->LogwrtRqst.Write;
6677
6678 return recptr;
6679}
6680
6681/*
6682 * GetFlushRecPtr -- Returns the current flush position, ie, the last WAL
6683 * position known to be fsync'd to disk. This should only be used on a
6684 * system that is known not to be in recovery.
6685 */
6688{
6690
6692
6693 /*
6694 * If we're writing and flushing WAL, the time line can't be changing, so
6695 * no lock is required.
6696 */
6697 if (insertTLI)
6698 *insertTLI = XLogCtl->InsertTimeLineID;
6699
6700 return LogwrtResult.Flush;
6701}
6702
6703/*
6704 * GetWALInsertionTimeLine -- Returns the current timeline of a system that
6705 * is not in recovery.
6706 */
6709{
6711
6712 /* Since the value can't be changing, no lock is required. */
6713 return XLogCtl->InsertTimeLineID;
6714}
6715
6716/*
6717 * GetWALInsertionTimeLineIfSet -- If the system is not in recovery, returns
6718 * the WAL insertion timeline; else, returns 0. Wherever possible, use
6719 * GetWALInsertionTimeLine() instead, since it's cheaper. Note that this
6720 * function decides recovery has ended as soon as the insert TLI is set, which
6721 * happens before we set XLogCtl->SharedRecoveryState to RECOVERY_STATE_DONE.
6722 */
6725{
6726 TimeLineID insertTLI;
6727
6729 insertTLI = XLogCtl->InsertTimeLineID;
6731
6732 return insertTLI;
6733}
6734
6735/*
6736 * GetLastImportantRecPtr -- Returns the LSN of the last important record
6737 * inserted. All records not explicitly marked as unimportant are considered
6738 * important.
6739 *
6740 * The LSN is determined by computing the maximum of
6741 * WALInsertLocks[i].lastImportantAt.
6742 */
6745{
6747 int i;
6748
6749 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
6750 {
6751 XLogRecPtr last_important;
6752
6753 /*
6754 * Need to take a lock to prevent torn reads of the LSN, which are
6755 * possible on some of the supported platforms. WAL insert locks only
6756 * support exclusive mode, so we have to use that.
6757 */
6759 last_important = WALInsertLocks[i].l.lastImportantAt;
6760 LWLockRelease(&WALInsertLocks[i].l.lock);
6761
6762 if (res < last_important)
6763 res = last_important;
6764 }
6765
6766 return res;
6767}
6768
6769/*
6770 * Get the time and LSN of the last xlog segment switch
6771 */
6774{
6775 pg_time_t result;
6776
6777 /* Need WALWriteLock, but shared lock is sufficient */
6778 LWLockAcquire(WALWriteLock, LW_SHARED);
6779 result = XLogCtl->lastSegSwitchTime;
6780 *lastSwitchLSN = XLogCtl->lastSegSwitchLSN;
6781 LWLockRelease(WALWriteLock);
6782
6783 return result;
6784}
6785
6786/*
6787 * This must be called ONCE during postmaster or standalone-backend shutdown
6788 */
6789void
6791{
6792 /*
6793 * We should have an aux process resource owner to use, and we should not
6794 * be in a transaction that's installed some other resowner.
6795 */
6797 Assert(CurrentResourceOwner == NULL ||
6800
6801 /* Don't be chatty in standalone mode */
6803 (errmsg("shutting down")));
6804
6805 /*
6806 * Signal walsenders to move to stopping state.
6807 */
6809
6810 /*
6811 * Wait for WAL senders to be in stopping state. This prevents commands
6812 * from writing new WAL.
6813 */
6815
6816 if (RecoveryInProgress())
6818 else
6819 {
6820 /*
6821 * If archiving is enabled, rotate the last XLOG file so that all the
6822 * remaining records are archived (postmaster wakes up the archiver
6823 * process one more time at the end of shutdown). The checkpoint
6824 * record will go to the next XLOG file and won't be archived (yet).
6825 */
6826 if (XLogArchivingActive())
6827 RequestXLogSwitch(false);
6828
6830 }
6831}
6832
6833/*
6834 * Log start of a checkpoint.
6835 */
6836static void
6837LogCheckpointStart(int flags, bool restartpoint)
6838{
6839 if (restartpoint)
6840 ereport(LOG,
6841 /* translator: the placeholders show checkpoint options */
6842 (errmsg("restartpoint starting:%s%s%s%s%s%s%s%s",
6843 (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6844 (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6845 (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6846 (flags & CHECKPOINT_FORCE) ? " force" : "",
6847 (flags & CHECKPOINT_WAIT) ? " wait" : "",
6848 (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6849 (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6850 (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
6851 else
6852 ereport(LOG,
6853 /* translator: the placeholders show checkpoint options */
6854 (errmsg("checkpoint starting:%s%s%s%s%s%s%s%s",
6855 (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6856 (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6857 (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6858 (flags & CHECKPOINT_FORCE) ? " force" : "",
6859 (flags & CHECKPOINT_WAIT) ? " wait" : "",
6860 (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6861 (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6862 (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
6863}
6864
6865/*
6866 * Log end of a checkpoint.
6867 */
6868static void
6869LogCheckpointEnd(bool restartpoint)
6870{
6871 long write_msecs,
6872 sync_msecs,
6873 total_msecs,
6874 longest_msecs,
6875 average_msecs;
6876 uint64 average_sync_time;
6877
6879
6882
6885
6886 /* Accumulate checkpoint timing summary data, in milliseconds. */
6887 PendingCheckpointerStats.write_time += write_msecs;
6888 PendingCheckpointerStats.sync_time += sync_msecs;
6889
6890 /*
6891 * All of the published timing statistics are accounted for. Only
6892 * continue if a log message is to be written.
6893 */
6894 if (!log_checkpoints)
6895 return;
6896
6899
6900 /*
6901 * Timing values returned from CheckpointStats are in microseconds.
6902 * Convert to milliseconds for consistent printing.
6903 */
6904 longest_msecs = (long) ((CheckpointStats.ckpt_longest_sync + 999) / 1000);
6905
6906 average_sync_time = 0;
6908 average_sync_time = CheckpointStats.ckpt_agg_sync_time /
6910 average_msecs = (long) ((average_sync_time + 999) / 1000);
6911
6912 /*
6913 * ControlFileLock is not required to see ControlFile->checkPoint and
6914 * ->checkPointCopy here as we are the only updator of those variables at
6915 * this moment.
6916 */
6917 if (restartpoint)
6918 ereport(LOG,
6919 (errmsg("restartpoint complete: wrote %d buffers (%.1f%%), "
6920 "wrote %d SLRU buffers; %d WAL file(s) added, "
6921 "%d removed, %d recycled; write=%ld.%03d s, "
6922 "sync=%ld.%03d s, total=%ld.%03d s; sync files=%d, "
6923 "longest=%ld.%03d s, average=%ld.%03d s; distance=%d kB, "
6924 "estimate=%d kB; lsn=%X/%X, redo lsn=%X/%X",
6931 write_msecs / 1000, (int) (write_msecs % 1000),
6932 sync_msecs / 1000, (int) (sync_msecs % 1000),
6933 total_msecs / 1000, (int) (total_msecs % 1000),
6935 longest_msecs / 1000, (int) (longest_msecs % 1000),
6936 average_msecs / 1000, (int) (average_msecs % 1000),
6937 (int) (PrevCheckPointDistance / 1024.0),
6938 (int) (CheckPointDistanceEstimate / 1024.0),
6941 else
6942 ereport(LOG,
6943 (errmsg("checkpoint complete: wrote %d buffers (%.1f%%), "
6944 "wrote %d SLRU buffers; %d WAL file(s) added, "
6945 "%d removed, %d recycled; write=%ld.%03d s, "
6946 "sync=%ld.%03d s, total=%ld.%03d s; sync files=%d, "
6947 "longest=%ld.%03d s, average=%ld.%03d s; distance=%d kB, "
6948 "estimate=%d kB; lsn=%X/%X, redo lsn=%X/%X",
6955 write_msecs / 1000, (int) (write_msecs % 1000),
6956 sync_msecs / 1000, (int) (sync_msecs % 1000),
6957 total_msecs / 1000, (int) (total_msecs % 1000),
6959 longest_msecs / 1000, (int) (longest_msecs % 1000),
6960 average_msecs / 1000, (int) (average_msecs % 1000),
6961 (int) (PrevCheckPointDistance / 1024.0),
6962 (int) (CheckPointDistanceEstimate / 1024.0),
6965}
6966
6967/*
6968 * Update the estimate of distance between checkpoints.
6969 *
6970 * The estimate is used to calculate the number of WAL segments to keep
6971 * preallocated, see XLOGfileslop().
6972 */
6973static void
6975{
6976 /*
6977 * To estimate the number of segments consumed between checkpoints, keep a
6978 * moving average of the amount of WAL generated in previous checkpoint
6979 * cycles. However, if the load is bursty, with quiet periods and busy
6980 * periods, we want to cater for the peak load. So instead of a plain
6981 * moving average, let the average decline slowly if the previous cycle
6982 * used less WAL than estimated, but bump it up immediately if it used
6983 * more.
6984 *
6985 * When checkpoints are triggered by max_wal_size, this should converge to
6986 * CheckpointSegments * wal_segment_size,
6987 *
6988 * Note: This doesn't pay any attention to what caused the checkpoint.
6989 * Checkpoints triggered manually with CHECKPOINT command, or by e.g.
6990 * starting a base backup, are counted the same as those created
6991 * automatically. The slow-decline will largely mask them out, if they are
6992 * not frequent. If they are frequent, it seems reasonable to count them
6993 * in as any others; if you issue a manual checkpoint every 5 minutes and
6994 * never let a timed checkpoint happen, it makes sense to base the
6995 * preallocation on that 5 minute interval rather than whatever
6996 * checkpoint_timeout is set to.
6997 */
6998 PrevCheckPointDistance = nbytes;
6999 if (CheckPointDistanceEstimate < nbytes)
7001 else
7003 (0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes);
7004}
7005
7006/*
7007 * Update the ps display for a process running a checkpoint. Note that
7008 * this routine should not do any allocations so as it can be called
7009 * from a critical section.
7010 */
7011static void
7012update_checkpoint_display(int flags, bool restartpoint, bool reset)
7013{
7014 /*
7015 * The status is reported only for end-of-recovery and shutdown
7016 * checkpoints or shutdown restartpoints. Updating the ps display is
7017 * useful in those situations as it may not be possible to rely on
7018 * pg_stat_activity to see the status of the checkpointer or the startup
7019 * process.
7020 */
7022 return;
7023
7024 if (reset)
7025 set_ps_display("");
7026 else
7027 {
7028 char activitymsg[128];
7029
7030 snprintf(activitymsg, sizeof(activitymsg), "performing %s%s%s",
7031 (flags & CHECKPOINT_END_OF_RECOVERY) ? "end-of-recovery " : "",
7032 (flags & CHECKPOINT_IS_SHUTDOWN) ? "shutdown " : "",
7033 restartpoint ? "restartpoint" : "checkpoint");
7034 set_ps_display(activitymsg);
7035 }
7036}
7037
7038
7039/*
7040 * Perform a checkpoint --- either during shutdown, or on-the-fly
7041 *
7042 * flags is a bitwise OR of the following:
7043 * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
7044 * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
7045 * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
7046 * ignoring checkpoint_completion_target parameter.
7047 * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
7048 * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
7049 * CHECKPOINT_END_OF_RECOVERY).
7050 * CHECKPOINT_FLUSH_ALL: also flush buffers of unlogged tables.
7051 *
7052 * Note: flags contains other bits, of interest here only for logging purposes.
7053 * In particular note that this routine is synchronous and does not pay
7054 * attention to CHECKPOINT_WAIT.
7055 *
7056 * If !shutdown then we are writing an online checkpoint. An XLOG_CHECKPOINT_REDO
7057 * record is inserted into WAL at the logical location of the checkpoint, before
7058 * flushing anything to disk, and when the checkpoint is eventually completed,
7059 * and it is from this point that WAL replay will begin in the case of a recovery
7060 * from this checkpoint. Once everything is written to disk, an
7061 * XLOG_CHECKPOINT_ONLINE record is written to complete the checkpoint, and
7062 * points back to the earlier XLOG_CHECKPOINT_REDO record. This mechanism allows
7063 * other write-ahead log records to be written while the checkpoint is in
7064 * progress, but we must be very careful about order of operations. This function
7065 * may take many minutes to execute on a busy system.
7066 *
7067 * On the other hand, when shutdown is true, concurrent insertion into the
7068 * write-ahead log is impossible, so there is no need for two separate records.
7069 * In this case, we only insert an XLOG_CHECKPOINT_SHUTDOWN record, and it's
7070 * both the record marking the completion of the checkpoint and the location
7071 * from which WAL replay would begin if needed.
7072 *
7073 * Returns true if a new checkpoint was performed, or false if it was skipped
7074 * because the system was idle.
7075 */
7076bool
7078{
7079 bool shutdown;
7080 CheckPoint checkPoint;
7081 XLogRecPtr recptr;
7082 XLogSegNo _logSegNo;
7084 uint32 freespace;
7085 XLogRecPtr PriorRedoPtr;
7086 XLogRecPtr last_important_lsn;
7087 VirtualTransactionId *vxids;
7088 int nvxids;
7089 int oldXLogAllowed = 0;
7090
7091 /*
7092 * An end-of-recovery checkpoint is really a shutdown checkpoint, just
7093 * issued at a different time.
7094 */
7096 shutdown = true;
7097 else
7098 shutdown = false;
7099
7100 /* sanity check */
7101 if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
7102 elog(ERROR, "can't create a checkpoint during recovery");
7103
7104 /*
7105 * Prepare to accumulate statistics.
7106 *
7107 * Note: because it is possible for log_checkpoints to change while a
7108 * checkpoint proceeds, we always accumulate stats, even if
7109 * log_checkpoints is currently off.
7110 */
7113
7114 /*
7115 * Let smgr prepare for checkpoint; this has to happen outside the
7116 * critical section and before we determine the REDO pointer. Note that
7117 * smgr must not do anything that'd have to be undone if we decide no
7118 * checkpoint is needed.
7119 */
7121
7122 /*
7123 * Use a critical section to force system panic if we have trouble.
7124 */
7126
7127 if (shutdown)
7128 {
7129 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7132 LWLockRelease(ControlFileLock);
7133 }
7134
7135 /* Begin filling in the checkpoint WAL record */
7136 MemSet(&checkPoint, 0, sizeof(checkPoint));
7137 checkPoint.time = (pg_time_t) time(NULL);
7138
7139 /*
7140 * For Hot Standby, derive the oldestActiveXid before we fix the redo
7141 * pointer. This allows us to begin accumulating changes to assemble our
7142 * starting snapshot of locks and transactions.
7143 */
7144 if (!shutdown && XLogStandbyInfoActive())
7146 else
7148
7149 /*
7150 * Get location of last important record before acquiring insert locks (as
7151 * GetLastImportantRecPtr() also locks WAL locks).
7152 */
7153 last_important_lsn = GetLastImportantRecPtr();
7154
7155 /*
7156 * If this isn't a shutdown or forced checkpoint, and if there has been no
7157 * WAL activity requiring a checkpoint, skip it. The idea here is to
7158 * avoid inserting duplicate checkpoints when the system is idle.
7159 */
7161 CHECKPOINT_FORCE)) == 0)
7162 {
7163 if (last_important_lsn == ControlFile->checkPoint)
7164 {
7167 (errmsg_internal("checkpoint skipped because system is idle")));
7168 return false;
7169 }
7170 }
7171
7172 /*
7173 * An end-of-recovery checkpoint is created before anyone is allowed to
7174 * write WAL. To allow us to write the checkpoint record, temporarily
7175 * enable XLogInsertAllowed.
7176 */
7177 if (flags & CHECKPOINT_END_OF_RECOVERY)
7178 oldXLogAllowed = LocalSetXLogInsertAllowed();
7179
7181 if (flags & CHECKPOINT_END_OF_RECOVERY)
7183 else
7184 checkPoint.PrevTimeLineID = checkPoint.ThisTimeLineID;
7185
7186 /*
7187 * We must block concurrent insertions while examining insert state.
7188 */
7190
7191 checkPoint.fullPageWrites = Insert->fullPageWrites;
7192 checkPoint.wal_level = wal_level;
7193
7194 if (shutdown)
7195 {
7196 XLogRecPtr curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos);
7197
7198 /*
7199 * Compute new REDO record ptr = location of next XLOG record.
7200 *
7201 * Since this is a shutdown checkpoint, there can't be any concurrent
7202 * WAL insertion.
7203 */
7204 freespace = INSERT_FREESPACE(curInsert);
7205 if (freespace == 0)
7206 {
7207 if (XLogSegmentOffset(curInsert, wal_segment_size) == 0)
7208 curInsert += SizeOfXLogLongPHD;
7209 else
7210 curInsert += SizeOfXLogShortPHD;
7211 }
7212 checkPoint.redo = curInsert;
7213
7214 /*
7215 * Here we update the shared RedoRecPtr for future XLogInsert calls;
7216 * this must be done while holding all the insertion locks.
7217 *
7218 * Note: if we fail to complete the checkpoint, RedoRecPtr will be
7219 * left pointing past where it really needs to point. This is okay;
7220 * the only consequence is that XLogInsert might back up whole buffers
7221 * that it didn't really need to. We can't postpone advancing
7222 * RedoRecPtr because XLogInserts that happen while we are dumping
7223 * buffers must assume that their buffer changes are not included in
7224 * the checkpoint.
7225 */
7226 RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
7227 }
7228
7229 /*
7230 * Now we can release the WAL insertion locks, allowing other xacts to
7231 * proceed while we are flushing disk buffers.
7232 */
7234
7235 /*
7236 * If this is an online checkpoint, we have not yet determined the redo
7237 * point. We do so now by inserting the special XLOG_CHECKPOINT_REDO
7238 * record; the LSN at which it starts becomes the new redo pointer. We
7239 * don't do this for a shutdown checkpoint, because in that case no WAL
7240 * can be written between the redo point and the insertion of the
7241 * checkpoint record itself, so the checkpoint record itself serves to
7242 * mark the redo point.
7243 */
7244 if (!shutdown)
7245 {
7246 /* Include WAL level in record for WAL summarizer's benefit. */
7249 (void) XLogInsert(RM_XLOG_ID, XLOG_CHECKPOINT_REDO);
7250
7251 /*
7252 * XLogInsertRecord will have updated XLogCtl->Insert.RedoRecPtr in
7253 * shared memory and RedoRecPtr in backend-local memory, but we need
7254 * to copy that into the record that will be inserted when the
7255 * checkpoint is complete.
7256 */
7257 checkPoint.redo = RedoRecPtr;
7258 }
7259
7260 /* Update the info_lck-protected copy of RedoRecPtr as well */
7262 XLogCtl->RedoRecPtr = checkPoint.redo;
7264
7265 /*
7266 * If enabled, log checkpoint start. We postpone this until now so as not
7267 * to log anything if we decided to skip the checkpoint.
7268 */
7269 if (log_checkpoints)
7270 LogCheckpointStart(flags, false);
7271
7272 /* Update the process title */
7273 update_checkpoint_display(flags, false, false);
7274
7275 TRACE_POSTGRESQL_CHECKPOINT_START(flags);
7276
7277 /*
7278 * Get the other info we need for the checkpoint record.
7279 *
7280 * We don't need to save oldestClogXid in the checkpoint, it only matters
7281 * for the short period in which clog is being truncated, and if we crash
7282 * during that we'll redo the clog truncation and fix up oldestClogXid
7283 * there.
7284 */
7285 LWLockAcquire(XidGenLock, LW_SHARED);
7286 checkPoint.nextXid = TransamVariables->nextXid;
7287 checkPoint.oldestXid = TransamVariables->oldestXid;
7289 LWLockRelease(XidGenLock);
7290
7291 LWLockAcquire(CommitTsLock, LW_SHARED);
7294 LWLockRelease(CommitTsLock);
7295
7296 LWLockAcquire(OidGenLock, LW_SHARED);
7297 checkPoint.nextOid = TransamVariables->nextOid;
7298 if (!shutdown)
7299 checkPoint.nextOid += TransamVariables->oidCount;
7300 LWLockRelease(OidGenLock);
7301
7302 MultiXactGetCheckptMulti(shutdown,
7303 &checkPoint.nextMulti,
7304 &checkPoint.nextMultiOffset,
7305 &checkPoint.oldestMulti,
7306 &checkPoint.oldestMultiDB);
7307
7308 /*
7309 * Having constructed the checkpoint record, ensure all shmem disk buffers
7310 * and commit-log buffers are flushed to disk.
7311 *
7312 * This I/O could fail for various reasons. If so, we will fail to
7313 * complete the checkpoint, but there is no reason to force a system
7314 * panic. Accordingly, exit critical section while doing it.
7315 */
7317
7318 /*
7319 * In some cases there are groups of actions that must all occur on one
7320 * side or the other of a checkpoint record. Before flushing the
7321 * checkpoint record we must explicitly wait for any backend currently
7322 * performing those groups of actions.
7323 *
7324 * One example is end of transaction, so we must wait for any transactions
7325 * that are currently in commit critical sections. If an xact inserted
7326 * its commit record into XLOG just before the REDO point, then a crash
7327 * restart from the REDO point would not replay that record, which means
7328 * that our flushing had better include the xact's update of pg_xact. So
7329 * we wait till he's out of his commit critical section before proceeding.
7330 * See notes in RecordTransactionCommit().
7331 *
7332 * Because we've already released the insertion locks, this test is a bit
7333 * fuzzy: it is possible that we will wait for xacts we didn't really need
7334 * to wait for. But the delay should be short and it seems better to make
7335 * checkpoint take a bit longer than to hold off insertions longer than
7336 * necessary. (In fact, the whole reason we have this issue is that xact.c
7337 * does commit record XLOG insertion and clog update as two separate steps
7338 * protected by different locks, but again that seems best on grounds of
7339 * minimizing lock contention.)
7340 *
7341 * A transaction that has not yet set delayChkptFlags when we look cannot
7342 * be at risk, since it has not inserted its commit record yet; and one
7343 * that's already cleared it is not at risk either, since it's done fixing
7344 * clog and we will correctly flush the update below. So we cannot miss
7345 * any xacts we need to wait for.
7346 */
7348 if (nvxids > 0)
7349 {
7350 do
7351 {
7352 /*
7353 * Keep absorbing fsync requests while we wait. There could even
7354 * be a deadlock if we don't, if the process that prevents the
7355 * checkpoint is trying to add a request to the queue.
7356 */
7358
7359 pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_START);
7360 pg_usleep(10000L); /* wait for 10 msec */
7362 } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7364 }
7365 pfree(vxids);
7366
7367 CheckPointGuts(checkPoint.redo, flags);
7368
7370 if (nvxids > 0)
7371 {
7372 do
7373 {
7375
7376 pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_COMPLETE);
7377 pg_usleep(10000L); /* wait for 10 msec */
7379 } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7381 }
7382 pfree(vxids);
7383
7384 /*
7385 * Take a snapshot of running transactions and write this to WAL. This
7386 * allows us to reconstruct the state of running transactions during
7387 * archive recovery, if required. Skip, if this info disabled.
7388 *
7389 * If we are shutting down, or Startup process is completing crash
7390 * recovery we don't need to write running xact data.
7391 */
7392 if (!shutdown && XLogStandbyInfoActive())
7394
7396
7397 /*
7398 * Now insert the checkpoint record into XLOG.
7399 */
7401 XLogRegisterData(&checkPoint, sizeof(checkPoint));
7402 recptr = XLogInsert(RM_XLOG_ID,
7403 shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
7405
7406 XLogFlush(recptr);
7407
7408 /*
7409 * We mustn't write any new WAL after a shutdown checkpoint, or it will be
7410 * overwritten at next startup. No-one should even try, this just allows
7411 * sanity-checking. In the case of an end-of-recovery checkpoint, we want
7412 * to just temporarily disable writing until the system has exited
7413 * recovery.
7414 */
7415 if (shutdown)
7416 {
7417 if (flags & CHECKPOINT_END_OF_RECOVERY)
7418 LocalXLogInsertAllowed = oldXLogAllowed;
7419 else
7420 LocalXLogInsertAllowed = 0; /* never again write WAL */
7421 }
7422
7423 /*
7424 * We now have ProcLastRecPtr = start of actual checkpoint record, recptr
7425 * = end of actual checkpoint record.
7426 */
7427 if (shutdown && checkPoint.redo != ProcLastRecPtr)
7428 ereport(PANIC,
7429 (errmsg("concurrent write-ahead log activity while database system is shutting down")));
7430
7431 /*
7432 * Remember the prior checkpoint's redo ptr for
7433 * UpdateCheckPointDistanceEstimate()
7434 */
7435 PriorRedoPtr = ControlFile->checkPointCopy.redo;
7436
7437 /*
7438 * Update the control file.
7439 */
7440 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7441 if (shutdown)
7444 ControlFile->checkPointCopy = checkPoint;
7445 /* crash recovery should always recover to the end of WAL */
7448
7449 /*
7450 * Persist unloggedLSN value. It's reset on crash recovery, so this goes
7451 * unused on non-shutdown checkpoints, but seems useful to store it always
7452 * for debugging purposes.
7453 */
7455
7457 LWLockRelease(ControlFileLock);
7458
7459 /* Update shared-memory copy of checkpoint XID/epoch */
7461 XLogCtl->ckptFullXid = checkPoint.nextXid;
7463
7464 /*
7465 * We are now done with critical updates; no need for system panic if we
7466 * have trouble while fooling with old log segments.
7467 */
7469
7470 /*
7471 * WAL summaries end when the next XLOG_CHECKPOINT_REDO or
7472 * XLOG_CHECKPOINT_SHUTDOWN record is reached. This is the first point
7473 * where (a) we're not inside of a critical section and (b) we can be
7474 * certain that the relevant record has been flushed to disk, which must
7475 * happen before it can be summarized.
7476 *
7477 * If this is a shutdown checkpoint, then this happens reasonably
7478 * promptly: we've only just inserted and flushed the
7479 * XLOG_CHECKPOINT_SHUTDOWN record. If this is not a shutdown checkpoint,
7480 * then this might not be very prompt at all: the XLOG_CHECKPOINT_REDO
7481 * record was written before we began flushing data to disk, and that
7482 * could be many minutes ago at this point. However, we don't XLogFlush()
7483 * after inserting that record, so we're not guaranteed that it's on disk
7484 * until after the above call that flushes the XLOG_CHECKPOINT_ONLINE
7485 * record.
7486 */
7488
7489 /*
7490 * Let smgr do post-checkpoint cleanup (eg, deleting old files).
7491 */
7493
7494 /*
7495 * Update the average distance between checkpoints if the prior checkpoint
7496 * exists.
7497 */
7498 if (PriorRedoPtr != InvalidXLogRecPtr)
7500
7501 /*
7502 * Delete old log files, those no longer needed for last checkpoint to
7503 * prevent the disk holding the xlog from growing full.
7504 */
7506 KeepLogSeg(recptr, &_logSegNo);
7508 _logSegNo, InvalidOid,
7510 {
7511 /*
7512 * Some slots have been invalidated; recalculate the old-segment
7513 * horizon, starting again from RedoRecPtr.
7514 */
7516 KeepLogSeg(recptr, &_logSegNo);
7517 }
7518 _logSegNo--;
7519 RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr,
7520 checkPoint.ThisTimeLineID);
7521
7522 /*
7523 * Make more log segments if needed. (Do this after recycling old log
7524 * segments, since that may supply some of the needed files.)
7525 */
7526 if (!shutdown)
7527 PreallocXlogFiles(recptr, checkPoint.ThisTimeLineID);
7528
7529 /*
7530 * Truncate pg_subtrans if possible. We can throw away all data before
7531 * the oldest XMIN of any running transaction. No future transaction will
7532 * attempt to reference any pg_subtrans entry older than that (see Asserts
7533 * in subtrans.c). During recovery, though, we mustn't do this because
7534 * StartupSUBTRANS hasn't been called yet.
7535 */
7536 if (!RecoveryInProgress())
7538
7539 /* Real work is done; log and update stats. */
7540 LogCheckpointEnd(false);
7541
7542 /* Reset the process title */
7543 update_checkpoint_display(flags, false, true);
7544
7545 TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
7546 NBuffers,
7550
7551 return true;
7552}
7553
7554/*
7555 * Mark the end of recovery in WAL though without running a full checkpoint.
7556 * We can expect that a restartpoint is likely to be in progress as we
7557 * do this, though we are unwilling to wait for it to complete.
7558 *
7559 * CreateRestartPoint() allows for the case where recovery may end before
7560 * the restartpoint completes so there is no concern of concurrent behaviour.
7561 */
7562static void
7564{
7565 xl_end_of_recovery xlrec;
7566 XLogRecPtr recptr;
7567
7568 /* sanity check */
7569 if (!RecoveryInProgress())
7570 elog(ERROR, "can only be used to end recovery");
7571
7572 xlrec.end_time = GetCurrentTimestamp();
7573 xlrec.wal_level = wal_level;
7574
7579
7581
7583 XLogRegisterData(&xlrec, sizeof(xl_end_of_recovery));
7584 recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY);
7585
7586 XLogFlush(recptr);
7587
7588 /*
7589 * Update the control file so that crash recovery can follow the timeline
7590 * changes to this point.
7591 */
7592 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7593 ControlFile->minRecoveryPoint = recptr;
7596 LWLockRelease(ControlFileLock);
7597
7599}
7600
7601/*
7602 * Write an OVERWRITE_CONTRECORD message.
7603 *
7604 * When on WAL replay we expect a continuation record at the start of a page
7605 * that is not there, recovery ends and WAL writing resumes at that point.
7606 * But it's wrong to resume writing new WAL back at the start of the record
7607 * that was broken, because downstream consumers of that WAL (physical
7608 * replicas) are not prepared to "rewind". So the first action after
7609 * finishing replay of all valid WAL must be to write a record of this type
7610 * at the point where the contrecord was missing; to support xlogreader
7611 * detecting the special case, XLP_FIRST_IS_OVERWRITE_CONTRECORD is also added
7612 * to the page header where the record occurs. xlogreader has an ad-hoc
7613 * mechanism to report metadata about the broken record, which is what we
7614 * use here.
7615 *
7616 * At replay time, XLP_FIRST_IS_OVERWRITE_CONTRECORD instructs xlogreader to
7617 * skip the record it was reading, and pass back the LSN of the skipped
7618 * record, so that its caller can verify (on "replay" of that record) that the
7619 * XLOG_OVERWRITE_CONTRECORD matches what was effectively overwritten.
7620 *
7621 * 'aborted_lsn' is the beginning position of the record that was incomplete.
7622 * It is included in the WAL record. 'pagePtr' and 'newTLI' point to the
7623 * beginning of the XLOG page where the record is to be inserted. They must
7624 * match the current WAL insert position, they're passed here just so that we
7625 * can verify that.
7626 */
7627static XLogRecPtr
7629 TimeLineID newTLI)
7630{
7632 XLogRecPtr recptr;
7633 XLogPageHeader pagehdr;
7634 XLogRecPtr startPos;
7635
7636 /* sanity checks */
7637 if (!RecoveryInProgress())
7638 elog(ERROR, "can only be used at end of recovery");
7639 if (pagePtr % XLOG_BLCKSZ != 0)
7640 elog(ERROR, "invalid position for missing continuation record %X/%X",
7641 LSN_FORMAT_ARGS(pagePtr));
7642
7643 /* The current WAL insert position should be right after the page header */
7644 startPos = pagePtr;
7645 if (XLogSegmentOffset(startPos, wal_segment_size) == 0)
7646 startPos += SizeOfXLogLongPHD;
7647 else
7648 startPos += SizeOfXLogShortPHD;
7649 recptr = GetXLogInsertRecPtr();
7650 if (recptr != startPos)
7651 elog(ERROR, "invalid WAL insert position %X/%X for OVERWRITE_CONTRECORD",
7652 LSN_FORMAT_ARGS(recptr));
7653
7655
7656 /*
7657 * Initialize the XLOG page header (by GetXLogBuffer), and set the
7658 * XLP_FIRST_IS_OVERWRITE_CONTRECORD flag.
7659 *
7660 * No other backend is allowed to write WAL yet, so acquiring the WAL
7661 * insertion lock is just pro forma.
7662 */
7664 pagehdr = (XLogPageHeader) GetXLogBuffer(pagePtr, newTLI);
7667
7668 /*
7669 * Insert the XLOG_OVERWRITE_CONTRECORD record as the first record on the
7670 * page. We know it becomes the first record, because no other backend is
7671 * allowed to write WAL yet.
7672 */
7674 xlrec.overwritten_lsn = aborted_lsn;
7677 recptr = XLogInsert(RM_XLOG_ID, XLOG_OVERWRITE_CONTRECORD);
7678
7679 /* check that the record was inserted to the right place */
7680 if (ProcLastRecPtr != startPos)
7681 elog(ERROR, "OVERWRITE_CONTRECORD was inserted to unexpected position %X/%X",
7683
7684 XLogFlush(recptr);
7685
7687
7688 return recptr;
7689}
7690
7691/*
7692 * Flush all data in shared memory to disk, and fsync
7693 *
7694 * This is the common code shared between regular checkpoints and
7695 * recovery restartpoints.
7696 */
7697static void
7698CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
7699{
7705
7706 /* Write out all dirty data in SLRUs and the main buffer pool */
7707 TRACE_POSTGRESQL_BUFFER_CHECKPOINT_START(flags);
7714 CheckPointBuffers(flags);
7715
7716 /* Perform all queued up fsyncs */
7717 TRACE_POSTGRESQL_BUFFER_CHECKPOINT_SYNC_START();
7721 TRACE_POSTGRESQL_BUFFER_CHECKPOINT_DONE();
7722
7723 /* We deliberately delay 2PC checkpointing as long as possible */
7724 CheckPointTwoPhase(checkPointRedo);
7725}
7726
7727/*
7728 * Save a checkpoint for recovery restart if appropriate
7729 *
7730 * This function is called each time a checkpoint record is read from XLOG.
7731 * It must determine whether the checkpoint represents a safe restartpoint or
7732 * not. If so, the checkpoint record is stashed in shared memory so that
7733 * CreateRestartPoint can consult it. (Note that the latter function is
7734 * executed by the checkpointer, while this one will be executed by the
7735 * startup process.)
7736 */
7737static void
7739{
7740 /*
7741 * Also refrain from creating a restartpoint if we have seen any
7742 * references to non-existent pages. Restarting recovery from the
7743 * restartpoint would not see the references, so we would lose the
7744 * cross-check that the pages belonged to a relation that was dropped
7745 * later.
7746 */
7748 {
7749 elog(DEBUG2,
7750 "could not record restart point at %X/%X because there "
7751 "are unresolved references to invalid pages",
7752 LSN_FORMAT_ARGS(checkPoint->redo));
7753 return;
7754 }
7755
7756 /*
7757 * Copy the checkpoint record to shared memory, so that checkpointer can
7758 * work out the next time it wants to perform a restartpoint.
7759 */
7763 XLogCtl->lastCheckPoint = *checkPoint;
7765}
7766
7767/*
7768 * Establish a restartpoint if possible.
7769 *
7770 * This is similar to CreateCheckPoint, but is used during WAL recovery
7771 * to establish a point from which recovery can roll forward without
7772 * replaying the entire recovery log.
7773 *
7774 * Returns true if a new restartpoint was established. We can only establish
7775 * a restartpoint if we have replayed a safe checkpoint record since last
7776 * restartpoint.
7777 */
7778bool
7780{
7781 XLogRecPtr lastCheckPointRecPtr;
7782 XLogRecPtr lastCheckPointEndPtr;
7783 CheckPoint lastCheckPoint;
7784 XLogRecPtr PriorRedoPtr;
7785 XLogRecPtr receivePtr;
7786 XLogRecPtr replayPtr;
7787 TimeLineID replayTLI;
7788 XLogRecPtr endptr;
7789 XLogSegNo _logSegNo;
7790 TimestampTz xtime;
7791
7792 /* Concurrent checkpoint/restartpoint cannot happen */
7794
7795 /* Get a local copy of the last safe checkpoint record. */
7797 lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr;
7798 lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr;
7799 lastCheckPoint = XLogCtl->lastCheckPoint;
7801
7802 /*
7803 * Check that we're still in recovery mode. It's ok if we exit recovery
7804 * mode after this check, the restart point is valid anyway.
7805 */
7806 if (!RecoveryInProgress())
7807 {
7809 (errmsg_internal("skipping restartpoint, recovery has already ended")));
7810 return false;
7811 }
7812
7813 /*
7814 * If the last checkpoint record we've replayed is already our last
7815 * restartpoint, we can't perform a new restart point. We still update
7816 * minRecoveryPoint in that case, so that if this is a shutdown restart
7817 * point, we won't start up earlier than before. That's not strictly
7818 * necessary, but when hot standby is enabled, it would be rather weird if
7819 * the database opened up for read-only connections at a point-in-time
7820 * before the last shutdown. Such time travel is still possible in case of
7821 * immediate shutdown, though.
7822 *
7823 * We don't explicitly advance minRecoveryPoint when we do create a
7824 * restartpoint. It's assumed that flushing the buffers will do that as a
7825 * side-effect.
7826 */
7827 if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) ||
7828 lastCheckPoint.redo <= ControlFile->checkPointCopy.redo)
7829 {
7831 (errmsg_internal("skipping restartpoint, already performed at %X/%X",
7832 LSN_FORMAT_ARGS(lastCheckPoint.redo))));
7833
7835 if (flags & CHECKPOINT_IS_SHUTDOWN)
7836 {
7837 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7840 LWLockRelease(ControlFileLock);
7841 }
7842 return false;
7843 }
7844
7845 /*
7846 * Update the shared RedoRecPtr so that the startup process can calculate
7847 * the number of segments replayed since last restartpoint, and request a
7848 * restartpoint if it exceeds CheckPointSegments.
7849 *
7850 * Like in CreateCheckPoint(), hold off insertions to update it, although
7851 * during recovery this is just pro forma, because no WAL insertions are
7852 * happening.
7853 */
7855 RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo;
7857
7858 /* Also update the info_lck-protected copy */
7860 XLogCtl->RedoRecPtr = lastCheckPoint.redo;
7862
7863 /*
7864 * Prepare to accumulate statistics.
7865 *
7866 * Note: because it is possible for log_checkpoints to change while a
7867 * checkpoint proceeds, we always accumulate stats, even if
7868 * log_checkpoints is currently off.
7869 */
7872
7873 if (log_checkpoints)
7874 LogCheckpointStart(flags, true);
7875
7876 /* Update the process title */
7877 update_checkpoint_display(flags, true, false);
7878
7879 CheckPointGuts(lastCheckPoint.redo, flags);
7880
7881 /*
7882 * This location needs to be after CheckPointGuts() to ensure that some
7883 * work has already happened during this checkpoint.
7884 */
7885 INJECTION_POINT("create-restart-point");
7886
7887 /*
7888 * Remember the prior checkpoint's redo ptr for
7889 * UpdateCheckPointDistanceEstimate()
7890 */
7891 PriorRedoPtr = ControlFile->checkPointCopy.redo;
7892
7893 /*
7894 * Update pg_control, using current time. Check that it still shows an
7895 * older checkpoint, else do nothing; this is a quick hack to make sure
7896 * nothing really bad happens if somehow we get here after the
7897 * end-of-recovery checkpoint.
7898 */
7899 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7900 if (ControlFile->checkPointCopy.redo < lastCheckPoint.redo)
7901 {
7902 /*
7903 * Update the checkpoint information. We do this even if the cluster
7904 * does not show DB_IN_ARCHIVE_RECOVERY to match with the set of WAL
7905 * segments recycled below.
7906 */
7907 ControlFile->checkPoint = lastCheckPointRecPtr;
7908 ControlFile->checkPointCopy = lastCheckPoint;
7909
7910 /*
7911 * Ensure minRecoveryPoint is past the checkpoint record and update it
7912 * if the control file still shows DB_IN_ARCHIVE_RECOVERY. Normally,
7913 * this will have happened already while writing out dirty buffers,
7914 * but not necessarily - e.g. because no buffers were dirtied. We do
7915 * this because a backup performed in recovery uses minRecoveryPoint
7916 * to determine which WAL files must be included in the backup, and
7917 * the file (or files) containing the checkpoint record must be
7918 * included, at a minimum. Note that for an ordinary restart of
7919 * recovery there's no value in having the minimum recovery point any
7920 * earlier than this anyway, because redo will begin just after the
7921 * checkpoint record.
7922 */
7924 {
7925 if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr)
7926 {
7927 ControlFile->minRecoveryPoint = lastCheckPointEndPtr;
7929
7930 /* update local copy */
7933 }
7934 if (flags & CHECKPOINT_IS_SHUTDOWN)
7936 }
7938 }
7939 LWLockRelease(ControlFileLock);
7940
7941 /*
7942 * Update the average distance between checkpoints/restartpoints if the
7943 * prior checkpoint exists.
7944 */
7945 if (PriorRedoPtr != InvalidXLogRecPtr)
7947
7948 /*
7949 * Delete old log files, those no longer needed for last restartpoint to
7950 * prevent the disk holding the xlog from growing full.
7951 */
7953
7954 /*
7955 * Retreat _logSegNo using the current end of xlog replayed or received,
7956 * whichever is later.
7957 */
7958 receivePtr = GetWalRcvFlushRecPtr(NULL, NULL);
7959 replayPtr = GetXLogReplayRecPtr(&replayTLI);
7960 endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr;
7961 KeepLogSeg(endptr, &_logSegNo);
7963 _logSegNo, InvalidOid,
7965 {
7966 /*
7967 * Some slots have been invalidated; recalculate the old-segment
7968 * horizon, starting again from RedoRecPtr.
7969 */
7971 KeepLogSeg(endptr, &_logSegNo);
7972 }
7973 _logSegNo--;
7974
7975 /*
7976 * Try to recycle segments on a useful timeline. If we've been promoted
7977 * since the beginning of this restartpoint, use the new timeline chosen
7978 * at end of recovery. If we're still in recovery, use the timeline we're
7979 * currently replaying.
7980 *
7981 * There is no guarantee that the WAL segments will be useful on the
7982 * current timeline; if recovery proceeds to a new timeline right after
7983 * this, the pre-allocated WAL segments on this timeline will not be used,
7984 * and will go wasted until recycled on the next restartpoint. We'll live
7985 * with that.
7986 */
7987 if (!RecoveryInProgress())
7988 replayTLI = XLogCtl->InsertTimeLineID;
7989
7990 RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr, replayTLI);
7991
7992 /*
7993 * Make more log segments if needed. (Do this after recycling old log
7994 * segments, since that may supply some of the needed files.)
7995 */
7996 PreallocXlogFiles(endptr, replayTLI);
7997
7998 /*
7999 * Truncate pg_subtrans if possible. We can throw away all data before
8000 * the oldest XMIN of any running transaction. No future transaction will
8001 * attempt to reference any pg_subtrans entry older than that (see Asserts
8002 * in subtrans.c). When hot standby is disabled, though, we mustn't do
8003 * this because StartupSUBTRANS hasn't been called yet.
8004 */
8005 if (EnableHotStandby)
8007
8008 /* Real work is done; log and update stats. */
8009 LogCheckpointEnd(true);
8010
8011 /* Reset the process title */
8012 update_checkpoint_display(flags, true, true);
8013
8014 xtime = GetLatestXTime();
8016 (errmsg("recovery restart point at %X/%X",
8017 LSN_FORMAT_ARGS(lastCheckPoint.redo)),
8018 xtime ? errdetail("Last completed transaction was at log time %s.",
8019 timestamptz_to_str(xtime)) : 0));
8020
8021 /*
8022 * Finally, execute archive_cleanup_command, if any.
8023 */
8024 if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "") != 0)
8026 "archive_cleanup_command",
8027 false,
8028 WAIT_EVENT_ARCHIVE_CLEANUP_COMMAND);
8029
8030 return true;
8031}
8032
8033/*
8034 * Report availability of WAL for the given target LSN
8035 * (typically a slot's restart_lsn)
8036 *
8037 * Returns one of the following enum values:
8038 *
8039 * * WALAVAIL_RESERVED means targetLSN is available and it is in the range of
8040 * max_wal_size.
8041 *
8042 * * WALAVAIL_EXTENDED means it is still available by preserving extra
8043 * segments beyond max_wal_size. If max_slot_wal_keep_size is smaller
8044 * than max_wal_size, this state is not returned.
8045 *
8046 * * WALAVAIL_UNRESERVED means it is being lost and the next checkpoint will
8047 * remove reserved segments. The walsender using this slot may return to the
8048 * above.
8049 *
8050 * * WALAVAIL_REMOVED means it has been removed. A replication stream on
8051 * a slot with this LSN cannot continue. (Any associated walsender
8052 * processes should have been terminated already.)
8053 *
8054 * * WALAVAIL_INVALID_LSN means the slot hasn't been set to reserve WAL.
8055 */
8058{
8059 XLogRecPtr currpos; /* current write LSN */
8060 XLogSegNo currSeg; /* segid of currpos */
8061 XLogSegNo targetSeg; /* segid of targetLSN */
8062 XLogSegNo oldestSeg; /* actual oldest segid */
8063 XLogSegNo oldestSegMaxWalSize; /* oldest segid kept by max_wal_size */
8064 XLogSegNo oldestSlotSeg; /* oldest segid kept by slot */
8065 uint64 keepSegs;
8066
8067 /*
8068 * slot does not reserve WAL. Either deactivated, or has never been active
8069 */
8070 if (XLogRecPtrIsInvalid(targetLSN))
8071 return WALAVAIL_INVALID_LSN;
8072
8073 /*
8074 * Calculate the oldest segment currently reserved by all slots,
8075 * considering wal_keep_size and max_slot_wal_keep_size. Initialize
8076 * oldestSlotSeg to the current segment.
8077 */
8078 currpos = GetXLogWriteRecPtr();
8079 XLByteToSeg(currpos, oldestSlotSeg, wal_segment_size);
8080 KeepLogSeg(currpos, &oldestSlotSeg);
8081
8082 /*
8083 * Find the oldest extant segment file. We get 1 until checkpoint removes
8084 * the first WAL segment file since startup, which causes the status being
8085 * wrong under certain abnormal conditions but that doesn't actually harm.
8086 */
8087 oldestSeg = XLogGetLastRemovedSegno() + 1;
8088
8089 /* calculate oldest segment by max_wal_size */
8090 XLByteToSeg(currpos, currSeg, wal_segment_size);
8092
8093 if (currSeg > keepSegs)
8094 oldestSegMaxWalSize = currSeg - keepSegs;
8095 else
8096 oldestSegMaxWalSize = 1;
8097
8098 /* the segment we care about */
8099 XLByteToSeg(targetLSN, targetSeg, wal_segment_size);
8100
8101 /*
8102 * No point in returning reserved or extended status values if the
8103 * targetSeg is known to be lost.
8104 */
8105 if (targetSeg >= oldestSlotSeg)
8106 {
8107 /* show "reserved" when targetSeg is within max_wal_size */
8108 if (targetSeg >= oldestSegMaxWalSize)
8109 return WALAVAIL_RESERVED;
8110
8111 /* being retained by slots exceeding max_wal_size */
8112 return WALAVAIL_EXTENDED;
8113 }
8114
8115 /* WAL segments are no longer retained but haven't been removed yet */
8116 if (targetSeg >= oldestSeg)
8117 return WALAVAIL_UNRESERVED;
8118
8119 /* Definitely lost */
8120 return WALAVAIL_REMOVED;
8121}
8122
8123
8124/*
8125 * Retreat *logSegNo to the last segment that we need to retain because of
8126 * either wal_keep_size or replication slots.
8127 *
8128 * This is calculated by subtracting wal_keep_size from the given xlog
8129 * location, recptr and by making sure that that result is below the
8130 * requirement of replication slots. For the latter criterion we do consider
8131 * the effects of max_slot_wal_keep_size: reserve at most that much space back
8132 * from recptr.
8133 *
8134 * Note about replication slots: if this function calculates a value
8135 * that's further ahead than what slots need reserved, then affected
8136 * slots need to be invalidated and this function invoked again.
8137 * XXX it might be a good idea to rewrite this function so that
8138 * invalidation is optionally done here, instead.
8139 */
8140static void
8142{
8143 XLogSegNo currSegNo;
8144 XLogSegNo segno;
8145 XLogRecPtr keep;
8146
8147 XLByteToSeg(recptr, currSegNo, wal_segment_size);
8148 segno = currSegNo;
8149
8150 /*
8151 * Calculate how many segments are kept by slots first, adjusting for
8152 * max_slot_wal_keep_size.
8153 */
8155 if (keep != InvalidXLogRecPtr && keep < recptr)
8156 {
8157 XLByteToSeg(keep, segno, wal_segment_size);
8158
8159 /* Cap by max_slot_wal_keep_size ... */
8161 {
8162 uint64 slot_keep_segs;
8163
8164 slot_keep_segs =
8166
8167 if (currSegNo - segno > slot_keep_segs)
8168 segno = currSegNo - slot_keep_segs;
8169 }
8170 }
8171
8172 /*
8173 * If WAL summarization is in use, don't remove WAL that has yet to be
8174 * summarized.
8175 */
8176 keep = GetOldestUnsummarizedLSN(NULL, NULL);
8177 if (keep != InvalidXLogRecPtr)
8178 {
8179 XLogSegNo unsummarized_segno;
8180
8181 XLByteToSeg(keep, unsummarized_segno, wal_segment_size);
8182 if (unsummarized_segno < segno)
8183 segno = unsummarized_segno;
8184 }
8185
8186 /* but, keep at least wal_keep_size if that's set */
8187 if (wal_keep_size_mb > 0)
8188 {
8189 uint64 keep_segs;
8190
8192 if (currSegNo - segno < keep_segs)
8193 {
8194 /* avoid underflow, don't go below 1 */
8195 if (currSegNo <= keep_segs)
8196 segno = 1;
8197 else
8198 segno = currSegNo - keep_segs;
8199 }
8200 }
8201
8202 /* don't delete WAL segments newer than the calculated segment */
8203 if (segno < *logSegNo)
8204 *logSegNo = segno;
8205}
8206
8207/*
8208 * Write a NEXTOID log record
8209 */
8210void
8212{
8214 XLogRegisterData(&nextOid, sizeof(Oid));
8215 (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID);
8216
8217 /*
8218 * We need not flush the NEXTOID record immediately, because any of the
8219 * just-allocated OIDs could only reach disk as part of a tuple insert or
8220 * update that would have its own XLOG record that must follow the NEXTOID
8221 * record. Therefore, the standard buffer LSN interlock applied to those
8222 * records will ensure no such OID reaches disk before the NEXTOID record
8223 * does.
8224 *
8225 * Note, however, that the above statement only covers state "within" the
8226 * database. When we use a generated OID as a file or directory name, we
8227 * are in a sense violating the basic WAL rule, because that filesystem
8228 * change may reach disk before the NEXTOID WAL record does. The impact
8229 * of this is that if a database crash occurs immediately afterward, we
8230 * might after restart re-generate the same OID and find that it conflicts
8231 * with the leftover file or directory. But since for safety's sake we
8232 * always loop until finding a nonconflicting filename, this poses no real
8233 * problem in practice. See pgsql-hackers discussion 27-Sep-2006.
8234 */
8235}
8236
8237/*
8238 * Write an XLOG SWITCH record.
8239 *
8240 * Here we just blindly issue an XLogInsert request for the record.
8241 * All the magic happens inside XLogInsert.
8242 *
8243 * The return value is either the end+1 address of the switch record,
8244 * or the end+1 address of the prior segment if we did not need to
8245 * write a switch record because we are already at segment start.
8246 */
8248RequestXLogSwitch(bool mark_unimportant)
8249{
8250 XLogRecPtr RecPtr;
8251
8252 /* XLOG SWITCH has no data */
8254
8255 if (mark_unimportant)
8257 RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH);
8258
8259 return RecPtr;
8260}
8261
8262/*
8263 * Write a RESTORE POINT record
8264 */
8266XLogRestorePoint(const char *rpName)
8267{
8268 XLogRecPtr RecPtr;
8269 xl_restore_point xlrec;
8270
8271 xlrec.rp_time = GetCurrentTimestamp();
8272 strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN);
8273
8275 XLogRegisterData(&xlrec, sizeof(xl_restore_point));
8276
8277 RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT);
8278
8279 ereport(LOG,
8280 (errmsg("restore point \"%s\" created at %X/%X",
8281 rpName, LSN_FORMAT_ARGS(RecPtr))));
8282
8283 return RecPtr;
8284}
8285
8286/*
8287 * Check if any of the GUC parameters that are critical for hot standby
8288 * have changed, and update the value in pg_control file if necessary.
8289 */
8290static void
8292{
8301 {
8302 /*
8303 * The change in number of backend slots doesn't need to be WAL-logged
8304 * if archiving is not enabled, as you can't start archive recovery
8305 * with wal_level=minimal anyway. We don't really care about the
8306 * values in pg_control either if wal_level=minimal, but seems better
8307 * to keep them up-to-date to avoid confusion.
8308 */
8310 {
8311 xl_parameter_change xlrec;
8312 XLogRecPtr recptr;
8313
8319 xlrec.wal_level = wal_level;
8322
8324 XLogRegisterData(&xlrec, sizeof(xlrec));
8325
8326 recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE);
8327 XLogFlush(recptr);
8328 }
8329
8330 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8331
8341
8342 LWLockRelease(ControlFileLock);
8343 }
8344}
8345
8346/*
8347 * Update full_page_writes in shared memory, and write an
8348 * XLOG_FPW_CHANGE record if necessary.
8349 *
8350 * Note: this function assumes there is no other process running
8351 * concurrently that could update it.
8352 */
8353void
8355{
8357 bool recoveryInProgress;
8358
8359 /*
8360 * Do nothing if full_page_writes has not been changed.
8361 *
8362 * It's safe to check the shared full_page_writes without the lock,
8363 * because we assume that there is no concurrently running process which
8364 * can update it.
8365 */
8366 if (fullPageWrites == Insert->fullPageWrites)
8367 return;
8368
8369 /*
8370 * Perform this outside critical section so that the WAL insert
8371 * initialization done by RecoveryInProgress() doesn't trigger an
8372 * assertion failure.
8373 */
8374 recoveryInProgress = RecoveryInProgress();
8375
8377
8378 /*
8379 * It's always safe to take full page images, even when not strictly
8380 * required, but not the other round. So if we're setting full_page_writes
8381 * to true, first set it true and then write the WAL record. If we're
8382 * setting it to false, first write the WAL record and then set the global
8383 * flag.
8384 */
8385 if (fullPageWrites)
8386 {
8388 Insert->fullPageWrites = true;
8390 }
8391
8392 /*
8393 * Write an XLOG_FPW_CHANGE record. This allows us to keep track of
8394 * full_page_writes during archive recovery, if required.
8395 */
8396 if (XLogStandbyInfoActive() && !recoveryInProgress)
8397 {
8399 XLogRegisterData(&fullPageWrites, sizeof(bool));
8400
8401 XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE);
8402 }
8403
8404 if (!fullPageWrites)
8405 {
8407 Insert->fullPageWrites = false;
8409 }
8411}
8412
8413/*
8414 * XLOG resource manager's routines
8415 *
8416 * Definitions of info values are in include/catalog/pg_control.h, though
8417 * not all record types are related to control file updates.
8418 *
8419 * NOTE: Some XLOG record types that are directly related to WAL recovery
8420 * are handled in xlogrecovery_redo().
8421 */
8422void
8424{
8425 uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
8426 XLogRecPtr lsn = record->EndRecPtr;
8427
8428 /*
8429 * In XLOG rmgr, backup blocks are only used by XLOG_FPI and
8430 * XLOG_FPI_FOR_HINT records.
8431 */
8432 Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT ||
8433 !XLogRecHasAnyBlockRefs(record));
8434
8435 if (info == XLOG_NEXTOID)
8436 {
8437 Oid nextOid;
8438
8439 /*
8440 * We used to try to take the maximum of TransamVariables->nextOid and
8441 * the recorded nextOid, but that fails if the OID counter wraps
8442 * around. Since no OID allocation should be happening during replay
8443 * anyway, better to just believe the record exactly. We still take
8444 * OidGenLock while setting the variable, just in case.
8445 */
8446 memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
8447 LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8448 TransamVariables->nextOid = nextOid;
8450 LWLockRelease(OidGenLock);
8451 }
8452 else if (info == XLOG_CHECKPOINT_SHUTDOWN)
8453 {
8454 CheckPoint checkPoint;
8455 TimeLineID replayTLI;
8456
8457 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8458 /* In a SHUTDOWN checkpoint, believe the counters exactly */
8459 LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8460 TransamVariables->nextXid = checkPoint.nextXid;
8461 LWLockRelease(XidGenLock);
8462 LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8463 TransamVariables->nextOid = checkPoint.nextOid;
8465 LWLockRelease(OidGenLock);
8467 checkPoint.nextMultiOffset);
8468
8470 checkPoint.oldestMultiDB);
8471
8472 /*
8473 * No need to set oldestClogXid here as well; it'll be set when we
8474 * redo an xl_clog_truncate if it changed since initialization.
8475 */
8476 SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
8477
8478 /*
8479 * If we see a shutdown checkpoint while waiting for an end-of-backup
8480 * record, the backup was canceled and the end-of-backup record will
8481 * never arrive.
8482 */
8486 ereport(PANIC,
8487 (errmsg("online backup was canceled, recovery cannot continue")));
8488
8489 /*
8490 * If we see a shutdown checkpoint, we know that nothing was running
8491 * on the primary at this point. So fake-up an empty running-xacts
8492 * record and use that here and now. Recover additional standby state
8493 * for prepared transactions.
8494 */
8496 {
8497 TransactionId *xids;
8498 int nxids;
8499 TransactionId oldestActiveXID;
8500 TransactionId latestCompletedXid;
8502
8503 oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
8504
8505 /* Update pg_subtrans entries for any prepared transactions */
8507
8508 /*
8509 * Construct a RunningTransactions snapshot representing a shut
8510 * down server, with only prepared transactions still alive. We're
8511 * never overflowed at this point because all subxids are listed
8512 * with their parent prepared transactions.
8513 */
8514 running.xcnt = nxids;
8515 running.subxcnt = 0;
8517 running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
8518 running.oldestRunningXid = oldestActiveXID;
8519 latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
8520 TransactionIdRetreat(latestCompletedXid);
8521 Assert(TransactionIdIsNormal(latestCompletedXid));
8522 running.latestCompletedXid = latestCompletedXid;
8523 running.xids = xids;
8524
8526 }
8527
8528 /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8529 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8531 LWLockRelease(ControlFileLock);
8532
8533 /* Update shared-memory copy of checkpoint XID/epoch */
8535 XLogCtl->ckptFullXid = checkPoint.nextXid;
8537
8538 /*
8539 * We should've already switched to the new TLI before replaying this
8540 * record.
8541 */
8542 (void) GetCurrentReplayRecPtr(&replayTLI);
8543 if (checkPoint.ThisTimeLineID != replayTLI)
8544 ereport(PANIC,
8545 (errmsg("unexpected timeline ID %u (should be %u) in shutdown checkpoint record",
8546 checkPoint.ThisTimeLineID, replayTLI)));
8547
8548 RecoveryRestartPoint(&checkPoint, record);
8549 }
8550 else if (info == XLOG_CHECKPOINT_ONLINE)
8551 {
8552 CheckPoint checkPoint;
8553 TimeLineID replayTLI;
8554
8555 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8556 /* In an ONLINE checkpoint, treat the XID counter as a minimum */
8557 LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8559 checkPoint.nextXid))
8560 TransamVariables->nextXid = checkPoint.nextXid;
8561 LWLockRelease(XidGenLock);
8562
8563 /*
8564 * We ignore the nextOid counter in an ONLINE checkpoint, preferring
8565 * to track OID assignment through XLOG_NEXTOID records. The nextOid
8566 * counter is from the start of the checkpoint and might well be stale
8567 * compared to later XLOG_NEXTOID records. We could try to take the
8568 * maximum of the nextOid counter and our latest value, but since
8569 * there's no particular guarantee about the speed with which the OID
8570 * counter wraps around, that's a risky thing to do. In any case,
8571 * users of the nextOid counter are required to avoid assignment of
8572 * duplicates, so that a somewhat out-of-date value should be safe.
8573 */
8574
8575 /* Handle multixact */
8577 checkPoint.nextMultiOffset);
8578
8579 /*
8580 * NB: This may perform multixact truncation when replaying WAL
8581 * generated by an older primary.
8582 */
8584 checkPoint.oldestMultiDB);
8586 checkPoint.oldestXid))
8588 checkPoint.oldestXidDB);
8589 /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8590 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8592 LWLockRelease(ControlFileLock);
8593
8594 /* Update shared-memory copy of checkpoint XID/epoch */
8596 XLogCtl->ckptFullXid = checkPoint.nextXid;
8598
8599 /* TLI should not change in an on-line checkpoint */
8600 (void) GetCurrentReplayRecPtr(&replayTLI);
8601 if (checkPoint.ThisTimeLineID != replayTLI)
8602 ereport(PANIC,
8603 (errmsg("unexpected timeline ID %u (should be %u) in online checkpoint record",
8604 checkPoint.ThisTimeLineID, replayTLI)));
8605
8606 RecoveryRestartPoint(&checkPoint, record);
8607 }
8608 else if (info == XLOG_OVERWRITE_CONTRECORD)
8609 {
8610 /* nothing to do here, handled in xlogrecovery_redo() */
8611 }
8612 else if (info == XLOG_END_OF_RECOVERY)
8613 {
8614 xl_end_of_recovery xlrec;
8615 TimeLineID replayTLI;
8616
8617 memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery));
8618
8619 /*
8620 * For Hot Standby, we could treat this like a Shutdown Checkpoint,
8621 * but this case is rarer and harder to test, so the benefit doesn't
8622 * outweigh the potential extra cost of maintenance.
8623 */
8624
8625 /*
8626 * We should've already switched to the new TLI before replaying this
8627 * record.
8628 */
8629 (void) GetCurrentReplayRecPtr(&replayTLI);
8630 if (xlrec.ThisTimeLineID != replayTLI)
8631 ereport(PANIC,
8632 (errmsg("unexpected timeline ID %u (should be %u) in end-of-recovery record",
8633 xlrec.ThisTimeLineID, replayTLI)));
8634 }
8635 else if (info == XLOG_NOOP)
8636 {
8637 /* nothing to do here */
8638 }
8639 else if (info == XLOG_SWITCH)
8640 {
8641 /* nothing to do here */
8642 }
8643 else if (info == XLOG_RESTORE_POINT)
8644 {
8645 /* nothing to do here, handled in xlogrecovery.c */
8646 }
8647 else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT)
8648 {
8649 /*
8650 * XLOG_FPI records contain nothing else but one or more block
8651 * references. Every block reference must include a full-page image
8652 * even if full_page_writes was disabled when the record was generated
8653 * - otherwise there would be no point in this record.
8654 *
8655 * XLOG_FPI_FOR_HINT records are generated when a page needs to be
8656 * WAL-logged because of a hint bit update. They are only generated
8657 * when checksums and/or wal_log_hints are enabled. They may include
8658 * no full-page images if full_page_writes was disabled when they were
8659 * generated. In this case there is nothing to do here.
8660 *
8661 * No recovery conflicts are generated by these generic records - if a
8662 * resource manager needs to generate conflicts, it has to define a
8663 * separate WAL record type and redo routine.
8664 */
8665 for (uint8 block_id = 0; block_id <= XLogRecMaxBlockId(record); block_id++)
8666 {
8667 Buffer buffer;
8668
8669 if (!XLogRecHasBlockImage(record, block_id))
8670 {
8671 if (info == XLOG_FPI)
8672 elog(ERROR, "XLOG_FPI record did not contain a full-page image");
8673 continue;
8674 }
8675
8676 if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED)
8677 elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block");
8678 UnlockReleaseBuffer(buffer);
8679 }
8680 }
8681 else if (info == XLOG_BACKUP_END)
8682 {
8683 /* nothing to do here, handled in xlogrecovery_redo() */
8684 }
8685 else if (info == XLOG_PARAMETER_CHANGE)
8686 {
8687 xl_parameter_change xlrec;
8688
8689 /* Update our copy of the parameters in pg_control */
8690 memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change));
8691
8692 /*
8693 * Invalidate logical slots if we are in hot standby and the primary
8694 * does not have a WAL level sufficient for logical decoding. No need
8695 * to search for potentially conflicting logically slots if standby is
8696 * running with wal_level lower than logical, because in that case, we
8697 * would have either disallowed creation of logical slots or
8698 * invalidated existing ones.
8699 */
8700 if (InRecovery && InHotStandby &&
8701 xlrec.wal_level < WAL_LEVEL_LOGICAL &&
8704 0, InvalidOid,
8706
8707 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8715
8716 /*
8717 * Update minRecoveryPoint to ensure that if recovery is aborted, we
8718 * recover back up to this point before allowing hot standby again.
8719 * This is important if the max_* settings are decreased, to ensure
8720 * you don't run queries against the WAL preceding the change. The
8721 * local copies cannot be updated as long as crash recovery is
8722 * happening and we expect all the WAL to be replayed.
8723 */
8725 {
8728 }
8730 {
8731 TimeLineID replayTLI;
8732
8733 (void) GetCurrentReplayRecPtr(&replayTLI);
8735 ControlFile->minRecoveryPointTLI = replayTLI;
8736 }
8737
8741
8743 LWLockRelease(ControlFileLock);
8744
8745 /* Check to see if any parameter change gives a problem on recovery */
8747 }
8748 else if (info == XLOG_FPW_CHANGE)
8749 {
8750 bool fpw;
8751
8752 memcpy(&fpw, XLogRecGetData(record), sizeof(bool));
8753
8754 /*
8755 * Update the LSN of the last replayed XLOG_FPW_CHANGE record so that
8756 * do_pg_backup_start() and do_pg_backup_stop() can check whether
8757 * full_page_writes has been disabled during online backup.
8758 */
8759 if (!fpw)
8760 {
8765 }
8766
8767 /* Keep track of full_page_writes */
8768 lastFullPageWrites = fpw;
8769 }
8770 else if (info == XLOG_CHECKPOINT_REDO)
8771 {
8772 /* nothing to do here, just for informational purposes */
8773 }
8774}
8775
8776/*
8777 * Return the extra open flags used for opening a file, depending on the
8778 * value of the GUCs wal_sync_method, fsync and debug_io_direct.
8779 */
8780static int
8781get_sync_bit(int method)
8782{
8783 int o_direct_flag = 0;
8784
8785 /*
8786 * Use O_DIRECT if requested, except in walreceiver process. The WAL
8787 * written by walreceiver is normally read by the startup process soon
8788 * after it's written. Also, walreceiver performs unaligned writes, which
8789 * don't work with O_DIRECT, so it is required for correctness too.
8790 */
8792 o_direct_flag = PG_O_DIRECT;
8793
8794 /* If fsync is disabled, never open in sync mode */
8795 if (!enableFsync)
8796 return o_direct_flag;
8797
8798 switch (method)
8799 {
8800 /*
8801 * enum values for all sync options are defined even if they are
8802 * not supported on the current platform. But if not, they are
8803 * not included in the enum option array, and therefore will never
8804 * be seen here.
8805 */
8809 return o_direct_flag;
8810#ifdef O_SYNC
8812 return O_SYNC | o_direct_flag;
8813#endif
8814#ifdef O_DSYNC
8816 return O_DSYNC | o_direct_flag;
8817#endif
8818 default:
8819 /* can't happen (unless we are out of sync with option array) */
8820 elog(ERROR, "unrecognized \"wal_sync_method\": %d", method);
8821 return 0; /* silence warning */
8822 }
8823}
8824
8825/*
8826 * GUC support
8827 */
8828void
8829assign_wal_sync_method(int new_wal_sync_method, void *extra)
8830{
8831 if (wal_sync_method != new_wal_sync_method)
8832 {
8833 /*
8834 * To ensure that no blocks escape unsynced, force an fsync on the
8835 * currently open log segment (if any). Also, if the open flag is
8836 * changing, close the log file so it will be reopened (with new flag
8837 * bit) at next use.
8838 */
8839 if (openLogFile >= 0)
8840 {
8841 pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN);
8842 if (pg_fsync(openLogFile) != 0)
8843 {
8844 char xlogfname[MAXFNAMELEN];
8845 int save_errno;
8846
8847 save_errno = errno;
8850 errno = save_errno;
8851 ereport(PANIC,
8853 errmsg("could not fsync file \"%s\": %m", xlogfname)));
8854 }
8855
8857 if (get_sync_bit(wal_sync_method) != get_sync_bit(new_wal_sync_method))
8858 XLogFileClose();
8859 }
8860 }
8861}
8862
8863
8864/*
8865 * Issue appropriate kind of fsync (if any) for an XLOG output file.
8866 *
8867 * 'fd' is a file descriptor for the XLOG file to be fsync'd.
8868 * 'segno' is for error reporting purposes.
8869 */
8870void
8872{
8873 char *msg = NULL;
8875
8876 Assert(tli != 0);
8877
8878 /*
8879 * Quick exit if fsync is disabled or write() has already synced the WAL
8880 * file.
8881 */
8882 if (!enableFsync ||
8885 return;
8886
8887 /*
8888 * Measure I/O timing to sync the WAL file for pg_stat_io.
8889 */
8891
8892 pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC);
8893 switch (wal_sync_method)
8894 {
8896 if (pg_fsync_no_writethrough(fd) != 0)
8897 msg = _("could not fsync file \"%s\": %m");
8898 break;
8899#ifdef HAVE_FSYNC_WRITETHROUGH
8901 if (pg_fsync_writethrough(fd) != 0)
8902 msg = _("could not fsync write-through file \"%s\": %m");
8903 break;
8904#endif
8906 if (pg_fdatasync(fd) != 0)
8907 msg = _("could not fdatasync file \"%s\": %m");
8908 break;
8911 /* not reachable */
8912 Assert(false);
8913 break;
8914 default:
8915 ereport(PANIC,
8916 errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8917 errmsg_internal("unrecognized \"wal_sync_method\": %d", wal_sync_method));
8918 break;
8919 }
8920
8921 /* PANIC if failed to fsync */
8922 if (msg)
8923 {
8924 char xlogfname[MAXFNAMELEN];
8925 int save_errno = errno;
8926
8927 XLogFileName(xlogfname, tli, segno, wal_segment_size);
8928 errno = save_errno;
8929 ereport(PANIC,
8931 errmsg(msg, xlogfname)));
8932 }
8933
8935
8937 start, 1, 0);
8938}
8939
8940/*
8941 * do_pg_backup_start is the workhorse of the user-visible pg_backup_start()
8942 * function. It creates the necessary starting checkpoint and constructs the
8943 * backup state and tablespace map.
8944 *
8945 * Input parameters are "state" (the backup state), "fast" (if true, we do
8946 * the checkpoint in immediate mode to make it faster), and "tablespaces"
8947 * (if non-NULL, indicates a list of tablespaceinfo structs describing the
8948 * cluster's tablespaces.).
8949 *
8950 * The tablespace map contents are appended to passed-in parameter
8951 * tablespace_map and the caller is responsible for including it in the backup
8952 * archive as 'tablespace_map'. The tablespace_map file is required mainly for
8953 * tar format in windows as native windows utilities are not able to create
8954 * symlinks while extracting files from tar. However for consistency and
8955 * platform-independence, we do it the same way everywhere.
8956 *
8957 * It fills in "state" with the information required for the backup, such
8958 * as the minimum WAL location that must be present to restore from this
8959 * backup (starttli) and the corresponding timeline ID (starttli).
8960 *
8961 * Every successfully started backup must be stopped by calling
8962 * do_pg_backup_stop() or do_pg_abort_backup(). There can be many
8963 * backups active at the same time.
8964 *
8965 * It is the responsibility of the caller of this function to verify the
8966 * permissions of the calling user!
8967 */
8968void
8969do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces,
8970 BackupState *state, StringInfo tblspcmapfile)
8971{
8973
8974 Assert(state != NULL);
8976
8977 /*
8978 * During recovery, we don't need to check WAL level. Because, if WAL
8979 * level is not sufficient, it's impossible to get here during recovery.
8980 */
8982 ereport(ERROR,
8983 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8984 errmsg("WAL level not sufficient for making an online backup"),
8985 errhint("\"wal_level\" must be set to \"replica\" or \"logical\" at server start.")));
8986
8987 if (strlen(backupidstr) > MAXPGPATH)
8988 ereport(ERROR,
8989 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8990 errmsg("backup label too long (max %d bytes)",
8991 MAXPGPATH)));
8992
8993 strlcpy(state->name, backupidstr, sizeof(state->name));
8994
8995 /*
8996 * Mark backup active in shared memory. We must do full-page WAL writes
8997 * during an on-line backup even if not doing so at other times, because
8998 * it's quite possible for the backup dump to obtain a "torn" (partially
8999 * written) copy of a database page if it reads the page concurrently with
9000 * our write to the same page. This can be fixed as long as the first
9001 * write to the page in the WAL sequence is a full-page write. Hence, we
9002 * increment runningBackups then force a CHECKPOINT, to ensure there are
9003 * no dirty pages in shared memory that might get dumped while the backup
9004 * is in progress without having a corresponding WAL record. (Once the
9005 * backup is complete, we need not force full-page writes anymore, since
9006 * we expect that any pages not modified during the backup interval must
9007 * have been correctly captured by the backup.)
9008 *
9009 * Note that forcing full-page writes has no effect during an online
9010 * backup from the standby.
9011 *
9012 * We must hold all the insertion locks to change the value of
9013 * runningBackups, to ensure adequate interlocking against
9014 * XLogInsertRecord().
9015 */
9019
9020 /*
9021 * Ensure we decrement runningBackups if we fail below. NB -- for this to
9022 * work correctly, it is critical that sessionBackupState is only updated
9023 * after this block is over.
9024 */
9026 {
9027 bool gotUniqueStartpoint = false;
9028 DIR *tblspcdir;
9029 struct dirent *de;
9030 tablespaceinfo *ti;
9031 int datadirpathlen;
9032
9033 /*
9034 * Force an XLOG file switch before the checkpoint, to ensure that the
9035 * WAL segment the checkpoint is written to doesn't contain pages with
9036 * old timeline IDs. That would otherwise happen if you called
9037 * pg_backup_start() right after restoring from a PITR archive: the
9038 * first WAL segment containing the startup checkpoint has pages in
9039 * the beginning with the old timeline ID. That can cause trouble at
9040 * recovery: we won't have a history file covering the old timeline if
9041 * pg_wal directory was not included in the base backup and the WAL
9042 * archive was cleared too before starting the backup.
9043 *
9044 * This also ensures that we have emitted a WAL page header that has
9045 * XLP_BKP_REMOVABLE off before we emit the checkpoint record.
9046 * Therefore, if a WAL archiver (such as pglesslog) is trying to
9047 * compress out removable backup blocks, it won't remove any that
9048 * occur after this point.
9049 *
9050 * During recovery, we skip forcing XLOG file switch, which means that
9051 * the backup taken during recovery is not available for the special
9052 * recovery case described above.
9053 */
9055 RequestXLogSwitch(false);
9056
9057 do
9058 {
9059 bool checkpointfpw;
9060
9061 /*
9062 * Force a CHECKPOINT. Aside from being necessary to prevent torn
9063 * page problems, this guarantees that two successive backup runs
9064 * will have different checkpoint positions and hence different
9065 * history file names, even if nothing happened in between.
9066 *
9067 * During recovery, establish a restartpoint if possible. We use
9068 * the last restartpoint as the backup starting checkpoint. This
9069 * means that two successive backup runs can have same checkpoint
9070 * positions.
9071 *
9072 * Since the fact that we are executing do_pg_backup_start()
9073 * during recovery means that checkpointer is running, we can use
9074 * RequestCheckpoint() to establish a restartpoint.
9075 *
9076 * We use CHECKPOINT_IMMEDIATE only if requested by user (via
9077 * passing fast = true). Otherwise this can take awhile.
9078 */
9080 (fast ? CHECKPOINT_IMMEDIATE : 0));
9081
9082 /*
9083 * Now we need to fetch the checkpoint record location, and also
9084 * its REDO pointer. The oldest point in WAL that would be needed
9085 * to restore starting from the checkpoint is precisely the REDO
9086 * pointer.
9087 */
9088 LWLockAcquire(ControlFileLock, LW_SHARED);
9089 state->checkpointloc = ControlFile->checkPoint;
9090 state->startpoint = ControlFile->checkPointCopy.redo;
9092 checkpointfpw = ControlFile->checkPointCopy.fullPageWrites;
9093 LWLockRelease(ControlFileLock);
9094
9096 {
9097 XLogRecPtr recptr;
9098
9099 /*
9100 * Check to see if all WAL replayed during online backup
9101 * (i.e., since last restartpoint used as backup starting
9102 * checkpoint) contain full-page writes.
9103 */
9105 recptr = XLogCtl->lastFpwDisableRecPtr;
9107
9108 if (!checkpointfpw || state->startpoint <= recptr)
9109 ereport(ERROR,
9110 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9111 errmsg("WAL generated with \"full_page_writes=off\" was replayed "
9112 "since last restartpoint"),
9113 errhint("This means that the backup being taken on the standby "
9114 "is corrupt and should not be used. "
9115 "Enable \"full_page_writes\" and run CHECKPOINT on the primary, "
9116 "and then try an online backup again.")));
9117
9118 /*
9119 * During recovery, since we don't use the end-of-backup WAL
9120 * record and don't write the backup history file, the
9121 * starting WAL location doesn't need to be unique. This means
9122 * that two base backups started at the same time might use
9123 * the same checkpoint as starting locations.
9124 */
9125 gotUniqueStartpoint = true;
9126 }
9127
9128 /*
9129 * If two base backups are started at the same time (in WAL sender
9130 * processes), we need to make sure that they use different
9131 * checkpoints as starting locations, because we use the starting
9132 * WAL location as a unique identifier for the base backup in the
9133 * end-of-backup WAL record and when we write the backup history
9134 * file. Perhaps it would be better generate a separate unique ID
9135 * for each backup instead of forcing another checkpoint, but
9136 * taking a checkpoint right after another is not that expensive
9137 * either because only few buffers have been dirtied yet.
9138 */
9140 if (XLogCtl->Insert.lastBackupStart < state->startpoint)
9141 {
9142 XLogCtl->Insert.lastBackupStart = state->startpoint;
9143 gotUniqueStartpoint = true;
9144 }
9146 } while (!gotUniqueStartpoint);
9147
9148 /*
9149 * Construct tablespace_map file.
9150 */
9151 datadirpathlen = strlen(DataDir);
9152
9153 /* Collect information about all tablespaces */
9154 tblspcdir = AllocateDir(PG_TBLSPC_DIR);
9155 while ((de = ReadDir(tblspcdir, PG_TBLSPC_DIR)) != NULL)
9156 {
9157 char fullpath[MAXPGPATH + sizeof(PG_TBLSPC_DIR)];
9158 char linkpath[MAXPGPATH];
9159 char *relpath = NULL;
9160 char *s;
9161 PGFileType de_type;
9162 char *badp;
9163 Oid tsoid;
9164
9165 /*
9166 * Try to parse the directory name as an unsigned integer.
9167 *
9168 * Tablespace directories should be positive integers that can be
9169 * represented in 32 bits, with no leading zeroes or trailing
9170 * garbage. If we come across a name that doesn't meet those
9171 * criteria, skip it.
9172 */
9173 if (de->d_name[0] < '1' || de->d_name[1] > '9')
9174 continue;
9175 errno = 0;
9176 tsoid = strtoul(de->d_name, &badp, 10);
9177 if (*badp != '\0' || errno == EINVAL || errno == ERANGE)
9178 continue;
9179
9180 snprintf(fullpath, sizeof(fullpath), "%s/%s", PG_TBLSPC_DIR, de->d_name);
9181
9182 de_type = get_dirent_type(fullpath, de, false, ERROR);
9183
9184 if (de_type == PGFILETYPE_LNK)
9185 {
9186 StringInfoData escapedpath;
9187 int rllen;
9188
9189 rllen = readlink(fullpath, linkpath, sizeof(linkpath));
9190 if (rllen < 0)
9191 {
9193 (errmsg("could not read symbolic link \"%s\": %m",
9194 fullpath)));
9195 continue;
9196 }
9197 else if (rllen >= sizeof(linkpath))
9198 {
9200 (errmsg("symbolic link \"%s\" target is too long",
9201 fullpath)));
9202 continue;
9203 }
9204 linkpath[rllen] = '\0';
9205
9206 /*
9207 * Relpath holds the relative path of the tablespace directory
9208 * when it's located within PGDATA, or NULL if it's located
9209 * elsewhere.
9210 */
9211 if (rllen > datadirpathlen &&
9212 strncmp(linkpath, DataDir, datadirpathlen) == 0 &&
9213 IS_DIR_SEP(linkpath[datadirpathlen]))
9214 relpath = pstrdup(linkpath + datadirpathlen + 1);
9215
9216 /*
9217 * Add a backslash-escaped version of the link path to the
9218 * tablespace map file.
9219 */
9220 initStringInfo(&escapedpath);
9221 for (s = linkpath; *s; s++)
9222 {
9223 if (*s == '\n' || *s == '\r' || *s == '\\')
9224 appendStringInfoChar(&escapedpath, '\\');
9225 appendStringInfoChar(&escapedpath, *s);
9226 }
9227 appendStringInfo(tblspcmapfile, "%s %s\n",
9228 de->d_name, escapedpath.data);
9229 pfree(escapedpath.data);
9230 }
9231 else if (de_type == PGFILETYPE_DIR)
9232 {
9233 /*
9234 * It's possible to use allow_in_place_tablespaces to create
9235 * directories directly under pg_tblspc, for testing purposes
9236 * only.
9237 *
9238 * In this case, we store a relative path rather than an
9239 * absolute path into the tablespaceinfo.
9240 */
9241 snprintf(linkpath, sizeof(linkpath), "%s/%s",
9242 PG_TBLSPC_DIR, de->d_name);
9243 relpath = pstrdup(linkpath);
9244 }
9245 else
9246 {
9247 /* Skip any other file type that appears here. */
9248 continue;
9249 }
9250
9251 ti = palloc(sizeof(tablespaceinfo));
9252 ti->oid = tsoid;
9253 ti->path = pstrdup(linkpath);
9254 ti->rpath = relpath;
9255 ti->size = -1;
9256
9257 if (tablespaces)
9258 *tablespaces = lappend(*tablespaces, ti);
9259 }
9260 FreeDir(tblspcdir);
9261
9262 state->starttime = (pg_time_t) time(NULL);
9263 }
9265
9266 state->started_in_recovery = backup_started_in_recovery;
9267
9268 /*
9269 * Mark that the start phase has correctly finished for the backup.
9270 */
9272}
9273
9274/*
9275 * Utility routine to fetch the session-level status of a backup running.
9276 */
9279{
9280 return sessionBackupState;
9281}
9282
9283/*
9284 * do_pg_backup_stop
9285 *
9286 * Utility function called at the end of an online backup. It creates history
9287 * file (if required), resets sessionBackupState and so on. It can optionally
9288 * wait for WAL segments to be archived.
9289 *
9290 * "state" is filled with the information necessary to restore from this
9291 * backup with its stop LSN (stoppoint), its timeline ID (stoptli), etc.
9292 *
9293 * It is the responsibility of the caller of this function to verify the
9294 * permissions of the calling user!
9295 */
9296void
9298{
9299 bool backup_stopped_in_recovery = false;
9300 char histfilepath[MAXPGPATH];
9301 char lastxlogfilename[MAXFNAMELEN];
9302 char histfilename[MAXFNAMELEN];
9303 XLogSegNo _logSegNo;
9304 FILE *fp;
9305 int seconds_before_warning;
9306 int waits = 0;
9307 bool reported_waiting = false;
9308
9309 Assert(state != NULL);
9310
9311 backup_stopped_in_recovery = RecoveryInProgress();
9312
9313 /*
9314 * During recovery, we don't need to check WAL level. Because, if WAL
9315 * level is not sufficient, it's impossible to get here during recovery.
9316 */
9317 if (!backup_stopped_in_recovery && !XLogIsNeeded())
9318 ereport(ERROR,
9319 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9320 errmsg("WAL level not sufficient for making an online backup"),
9321 errhint("\"wal_level\" must be set to \"replica\" or \"logical\" at server start.")));
9322
9323 /*
9324 * OK to update backup counter and session-level lock.
9325 *
9326 * Note that CHECK_FOR_INTERRUPTS() must not occur while updating them,
9327 * otherwise they can be updated inconsistently, which might cause
9328 * do_pg_abort_backup() to fail.
9329 */
9331
9332 /*
9333 * It is expected that each do_pg_backup_start() call is matched by
9334 * exactly one do_pg_backup_stop() call.
9335 */
9338
9339 /*
9340 * Clean up session-level lock.
9341 *
9342 * You might think that WALInsertLockRelease() can be called before
9343 * cleaning up session-level lock because session-level lock doesn't need
9344 * to be protected with WAL insertion lock. But since
9345 * CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be
9346 * cleaned up before it.
9347 */
9349
9351
9352 /*
9353 * If we are taking an online backup from the standby, we confirm that the
9354 * standby has not been promoted during the backup.
9355 */
9356 if (state->started_in_recovery && !backup_stopped_in_recovery)
9357 ereport(ERROR,
9358 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9359 errmsg("the standby was promoted during online backup"),
9360 errhint("This means that the backup being taken is corrupt "
9361 "and should not be used. "
9362 "Try taking another online backup.")));
9363
9364 /*
9365 * During recovery, we don't write an end-of-backup record. We assume that
9366 * pg_control was backed up last and its minimum recovery point can be
9367 * available as the backup end location. Since we don't have an
9368 * end-of-backup record, we use the pg_control value to check whether
9369 * we've reached the end of backup when starting recovery from this
9370 * backup. We have no way of checking if pg_control wasn't backed up last
9371 * however.
9372 *
9373 * We don't force a switch to new WAL file but it is still possible to
9374 * wait for all the required files to be archived if waitforarchive is
9375 * true. This is okay if we use the backup to start a standby and fetch
9376 * the missing WAL using streaming replication. But in the case of an
9377 * archive recovery, a user should set waitforarchive to true and wait for
9378 * them to be archived to ensure that all the required files are
9379 * available.
9380 *
9381 * We return the current minimum recovery point as the backup end
9382 * location. Note that it can be greater than the exact backup end
9383 * location if the minimum recovery point is updated after the backup of
9384 * pg_control. This is harmless for current uses.
9385 *
9386 * XXX currently a backup history file is for informational and debug
9387 * purposes only. It's not essential for an online backup. Furthermore,
9388 * even if it's created, it will not be archived during recovery because
9389 * an archiver is not invoked. So it doesn't seem worthwhile to write a
9390 * backup history file during recovery.
9391 */
9392 if (backup_stopped_in_recovery)
9393 {
9394 XLogRecPtr recptr;
9395
9396 /*
9397 * Check to see if all WAL replayed during online backup contain
9398 * full-page writes.
9399 */
9401 recptr = XLogCtl->lastFpwDisableRecPtr;
9403
9404 if (state->startpoint <= recptr)
9405 ereport(ERROR,
9406 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9407 errmsg("WAL generated with \"full_page_writes=off\" was replayed "
9408 "during online backup"),
9409 errhint("This means that the backup being taken on the standby "
9410 "is corrupt and should not be used. "
9411 "Enable \"full_page_writes\" and run CHECKPOINT on the primary, "
9412 "and then try an online backup again.")));
9413
9414
9415 LWLockAcquire(ControlFileLock, LW_SHARED);
9416 state->stoppoint = ControlFile->minRecoveryPoint;
9418 LWLockRelease(ControlFileLock);
9419 }
9420 else
9421 {
9422 char *history_file;
9423
9424 /*
9425 * Write the backup-end xlog record
9426 */
9428 XLogRegisterData(&state->startpoint,
9429 sizeof(state->startpoint));
9430 state->stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END);
9431
9432 /*
9433 * Given that we're not in recovery, InsertTimeLineID is set and can't
9434 * change, so we can read it without a lock.
9435 */
9436 state->stoptli = XLogCtl->InsertTimeLineID;
9437
9438 /*
9439 * Force a switch to a new xlog segment file, so that the backup is
9440 * valid as soon as archiver moves out the current segment file.
9441 */
9442 RequestXLogSwitch(false);
9443
9444 state->stoptime = (pg_time_t) time(NULL);
9445
9446 /*
9447 * Write the backup history file
9448 */
9449 XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9450 BackupHistoryFilePath(histfilepath, state->stoptli, _logSegNo,
9451 state->startpoint, wal_segment_size);
9452 fp = AllocateFile(histfilepath, "w");
9453 if (!fp)
9454 ereport(ERROR,
9456 errmsg("could not create file \"%s\": %m",
9457 histfilepath)));
9458
9459 /* Build and save the contents of the backup history file */
9460 history_file = build_backup_content(state, true);
9461 fprintf(fp, "%s", history_file);
9462 pfree(history_file);
9463
9464 if (fflush(fp) || ferror(fp) || FreeFile(fp))
9465 ereport(ERROR,
9467 errmsg("could not write file \"%s\": %m",
9468 histfilepath)));
9469
9470 /*
9471 * Clean out any no-longer-needed history files. As a side effect,
9472 * this will post a .ready file for the newly created history file,
9473 * notifying the archiver that history file may be archived
9474 * immediately.
9475 */
9477 }
9478
9479 /*
9480 * If archiving is enabled, wait for all the required WAL files to be
9481 * archived before returning. If archiving isn't enabled, the required WAL
9482 * needs to be transported via streaming replication (hopefully with
9483 * wal_keep_size set high enough), or some more exotic mechanism like
9484 * polling and copying files from pg_wal with script. We have no knowledge
9485 * of those mechanisms, so it's up to the user to ensure that he gets all
9486 * the required WAL.
9487 *
9488 * We wait until both the last WAL file filled during backup and the
9489 * history file have been archived, and assume that the alphabetic sorting
9490 * property of the WAL files ensures any earlier WAL files are safely
9491 * archived as well.
9492 *
9493 * We wait forever, since archive_command is supposed to work and we
9494 * assume the admin wanted his backup to work completely. If you don't
9495 * wish to wait, then either waitforarchive should be passed in as false,
9496 * or you can set statement_timeout. Also, some notices are issued to
9497 * clue in anyone who might be doing this interactively.
9498 */
9499
9500 if (waitforarchive &&
9501 ((!backup_stopped_in_recovery && XLogArchivingActive()) ||
9502 (backup_stopped_in_recovery && XLogArchivingAlways())))
9503 {
9504 XLByteToPrevSeg(state->stoppoint, _logSegNo, wal_segment_size);
9505 XLogFileName(lastxlogfilename, state->stoptli, _logSegNo,
9507
9508 XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9509 BackupHistoryFileName(histfilename, state->stoptli, _logSegNo,
9510 state->startpoint, wal_segment_size);
9511
9512 seconds_before_warning = 60;
9513 waits = 0;
9514
9515 while (XLogArchiveIsBusy(lastxlogfilename) ||
9516 XLogArchiveIsBusy(histfilename))
9517 {
9519
9520 if (!reported_waiting && waits > 5)
9521 {
9523 (errmsg("base backup done, waiting for required WAL segments to be archived")));
9524 reported_waiting = true;
9525 }
9526
9527 (void) WaitLatch(MyLatch,
9529 1000L,
9530 WAIT_EVENT_BACKUP_WAIT_WAL_ARCHIVE);
9532
9533 if (++waits >= seconds_before_warning)
9534 {
9535 seconds_before_warning *= 2; /* This wraps in >10 years... */
9537 (errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)",
9538 waits),
9539 errhint("Check that your \"archive_command\" is executing properly. "
9540 "You can safely cancel this backup, "
9541 "but the database backup will not be usable without all the WAL segments.")));
9542 }
9543 }
9544
9546 (errmsg("all required WAL segments have been archived")));
9547 }
9548 else if (waitforarchive)
9550 (errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup")));
9551}
9552
9553
9554/*
9555 * do_pg_abort_backup: abort a running backup
9556 *
9557 * This does just the most basic steps of do_pg_backup_stop(), by taking the
9558 * system out of backup mode, thus making it a lot more safe to call from
9559 * an error handler.
9560 *
9561 * 'arg' indicates that it's being called during backup setup; so
9562 * sessionBackupState has not been modified yet, but runningBackups has
9563 * already been incremented. When it's false, then it's invoked as a
9564 * before_shmem_exit handler, and therefore we must not change state
9565 * unless sessionBackupState indicates that a backup is actually running.
9566 *
9567 * NB: This gets used as a PG_ENSURE_ERROR_CLEANUP callback and
9568 * before_shmem_exit handler, hence the odd-looking signature.
9569 */
9570void
9572{
9573 bool during_backup_start = DatumGetBool(arg);
9574
9575 /* If called during backup start, there shouldn't be one already running */
9576 Assert(!during_backup_start || sessionBackupState == SESSION_BACKUP_NONE);
9577
9578 if (during_backup_start || sessionBackupState != SESSION_BACKUP_NONE)
9579 {
9583
9586
9587 if (!during_backup_start)
9589 errmsg("aborting backup due to backend exiting before pg_backup_stop was called"));
9590 }
9591}
9592
9593/*
9594 * Register a handler that will warn about unterminated backups at end of
9595 * session, unless this has already been done.
9596 */
9597void
9599{
9600 static bool already_done = false;
9601
9602 if (already_done)
9603 return;
9605 already_done = true;
9606}
9607
9608/*
9609 * Get latest WAL insert pointer
9610 */
9613{
9615 uint64 current_bytepos;
9616
9617 SpinLockAcquire(&Insert->insertpos_lck);
9618 current_bytepos = Insert->CurrBytePos;
9619 SpinLockRelease(&Insert->insertpos_lck);
9620
9621 return XLogBytePosToRecPtr(current_bytepos);
9622}
9623
9624/*
9625 * Get latest WAL write pointer
9626 */
9629{
9631
9632 return LogwrtResult.Write;
9633}
9634
9635/*
9636 * Returns the redo pointer of the last checkpoint or restartpoint. This is
9637 * the oldest point in WAL that we still need, if we have to restart recovery.
9638 */
9639void
9641{
9642 LWLockAcquire(ControlFileLock, LW_SHARED);
9643 *oldrecptr = ControlFile->checkPointCopy.redo;
9645 LWLockRelease(ControlFileLock);
9646}
9647
9648/* Thin wrapper around ShutdownWalRcv(). */
9649void
9651{
9653
9654 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9656 LWLockRelease(ControlFileLock);
9657}
9658
9659/* Enable WAL file recycling and preallocation. */
9660void
9662{
9663 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9665 LWLockRelease(ControlFileLock);
9666}
9667
9668bool
9670{
9671 bool result;
9672
9673 LWLockAcquire(ControlFileLock, LW_SHARED);
9675 LWLockRelease(ControlFileLock);
9676
9677 return result;
9678}
9679
9680/*
9681 * Update the WalWriterSleeping flag.
9682 */
9683void
9685{
9687 XLogCtl->WalWriterSleeping = sleeping;
9689}
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:262
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:485
#define pg_memory_barrier()
Definition: atomics.h:143
static bool pg_atomic_compare_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 *expected, uint64 newval)
Definition: atomics.h:512
#define pg_read_barrier()
Definition: atomics.h:156
static uint64 pg_atomic_read_membarrier_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:476
#define pg_write_barrier()
Definition: atomics.h:157
static uint64 pg_atomic_monotonic_advance_u64(volatile pg_atomic_uint64 *ptr, uint64 target)
Definition: atomics.h:585
static uint64 pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
Definition: atomics.h:522
static void pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:453
static void pg_atomic_write_membarrier_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:494
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:467
TimeLineID findNewestTimeLine(TimeLineID startTLI)
Definition: timeline.c:264
void restoreTimeLineHistoryFiles(TimeLineID begin, TimeLineID end)
Definition: timeline.c:50
void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI, XLogRecPtr switchpoint, char *reason)
Definition: timeline.c:304
void startup_progress_timeout_handler(void)
Definition: startup.c:307
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1757
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1862
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1609
static bool backup_started_in_recovery
Definition: basebackup.c:123
int Buffer
Definition: buf.h:23
void CheckPointBuffers(int flags)
Definition: bufmgr.c:4217
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5390
#define Min(x, y)
Definition: c.h:975
#define pg_attribute_unused()
Definition: c.h:133
#define likely(x)
Definition: c.h:346
#define MAXALIGN(LEN)
Definition: c.h:782
#define TYPEALIGN(ALIGNVAL, LEN)
Definition: c.h:775
uint8_t uint8
Definition: c.h:500
#define Max(x, y)
Definition: c.h:969
#define PG_BINARY
Definition: c.h:1244
#define pg_attribute_always_inline
Definition: c.h:270
#define FLOAT8PASSBYVAL
Definition: c.h:606
uint64_t uint64
Definition: c.h:503
#define unlikely(x)
Definition: c.h:347
uint32_t uint32
Definition: c.h:502
#define MAXALIGN64(LEN)
Definition: c.h:807
#define PG_UINT64_MAX
Definition: c.h:564
#define MemSet(start, val, len)
Definition: c.h:991
uint32 TransactionId
Definition: c.h:623
size_t Size
Definition: c.h:576
#define CATALOG_VERSION_NO
Definition: catversion.h:60
void AbsorbSyncRequests(void)
double CheckPointCompletionTarget
Definition: checkpointer.c:143
void RequestCheckpoint(int flags)
void BootStrapCLOG(void)
Definition: clog.c:833
void StartupCLOG(void)
Definition: clog.c:877
void CheckPointCLOG(void)
Definition: clog.c:937
void TrimCLOG(void)
Definition: clog.c:892
void StartupCommitTs(void)
Definition: commit_ts.c:632
void CommitTsParameterChange(bool newvalue, bool oldvalue)
Definition: commit_ts.c:664
bool track_commit_timestamp
Definition: commit_ts.c:109
void CompleteCommitTsInitialization(void)
Definition: commit_ts.c:642
void BootStrapCommitTs(void)
Definition: commit_ts.c:596
void SetCommitTsLimit(TransactionId oldestXact, TransactionId newestXact)
Definition: commit_ts.c:909
void CheckPointCommitTs(void)
Definition: commit_ts.c:820
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
void update_controlfile(const char *DataDir, ControlFileData *ControlFile, bool do_sync)
#define fprintf(file, fmt, msg)
Definition: cubescan.l:21
int64 TimestampTz
Definition: timestamp.h:39
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1181
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1158
int errcode_for_file_access(void)
Definition: elog.c:877
int errdetail(const char *fmt,...)
Definition: elog.c:1204
int errhint(const char *fmt,...)
Definition: elog.c:1318
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:149
struct pg_atomic_uint64 pg_atomic_uint64
int MakePGDirectory(const char *directoryName)
Definition: fd.c:3978
int FreeDir(DIR *dir)
Definition: fd.c:3025
int pg_fsync_no_writethrough(int fd)
Definition: fd.c:441
int io_direct_flags
Definition: fd.c:168
int durable_rename(const char *oldfile, const char *newfile, int elevel)
Definition: fd.c:782
int pg_fdatasync(int fd)
Definition: fd.c:480
int CloseTransientFile(int fd)
Definition: fd.c:2871
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1089
int FreeFile(FILE *file)
Definition: fd.c:2843
int pg_fsync_writethrough(int fd)
Definition: fd.c:461
void ReleaseExternalFD(void)
Definition: fd.c:1241
int data_sync_elevel(int elevel)
Definition: fd.c:4001
static void Insert(File file)
Definition: fd.c:1317
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2907
int durable_unlink(const char *fname, int elevel)
Definition: fd.c:872
void ReserveExternalFD(void)
Definition: fd.c:1223
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2973
int pg_fsync(int fd)
Definition: fd.c:386
FILE * AllocateFile(const char *name, const char *mode)
Definition: fd.c:2644
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2694
void SyncDataDirectory(void)
Definition: fd.c:3609
#define IO_DIRECT_WAL
Definition: fd.h:55
#define IO_DIRECT_WAL_INIT
Definition: fd.h:56
#define PG_O_DIRECT
Definition: fd.h:97
ssize_t pg_pwrite_zeros(int fd, size_t size, off_t offset)
Definition: file_utils.c:709
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:547
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_LNK
Definition: file_utils.h:24
@ PGFILETYPE_DIR
Definition: file_utils.h:23
@ PGFILETYPE_REG
Definition: file_utils.h:22
bool IsBinaryUpgrade
Definition: globals.c:122
int NBuffers
Definition: globals.c:143
bool enableFsync
Definition: globals.c:130
ProcNumber MyProcNumber
Definition: globals.c:91
bool IsUnderPostmaster
Definition: globals.c:121
int MaxConnections
Definition: globals.c:144
volatile uint32 CritSectionCount
Definition: globals.c:46
char * DataDir
Definition: globals.c:72
bool IsPostmasterEnvironment
Definition: globals.c:120
struct Latch * MyLatch
Definition: globals.c:64
int max_worker_processes
Definition: globals.c:145
int set_config_option_ext(const char *name, const char *value, GucContext context, GucSource source, Oid srole, GucAction action, bool changeVal, int elevel, bool is_reload)
Definition: guc.c:3382
void SetConfigOption(const char *name, const char *value, GucContext context, GucSource source)
Definition: guc.c:4332
void * guc_malloc(int elevel, size_t size)
Definition: guc.c:638
#define newval
struct config_generic * find_option(const char *name, bool create_placeholders, bool skip_errors, int elevel)
Definition: guc.c:1235
@ GUC_ACTION_SET
Definition: guc.h:203
#define GUC_check_errdetail
Definition: guc.h:481
GucSource
Definition: guc.h:112
@ PGC_S_DYNAMIC_DEFAULT
Definition: guc.h:114
@ PGC_S_OVERRIDE
Definition: guc.h:123
@ PGC_INTERNAL
Definition: guc.h:73
@ PGC_POSTMASTER
Definition: guc.h:74
Assert(PointerIsAligned(start, uint64))
return str start
#define TOAST_MAX_CHUNK_SIZE
Definition: heaptoast.h:84
#define INJECTION_POINT(name)
WalUsage pgWalUsage
Definition: instrument.c:22
#define close(a)
Definition: win32.h:12
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
#define PG_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:47
#define PG_END_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:52
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
#define LOBLKSIZE
Definition: large_object.h:70
void SetLatch(Latch *latch)
Definition: latch.c:288
void ResetLatch(Latch *latch)
Definition: latch.c:372
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:172
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_free(List *list)
Definition: list.c:1546
int max_locks_per_xact
Definition: lock.c:53
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1734
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1931
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1182
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1598
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1902
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:721
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1353
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1410
@ LWTRANCHE_WAL_INSERT
Definition: lwlock.h:190
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
char * pstrdup(const char *in)
Definition: mcxt.c:2325
void pfree(void *pointer)
Definition: mcxt.c:2150
MemoryContext TopMemoryContext
Definition: mcxt.c:165
void * palloc(Size size)
Definition: mcxt.c:1943
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:725
#define AllocSetContextCreate
Definition: memutils.h:149
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:180
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:477
#define START_CRIT_SECTION()
Definition: miscadmin.h:150
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
@ B_CHECKPOINTER
Definition: miscadmin.h:363
#define END_CRIT_SECTION()
Definition: miscadmin.h:152
#define AmWalReceiverProcess()
Definition: miscadmin.h:391
bool process_shared_preload_libraries_done
Definition: miscinit.c:1838
BackendType MyBackendType
Definition: miscinit.c:64
void MultiXactSetNextMXact(MultiXactId nextMulti, MultiXactOffset nextMultiOffset)
Definition: multixact.c:2328
void MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
Definition: multixact.c:2536
void MultiXactGetCheckptMulti(bool is_shutdown, MultiXactId *nextMulti, MultiXactOffset *nextMultiOffset, MultiXactId *oldestMulti, Oid *oldestMultiDB)
Definition: multixact.c:2282
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid, bool is_startup)
Definition: multixact.c:2362
void CheckPointMultiXact(void)
Definition: multixact.c:2304
void TrimMultiXact(void)
Definition: multixact.c:2178
void MultiXactAdvanceNextMXact(MultiXactId minMulti, MultiXactOffset minMultiOffset)
Definition: multixact.c:2511
void BootStrapMultiXact(void)
Definition: multixact.c:2034
void StartupMultiXact(void)
Definition: multixact.c:2153
#define FirstMultiXactId
Definition: multixact.h:25
void StartupReplicationOrigin(void)
Definition: origin.c:699
void CheckPointReplicationOrigin(void)
Definition: origin.c:573
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define INDEX_MAX_KEYS
#define NAMEDATALEN
#define MAXPGPATH
#define DEFAULT_XLOG_SEG_SIZE
#define PG_IO_ALIGN_SIZE
#define PG_CACHE_LINE_SIZE
#define FLOATFORMAT_VALUE
Definition: pg_control.h:201
#define XLOG_RESTORE_POINT
Definition: pg_control.h:75
#define XLOG_FPW_CHANGE
Definition: pg_control.h:76
#define XLOG_CHECKPOINT_REDO
Definition: pg_control.h:82
#define PG_CONTROL_VERSION
Definition: pg_control.h:25
#define XLOG_OVERWRITE_CONTRECORD
Definition: pg_control.h:81
#define XLOG_FPI
Definition: pg_control.h:79
#define XLOG_FPI_FOR_HINT
Definition: pg_control.h:78
#define MOCK_AUTH_NONCE_LEN
Definition: pg_control.h:28
#define XLOG_NEXTOID
Definition: pg_control.h:71
@ DB_IN_PRODUCTION
Definition: pg_control.h:97
@ DB_SHUTDOWNING
Definition: pg_control.h:94
@ DB_IN_ARCHIVE_RECOVERY
Definition: pg_control.h:96
@ DB_SHUTDOWNED_IN_RECOVERY
Definition: pg_control.h:93
@ DB_SHUTDOWNED
Definition: pg_control.h:92
@ DB_IN_CRASH_RECOVERY
Definition: pg_control.h:95
#define XLOG_NOOP
Definition: pg_control.h:70
#define XLOG_CHECKPOINT_SHUTDOWN
Definition: pg_control.h:68
#define PG_CONTROL_FILE_SIZE
Definition: pg_control.h:256
#define XLOG_SWITCH
Definition: pg_control.h:72
#define XLOG_BACKUP_END
Definition: pg_control.h:73
#define XLOG_PARAMETER_CHANGE
Definition: pg_control.h:74
#define XLOG_CHECKPOINT_ONLINE
Definition: pg_control.h:69
#define XLOG_END_OF_RECOVERY
Definition: pg_control.h:77
uint32 pg_crc32c
Definition: pg_crc32c.h:38
#define COMP_CRC32C(crc, data, len)
Definition: pg_crc32c.h:153
#define EQ_CRC32C(c1, c2)
Definition: pg_crc32c.h:42
#define INIT_CRC32C(crc)
Definition: pg_crc32c.h:41
#define FIN_CRC32C(crc)
Definition: pg_crc32c.h:158
const void size_t len
return crc
static char * filename
Definition: pg_dumpall.c:123
#define lfirst(lc)
Definition: pg_list.h:172
static rewind_source * source
Definition: pg_rewind.c:89
static char * buf
Definition: pg_test_fsync.c:72
void pgstat_restore_stats(void)
Definition: pgstat.c:504
void pgstat_discard_stats(void)
Definition: pgstat.c:516
@ IOOBJECT_WAL
Definition: pgstat.h:276
@ IOCONTEXT_INIT
Definition: pgstat.h:285
@ IOCONTEXT_NORMAL
Definition: pgstat.h:286
@ IOOP_FSYNC
Definition: pgstat.h:305
@ IOOP_WRITE
Definition: pgstat.h:313
PgStat_CheckpointerStats PendingCheckpointerStats
instr_time pgstat_prepare_io_time(bool track_io_guc)
Definition: pgstat_io.c:90
void pgstat_count_io_op_time(IOObject io_object, IOContext io_context, IOOp io_op, instr_time start_time, uint32 cnt, uint64 bytes)
Definition: pgstat_io.c:121
int64 pg_time_t
Definition: pgtime.h:23
size_t pg_strftime(char *s, size_t maxsize, const char *format, const struct pg_tm *t)
Definition: strftime.c:128
struct pg_tm * pg_localtime(const pg_time_t *timep, const pg_tz *tz)
Definition: localtime.c:1344
PGDLLIMPORT pg_tz * log_timezone
Definition: pgtz.c:31
bool pg_strong_random(void *buf, size_t len)
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:36
#define pg_pwrite
Definition: port.h:227
#define snprintf
Definition: port.h:239
#define IS_DIR_SEP(ch)
Definition: port.h:103
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static bool DatumGetBool(Datum X)
Definition: postgres.h:95
uintptr_t Datum
Definition: postgres.h:69
#define InvalidOid
Definition: postgres_ext.h:35
unsigned int Oid
Definition: postgres_ext.h:30
void CheckPointPredicate(void)
Definition: predicate.c:1041
static int fd(const char *x, int i)
Definition: preproc-init.c:105
short access
Definition: preproc-type.c:36
#define GetPGProcByNumber(n)
Definition: proc.h:432
#define DELAY_CHKPT_START
Definition: proc.h:128
#define DELAY_CHKPT_COMPLETE
Definition: proc.h:129
bool MinimumActiveBackends(int min)
Definition: procarray.c:3546
TransactionId GetOldestActiveTransactionId(void)
Definition: procarray.c:2880
TransactionId GetOldestTransactionIdConsideredRunning(void)
Definition: procarray.c:2034
bool HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
Definition: procarray.c:3089
void ProcArrayApplyRecoveryInfo(RunningTransactions running)
Definition: procarray.c:1054
void ProcArrayInitRecovery(TransactionId initializedUptoXID)
Definition: procarray.c:1023
VirtualTransactionId * GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
Definition: procarray.c:3043
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int ProcNumber
Definition: procnumber.h:24
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
void ResetUnloggedRelations(int op)
Definition: reinit.c:47
#define UNLOGGED_RELATION_INIT
Definition: reinit.h:28
#define UNLOGGED_RELATION_CLEANUP
Definition: reinit.h:27
void RelationCacheInitFileRemove(void)
Definition: relcache.c:6897
void CheckPointRelationMap(void)
Definition: relmapper.c:611
#define relpath(rlocator, forknum)
Definition: relpath.h:150
#define PG_TBLSPC_DIR
Definition: relpath.h:41
void StartupReorderBuffer(void)
ResourceOwner CurrentResourceOwner
Definition: resowner.c:173
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:176
void CheckPointLogicalRewriteHeap(void)
Definition: rewriteheap.c:1155
#define RM_MAX_ID
Definition: rmgr.h:33
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
void pg_usleep(long microsec)
Definition: signal.c:53
void CheckPointReplicationSlots(bool is_shutdown)
Definition: slot.c:2032
void StartupReplicationSlots(void)
Definition: slot.c:2089
bool InvalidateObsoleteReplicationSlots(uint32 possible_causes, XLogSegNo oldestSegno, Oid dboid, TransactionId snapshotConflictHorizon)
Definition: slot.c:1976
@ RS_INVAL_WAL_REMOVED
Definition: slot.h:55
@ RS_INVAL_IDLE_TIMEOUT
Definition: slot.h:61
@ RS_INVAL_WAL_LEVEL
Definition: slot.h:59
void CheckPointSnapBuild(void)
Definition: snapbuild.c:1962
void DeleteAllExportedSnapshotFiles(void)
Definition: snapmgr.c:1574
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
void reset(void)
Definition: sql-declare.c:600
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
XLogRecPtr LogStandbySnapshot(void)
Definition: standby.c:1282
void InitRecoveryTransactionEnvironment(void)
Definition: standby.c:95
void ShutdownRecoveryTransactionEnvironment(void)
Definition: standby.c:161
@ SUBXIDS_IN_SUBTRANS
Definition: standby.h:82
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void appendBinaryStringInfo(StringInfo str, const void *data, int datalen)
Definition: stringinfo.c:281
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:230
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:242
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
Oid oldestMultiDB
Definition: pg_control.h:51
MultiXactId oldestMulti
Definition: pg_control.h:50
MultiXactOffset nextMultiOffset
Definition: pg_control.h:47
TransactionId newestCommitTsXid
Definition: pg_control.h:55
TransactionId oldestXid
Definition: pg_control.h:48
TimeLineID PrevTimeLineID
Definition: pg_control.h:40
TimeLineID ThisTimeLineID
Definition: pg_control.h:39
Oid nextOid
Definition: pg_control.h:45
TransactionId oldestActiveXid
Definition: pg_control.h:64
bool fullPageWrites
Definition: pg_control.h:42
MultiXactId nextMulti
Definition: pg_control.h:46
FullTransactionId nextXid
Definition: pg_control.h:44
TransactionId oldestCommitTsXid
Definition: pg_control.h:53
pg_time_t time
Definition: pg_control.h:52
int wal_level
Definition: pg_control.h:43
XLogRecPtr redo
Definition: pg_control.h:37
Oid oldestXidDB
Definition: pg_control.h:49
uint64 ckpt_agg_sync_time
Definition: xlog.h:176
uint64 ckpt_longest_sync
Definition: xlog.h:175
TimestampTz ckpt_start_t
Definition: xlog.h:161
TimestampTz ckpt_end_t
Definition: xlog.h:165
int ckpt_segs_removed
Definition: xlog.h:171
TimestampTz ckpt_write_t
Definition: xlog.h:162
int ckpt_segs_added
Definition: xlog.h:170
TimestampTz ckpt_sync_end_t
Definition: xlog.h:164
TimestampTz ckpt_sync_t
Definition: xlog.h:163
int ckpt_bufs_written
Definition: xlog.h:167
int ckpt_segs_recycled
Definition: xlog.h:172
int ckpt_slru_written
Definition: xlog.h:168
int ckpt_sync_rels
Definition: xlog.h:174
char mock_authentication_nonce[MOCK_AUTH_NONCE_LEN]
Definition: pg_control.h:235
int max_worker_processes
Definition: pg_control.h:181
uint32 pg_control_version
Definition: pg_control.h:125
uint32 xlog_seg_size
Definition: pg_control.h:211
XLogRecPtr backupStartPoint
Definition: pg_control.h:170
bool track_commit_timestamp
Definition: pg_control.h:185
bool backupEndRequired
Definition: pg_control.h:172
int max_locks_per_xact
Definition: pg_control.h:184
uint32 nameDataLen
Definition: pg_control.h:213
CheckPoint checkPointCopy
Definition: pg_control.h:135
XLogRecPtr backupEndPoint
Definition: pg_control.h:171
XLogRecPtr minRecoveryPoint
Definition: pg_control.h:168
uint32 data_checksum_version
Definition: pg_control.h:222
XLogRecPtr unloggedLSN
Definition: pg_control.h:137
uint32 indexMaxKeys
Definition: pg_control.h:214
uint32 relseg_size
Definition: pg_control.h:208
pg_time_t time
Definition: pg_control.h:132
bool default_char_signedness
Definition: pg_control.h:228
XLogRecPtr checkPoint
Definition: pg_control.h:133
uint64 system_identifier
Definition: pg_control.h:110
uint32 catalog_version_no
Definition: pg_control.h:126
double floatFormat
Definition: pg_control.h:200
int max_prepared_xacts
Definition: pg_control.h:183
uint32 xlog_blcksz
Definition: pg_control.h:210
TimeLineID minRecoveryPointTLI
Definition: pg_control.h:169
uint32 loblksize
Definition: pg_control.h:217
pg_crc32c crc
Definition: pg_control.h:238
uint32 toast_max_chunk_size
Definition: pg_control.h:216
Definition: dirent.c:26
XLogRecPtr lastPageBeginPtr
Definition: xlogrecovery.h:111
XLogRecPtr abortedRecPtr
Definition: xlogrecovery.h:120
XLogRecPtr missingContrecPtr
Definition: xlogrecovery.h:121
TimeLineID endOfLogTLI
Definition: xlogrecovery.h:109
Definition: lwlock.h:42
Definition: pg_list.h:54
Definition: proc.h:378
ProcNumber walwriterProc
Definition: proc.h:416
PgStat_Counter sync_time
Definition: pgstat.h:262
PgStat_Counter write_time
Definition: pgstat.h:261
void(* rm_mask)(char *pagedata, BlockNumber blkno)
TransactionId oldestRunningXid
Definition: standby.h:92
TransactionId nextXid
Definition: standby.h:91
TransactionId latestCompletedXid
Definition: standby.h:95
subxids_array_status subxid_status
Definition: standby.h:90
TransactionId * xids
Definition: standby.h:97
TransactionId oldestCommitTsXid
Definition: transam.h:232
TransactionId newestCommitTsXid
Definition: transam.h:233
FullTransactionId latestCompletedXid
Definition: transam.h:238
FullTransactionId nextXid
Definition: transam.h:220
TransactionId oldestXid
Definition: transam.h:222
pg_atomic_uint64 insertingAt
Definition: xlog.c:365
XLogRecPtr lastImportantAt
Definition: xlog.c:366
LWLock lock
Definition: xlog.c:364
int64 wal_buffers_full
Definition: instrument.h:56
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
int64 wal_records
Definition: instrument.h:53
CheckPoint lastCheckPoint
Definition: xlog.c:556
XLogwrtRqst LogwrtRqst
Definition: xlog.c:450
slock_t info_lck
Definition: xlog.c:564
char * pages
Definition: xlog.c:503
FullTransactionId ckptFullXid
Definition: xlog.c:452
pg_time_t lastSegSwitchTime
Definition: xlog.c:462
pg_atomic_uint64 InitializeReserved
Definition: xlog.c:486
pg_atomic_uint64 InitializedUpTo
Definition: xlog.c:494
XLogRecPtr replicationSlotMinLSN
Definition: xlog.c:454
RecoveryState SharedRecoveryState
Definition: xlog.c:527
TimeLineID InsertTimeLineID
Definition: xlog.c:520
ConditionVariable InitializedUpToCondVar
Definition: xlog.c:495
XLogRecPtr lastSegSwitchLSN
Definition: xlog.c:463
XLogSegNo lastRemovedSegNo
Definition: xlog.c:456
pg_atomic_uint64 * xlblocks
Definition: xlog.c:504
pg_atomic_uint64 logWriteResult
Definition: xlog.c:467
int XLogCacheBlck
Definition: xlog.c:505
XLogRecPtr RedoRecPtr
Definition: xlog.c:451
XLogRecPtr lastCheckPointRecPtr
Definition: xlog.c:554
XLogRecPtr lastFpwDisableRecPtr
Definition: xlog.c:562
XLogCtlInsert Insert
Definition: xlog.c:447
bool InstallXLogFileSegmentActive
Definition: xlog.c:537
bool WalWriterSleeping
Definition: xlog.c:544
XLogRecPtr asyncXactLSN
Definition: xlog.c:453
XLogRecPtr lastCheckPointEndPtr
Definition: xlog.c:555
pg_atomic_uint64 logFlushResult
Definition: xlog.c:468
pg_atomic_uint64 logInsertResult
Definition: xlog.c:466
XLogRecPtr InitializedFrom
Definition: xlog.c:473
TimeLineID PrevTimeLineID
Definition: xlog.c:521
pg_atomic_uint64 unloggedLSN
Definition: xlog.c:459
WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:439
XLogRecPtr RedoRecPtr
Definition: xlog.c:425
uint64 PrevBytePos
Definition: xlog.c:403
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:412
int runningBackups
Definition: xlog.c:433
slock_t insertpos_lck
Definition: xlog.c:393
uint64 CurrBytePos
Definition: xlog.c:402
bool fullPageWrites
Definition: xlog.c:426
XLogRecPtr lastBackupStart
Definition: xlog.c:434
TimeLineID xlp_tli
Definition: xlog_internal.h:40
XLogRecPtr xlp_pageaddr
Definition: xlog_internal.h:41
DecodedXLogRecord * record
Definition: xlogreader.h:236
XLogRecPtr EndRecPtr
Definition: xlogreader.h:207
XLogRecPtr ReadRecPtr
Definition: xlogreader.h:206
const void * data
struct XLogRecData * next
XLogRecPtr xl_prev
Definition: xlogrecord.h:45
pg_crc32c xl_crc
Definition: xlogrecord.h:49
uint8 xl_info
Definition: xlogrecord.h:46
uint32 xl_tot_len
Definition: xlogrecord.h:43
TransactionId xl_xid
Definition: xlogrecord.h:44
RmgrId xl_rmid
Definition: xlogrecord.h:47
XLogRecPtr Flush
Definition: xlog.c:323
XLogRecPtr Write
Definition: xlog.c:322
XLogRecPtr Flush
Definition: xlog.c:317
XLogRecPtr Write
Definition: xlog.c:316
Definition: guc.h:174
GucContext scontext
Definition: guc_tables.h:185
GucSource source
Definition: guc_tables.h:183
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
unsigned short st_mode
Definition: win32_port.h:258
Definition: regguts.h:323
char * rpath
Definition: basebackup.h:32
TimeLineID PrevTimeLineID
TimestampTz end_time
TimeLineID ThisTimeLineID
char rp_name[MAXFNAMELEN]
TimestampTz rp_time
void StartupSUBTRANS(TransactionId oldestActiveXID)
Definition: subtrans.c:309
void CheckPointSUBTRANS(void)
Definition: subtrans.c:355
void BootStrapSUBTRANS(void)
Definition: subtrans.c:270
void TruncateSUBTRANS(TransactionId oldestXact)
Definition: subtrans.c:411
void ProcessSyncRequests(void)
Definition: sync.c:286
void SyncPreCheckpoint(void)
Definition: sync.c:177
void SyncPostCheckpoint(void)
Definition: sync.c:202
TimeoutId RegisterTimeout(TimeoutId id, timeout_handler_proc handler)
Definition: timeout.c:505
@ STARTUP_PROGRESS_TIMEOUT
Definition: timeout.h:38
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TransactionIdRetreat(dest)
Definition: transam.h:141
#define InvalidTransactionId
Definition: transam.h:31
static void FullTransactionIdRetreat(FullTransactionId *dest)
Definition: transam.h:103
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstGenbkiObjectId
Definition: transam.h:195
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static FullTransactionId FullTransactionIdFromEpochAndXid(uint32 epoch, TransactionId xid)
Definition: transam.h:71
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
#define FullTransactionIdPrecedes(a, b)
Definition: transam.h:51
void RecoverPreparedTransactions(void)
Definition: twophase.c:2073
void restoreTwoPhaseData(void)
Definition: twophase.c:1888
int max_prepared_xacts
Definition: twophase.c:115
TransactionId PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p)
Definition: twophase.c:1952
void StandbyRecoverPreparedTransactions(void)
Definition: twophase.c:2032
void CheckPointTwoPhase(XLogRecPtr redo_horizon)
Definition: twophase.c:1806
char data[XLOG_BLCKSZ]
Definition: c.h:1119
WALInsertLock l
Definition: xlog.c:378
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:379
bool SplitIdentifierString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:3525
void SetTransactionIdLimit(TransactionId oldest_datfrozenxid, Oid oldest_datoid)
Definition: varsup.c:372
void AdvanceOldestClogXid(TransactionId oldest_datfrozenxid)
Definition: varsup.c:355
TransamVariablesData * TransamVariables
Definition: varsup.c:34
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
#define WL_TIMEOUT
Definition: waiteventset.h:37
#define WL_EXIT_ON_PM_DEATH
Definition: waiteventset.h:39
#define WL_LATCH_SET
Definition: waiteventset.h:34
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:130
XLogRecPtr Flush
Definition: walreceiver.c:112
XLogRecPtr Write
Definition: walreceiver.c:111
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
void ShutdownWalRcv(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3695
int max_wal_senders
Definition: walsender.c:126
void WalSndInitStopping(void)
Definition: walsender.c:3774
void WalSndWaitStopping(void)
Definition: walsender.c:3800
static void WalSndWakeupProcessRequests(bool physical, bool logical)
Definition: walsender.h:65
#define WalSndWakeupRequest()
Definition: walsender.h:58
bool summarize_wal
void WaitForWalSummarization(XLogRecPtr lsn)
void WakeupWalSummarizer(void)
XLogRecPtr GetOldestUnsummarizedLSN(TimeLineID *tli, bool *lsn_is_exact)
int WalWriterFlushAfter
Definition: walwriter.c:71
int WalWriterDelay
Definition: walwriter.c:70
#define stat
Definition: win32_port.h:274
#define EINTR
Definition: win32_port.h:364
#define S_ISDIR(m)
Definition: win32_port.h:315
#define readlink(path, buf, size)
Definition: win32_port.h:226
#define O_CLOEXEC
Definition: win32_port.h:349
#define O_DSYNC
Definition: win32_port.h:342
int gettimeofday(struct timeval *tp, void *tzp)
void MarkSubxactTopXidLogged(void)
Definition: xact.c:591
void MarkCurrentTransactionIdLoggedIfAny(void)
Definition: xact.c:541
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3519
void assign_wal_sync_method(int new_wal_sync_method, void *extra)
Definition: xlog.c:8829
static void CreateEndOfRecoveryRecord(void)
Definition: xlog.c:7563
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4734
int wal_decode_buffer_size
Definition: xlog.c:136
XLogRecPtr ProcLastRecPtr
Definition: xlog.c:253
static XLogCtlData * XLogCtl
Definition: xlog.c:577
bool fullPageWrites
Definition: xlog.c:122
void UpdateFullPageWrites(void)
Definition: xlog.c:8354
bool RecoveryInProgress(void)
Definition: xlog.c:6522
static void CleanupBackupHistory(void)
Definition: xlog.c:4300
void GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
Definition: xlog.c:6655
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6708
bool check_max_slot_wal_keep_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2356
XLogRecPtr RequestXLogSwitch(bool mark_unimportant)
Definition: xlog.c:8248
void do_pg_abort_backup(int code, Datum arg)
Definition: xlog.c:9571
XLogSegNo XLogGetLastRemovedSegno(void)
Definition: xlog.c:3897
static char * str_time(pg_time_t tnow)
Definition: xlog.c:5384
char * XLogArchiveCommand
Definition: xlog.c:120
struct XLogCtlInsert XLogCtlInsert
int wal_keep_size_mb
Definition: xlog.c:116
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1759
static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto)
Definition: xlog.c:1515
static void WALInsertLockRelease(void)
Definition: xlog.c:1456
static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos)
Definition: xlog.c:1869
bool EnableHotStandby
Definition: xlog.c:121
static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt)
Definition: xlog.c:1482
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6625
void assign_wal_consistency_checking(const char *newval, void *extra)
Definition: xlog.c:4938
static void InitControlFile(uint64 sysidentifier, uint32 data_checksum_version)
Definition: xlog.c:4343
void SetInstallXLogFileSegmentActive(void)
Definition: xlog.c:9661
static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
Definition: xlog.c:1996
static void WALInsertLockAcquireExclusive(void)
Definition: xlog.c:1427
static void UpdateControlFile(void)
Definition: xlog.c:4725
void StartupXLOG(void)
Definition: xlog.c:5614
bool IsInstallXLogFileSegmentActive(void)
Definition: xlog.c:9669
static int openLogFile
Definition: xlog.c:646
void BootStrapXLOG(uint32 data_checksum_version)
Definition: xlog.c:5218
XLogRecPtr XactLastRecEnd
Definition: xlog.c:254
bool CreateRestartPoint(int flags)
Definition: xlog.c:7779
static void ValidateXLOGDirectoryStructure(void)
Definition: xlog.c:4238
int CommitDelay
Definition: xlog.c:132
static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr, XLogRecPtr endptr, TimeLineID insertTLI)
Definition: xlog.c:4004
static XLogRecPtr CreateOverwriteContrecordRecord(XLogRecPtr aborted_lsn, XLogRecPtr pagePtr, TimeLineID newTLI)
Definition: xlog.c:7628
XLogRecPtr GetInsertRecPtr(void)
Definition: xlog.c:6670
bool wal_init_zero
Definition: xlog.c:127
static void CalculateCheckpointSegments(void)
Definition: xlog.c:2295
int XLogArchiveMode
Definition: xlog.c:119
SessionBackupState get_backup_status(void)
Definition: xlog.c:9278
static void XLogReportParameters(void)
Definition: xlog.c:8291
#define RefreshXLogWriteResult(_target)
Definition: xlog.c:631
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3866
int wal_level
Definition: xlog.c:131
static void LogCheckpointStart(int flags, bool restartpoint)
Definition: xlog.c:6837
static XLogRecPtr RedoRecPtr
Definition: xlog.c:273
void assign_checkpoint_completion_target(double newval, void *extra)
Definition: xlog.c:2331
static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void)
Definition: xlog.c:2822
XLogRecPtr XLogInsertRecord(XLogRecData *rdata, XLogRecPtr fpw_lsn, uint8 flags, int num_fpi, bool topxid_included)
Definition: xlog.c:759
static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, bool find_free, XLogSegNo max_segno, TimeLineID tli)
Definition: xlog.c:3702
static void WriteControlFile(void)
Definition: xlog.c:4378
int wal_segment_size
Definition: xlog.c:143
struct XLogwrtResult XLogwrtResult
WALAvailability GetWALAvailability(XLogRecPtr targetLSN)
Definition: xlog.c:8057
const char * show_archive_command(void)
Definition: xlog.c:4991
#define UsableBytesInPage
Definition: xlog.c:608
int max_wal_size_mb
Definition: xlog.c:114
void XLOGShmemInit(void)
Definition: xlog.c:5099
void ShutdownXLOG(int code, Datum arg)
Definition: xlog.c:6790
bool DataChecksumsEnabled(void)
Definition: xlog.c:4754
static bool PerformRecoveryXLogAction(void)
Definition: xlog.c:6472
RecoveryState GetRecoveryState(void)
Definition: xlog.c:6558
int XLogArchiveTimeout
Definition: xlog.c:118
static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI, XLogRecPtr EndOfLog, TimeLineID newTLI)
Definition: xlog.c:5474
#define ConvertToXSegs(x, segsize)
Definition: xlog.c:614
bool wal_recycle
Definition: xlog.c:128
static void RemoveXlogFile(const struct dirent *segment_de, XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo, TimeLineID insertTLI)
Definition: xlog.c:4148
pg_time_t GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN)
Definition: xlog.c:6773
static int XLOGChooseNumBuffers(void)
Definition: xlog.c:4800
static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos)
Definition: xlog.c:1909
static int get_sync_bit(int method)
Definition: xlog.c:8781
static XLogwrtResult LogwrtResult
Definition: xlog.c:623
void XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn)
Definition: xlog.c:2809
static void LogCheckpointEnd(bool restartpoint)
Definition: xlog.c:6869
union WALInsertLockPadded WALInsertLockPadded
void SwitchIntoArchiveRecovery(XLogRecPtr EndRecPtr, TimeLineID replayTLI)
Definition: xlog.c:6397
static bool lastFullPageWrites
Definition: xlog.c:217
char * wal_consistency_checking_string
Definition: xlog.c:125
static void WALInsertLockAcquire(void)
Definition: xlog.c:1382
int CommitSiblings
Definition: xlog.c:133
static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata, XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
Definition: xlog.c:1236
bool GetDefaultCharSignedness(void)
Definition: xlog.c:4768
static double CheckPointDistanceEstimate
Definition: xlog.c:159
static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr)
Definition: xlog.c:1952
const char * show_in_hot_standby(void)
Definition: xlog.c:5003
XLogRecPtr GetXLogInsertRecPtr(void)
Definition: xlog.c:9612
Size XLOGShmemSize(void)
Definition: xlog.c:5049
void SetWalWriterSleeping(bool sleeping)
Definition: xlog.c:9684
bool wal_log_hints
Definition: xlog.c:123
static void XLogInitNewTimeline(TimeLineID endTLI, XLogRecPtr endOfLog, TimeLineID newTLI)
Definition: xlog.c:5399
static void CheckRequiredParameterValues(void)
Definition: xlog.c:5570
#define XLogRecPtrToBufIdx(recptr)
Definition: xlog.c:602
int wal_sync_method
Definition: xlog.c:130
int XLogFileOpen(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3757
int max_slot_wal_keep_size_mb
Definition: xlog.c:135
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6687
static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli)
Definition: xlog.c:3829
static bool doPageWrites
Definition: xlog.c:286
static bool holdingAllLocks
Definition: xlog.c:663
static TimeLineID openLogTLI
Definition: xlog.c:648
XLogRecPtr XactLastCommitEnd
Definition: xlog.c:255
WalLevel GetActiveWalLevelOnStandby(void)
Definition: xlog.c:5040
bool log_checkpoints
Definition: xlog.c:129
static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
Definition: xlog.c:8141
static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
Definition: xlog.c:2447
void InitializeWalConsistencyChecking(void)
Definition: xlog.c:4965
static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
Definition: xlog.c:2843
static int LocalSetXLogInsertAllowed(void)
Definition: xlog.c:6610
void assign_max_wal_size(int newval, void *extra)
Definition: xlog.c:2324
void RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI)
Definition: xlog.c:4079
XLogRecPtr GetLastImportantRecPtr(void)
Definition: xlog.c:6744
void xlog_redo(XLogReaderState *record)
Definition: xlog.c:8423
static int MyLockNo
Definition: xlog.c:662
static void RecoveryRestartPoint(const CheckPoint *checkPoint, XLogReaderState *record)
Definition: xlog.c:7738
bool XLogNeedsFlush(XLogRecPtr record)
Definition: xlog.c:3254
void register_persistent_abort_backup_handler(void)
Definition: xlog.c:9598
static double PrevCheckPointDistance
Definition: xlog.c:160
void ReachedEndOfBackup(XLogRecPtr EndRecPtr, TimeLineID tli)
Definition: xlog.c:6435
void LocalProcessControlFile(bool reset)
Definition: xlog.c:5027
static void XLogFileClose(void)
Definition: xlog.c:3778
int wal_compression
Definition: xlog.c:124
static void UpdateCheckPointDistanceEstimate(uint64 nbytes)
Definition: xlog.c:6974
static bool LocalRecoveryInProgress
Definition: xlog.c:224
XLogSegNo XLogGetOldestSegno(TimeLineID tli)
Definition: xlog.c:3913
XLogRecPtr GetXLogWriteRecPtr(void)
Definition: xlog.c:9628
static WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:580
static XLogSegNo openLogSegNo
Definition: xlog.c:647
#define INSERT_FREESPACE(endptr)
Definition: xlog.c:591
int wal_retrieve_retry_interval
Definition: xlog.c:134
int XLOGbuffers
Definition: xlog.c:117
bool XLogBackgroundFlush(void)
Definition: xlog.c:3111
const struct config_enum_entry archive_mode_options[]
Definition: xlog.c:191
void GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli)
Definition: xlog.c:9640
char * GetMockAuthenticationNonce(void)
Definition: xlog.c:4744
bool track_wal_io_timing
Definition: xlog.c:137
static XLogSegNo XLOGfileslop(XLogRecPtr lastredoptr)
Definition: xlog.c:2373
static int UsableBytesInSegment
Definition: xlog.c:617
static char * GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli)
Definition: xlog.c:1643
WalInsertClass
Definition: xlog.c:571
@ WALINSERT_SPECIAL_SWITCH
Definition: xlog.c:573
@ WALINSERT_NORMAL
Definition: xlog.c:572
@ WALINSERT_SPECIAL_CHECKPOINT
Definition: xlog.c:574
bool XLogInsertAllowed(void)
Definition: xlog.c:6577
void do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces, BackupState *state, StringInfo tblspcmapfile)
Definition: xlog.c:8969
static ControlFileData * ControlFile
Definition: xlog.c:585
bool check_wal_segment_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2338
static void XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno, TimeLineID srcTLI, XLogSegNo srcsegno, int upto)
Definition: xlog.c:3557
static int LocalXLogInsertAllowed
Definition: xlog.c:236
static void RemoveTempXlogFiles(void)
Definition: xlog.c:3971
XLogRecPtr XLogRestorePoint(const char *rpName)
Definition: xlog.c:8266
static XLogRecPtr LocalMinRecoveryPoint
Definition: xlog.c:657
#define NUM_XLOGINSERT_LOCKS
Definition: xlog.c:150
struct XLogwrtRqst XLogwrtRqst
TimeLineID GetWALInsertionTimeLineIfSet(void)
Definition: xlog.c:6724
void do_pg_backup_stop(BackupState *state, bool waitforarchive)
Definition: xlog.c:9297
bool check_wal_consistency_checking(char **newval, void **extra, GucSource source)
Definition: xlog.c:4851
const struct config_enum_entry wal_sync_method_options[]
Definition: xlog.c:171
int min_wal_size_mb
Definition: xlog.c:115
bool CreateCheckPoint(int flags)
Definition: xlog.c:7077
#define BootstrapTimeLineID
Definition: xlog.c:111
CheckpointStatsData CheckpointStats
Definition: xlog.c:209
bool check_wal_buffers(int *newval, void **extra, GucSource source)
Definition: xlog.c:4816
XLogRecPtr GetFakeLSNForUnloggedRel(void)
Definition: xlog.c:4783
void XLogPutNextOid(Oid nextOid)
Definition: xlog.c:8211
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2923
static void ReadControlFile(void)
Definition: xlog.c:4487
static SessionBackupState sessionBackupState
Definition: xlog.c:386
static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
Definition: xlog.c:7698
static bool updateMinRecoveryPoint
Definition: xlog.c:659
int CheckPointSegments
Definition: xlog.c:156
static bool check_wal_consistency_checking_deferred
Definition: xlog.c:166
static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1119
void XLogShutdownWalRcv(void)
Definition: xlog.c:9650
#define NextBufIdx(idx)
Definition: xlog.c:595
static void UpdateLastRemovedPtr(char *filename)
Definition: xlog.c:3951
static TimeLineID LocalMinRecoveryPointTLI
Definition: xlog.c:658
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8871
struct XLogCtlData XLogCtlData
static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1175
void XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN)
Definition: xlog.c:2752
bool XLogCheckpointNeeded(XLogSegNo new_segno)
Definition: xlog.c:2423
bool * wal_consistency_checking
Definition: xlog.c:126
static int XLogFileInitInternal(XLogSegNo logsegno, TimeLineID logtli, bool *added, char *path)
Definition: xlog.c:3331
static void update_checkpoint_display(int flags, bool restartpoint, bool reset)
Definition: xlog.c:7012
#define XLogArchivingActive()
Definition: xlog.h:99
#define TABLESPACE_MAP_OLD
Definition: xlog.h:307
#define XLOG_MARK_UNIMPORTANT
Definition: xlog.h:155
#define TABLESPACE_MAP
Definition: xlog.h:306
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:67
@ ARCHIVE_MODE_OFF
Definition: xlog.h:65
@ ARCHIVE_MODE_ON
Definition: xlog.h:66
#define STANDBY_SIGNAL_FILE
Definition: xlog.h:302
#define CHECKPOINT_CAUSE_XLOG
Definition: xlog.h:148
WALAvailability
Definition: xlog.h:188
@ WALAVAIL_REMOVED
Definition: xlog.h:194
@ WALAVAIL_RESERVED
Definition: xlog.h:190
@ WALAVAIL_UNRESERVED
Definition: xlog.h:193
@ WALAVAIL_EXTENDED
Definition: xlog.h:191
@ WALAVAIL_INVALID_LSN
Definition: xlog.h:189
#define BACKUP_LABEL_OLD
Definition: xlog.h:304
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:140
#define CHECKPOINT_FLUSH_ALL
Definition: xlog.h:143
@ WAL_COMPRESSION_NONE
Definition: xlog.h:82
#define BACKUP_LABEL_FILE
Definition: xlog.h:303
#define CHECKPOINT_CAUSE_TIME
Definition: xlog.h:149
#define CHECKPOINT_FORCE
Definition: xlog.h:142
SessionBackupState
Definition: xlog.h:287
@ SESSION_BACKUP_RUNNING
Definition: xlog.h:289
@ SESSION_BACKUP_NONE
Definition: xlog.h:288
#define CHECKPOINT_WAIT
Definition: xlog.h:145
#define RECOVERY_SIGNAL_FILE
Definition: xlog.h:301
#define CHECKPOINT_IS_SHUTDOWN
Definition: xlog.h:139
#define XLogArchivingAlways()
Definition: xlog.h:102
WalLevel
Definition: xlog.h:73
@ WAL_LEVEL_REPLICA
Definition: xlog.h:75
@ WAL_LEVEL_LOGICAL
Definition: xlog.h:76
@ WAL_LEVEL_MINIMAL
Definition: xlog.h:74
#define CHECKPOINT_IMMEDIATE
Definition: xlog.h:141
RecoveryState
Definition: xlog.h:90
@ RECOVERY_STATE_CRASH
Definition: xlog.h:91
@ RECOVERY_STATE_DONE
Definition: xlog.h:93
@ RECOVERY_STATE_ARCHIVE
Definition: xlog.h:92
#define XLogIsNeeded()
Definition: xlog.h:109
@ WAL_SYNC_METHOD_OPEN
Definition: xlog.h:26
@ WAL_SYNC_METHOD_FDATASYNC
Definition: xlog.h:25
@ WAL_SYNC_METHOD_FSYNC_WRITETHROUGH
Definition: xlog.h:27
@ WAL_SYNC_METHOD_OPEN_DSYNC
Definition: xlog.h:28
@ WAL_SYNC_METHOD_FSYNC
Definition: xlog.h:24
#define XLogStandbyInfoActive()
Definition: xlog.h:123
#define XLP_FIRST_IS_CONTRECORD
Definition: xlog_internal.h:74
static RmgrData GetRmgr(RmgrId rmid)
#define IsValidWalSegSize(size)
Definition: xlog_internal.h:96
XLogLongPageHeaderData * XLogLongPageHeader
Definition: xlog_internal.h:71
#define XLP_FIRST_IS_OVERWRITE_CONTRECORD
Definition: xlog_internal.h:80
#define XLOG_CONTROL_FILE
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
static bool IsXLogFileName(const char *fname)
static void XLogFromFileName(const char *fname, TimeLineID *tli, XLogSegNo *logSegNo, int wal_segsz_bytes)
#define XLByteToPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
#define XLogSegNoOffsetToRecPtr(segno, offset, wal_segsz_bytes, dest)
#define MAXFNAMELEN
XLogPageHeaderData * XLogPageHeader
Definition: xlog_internal.h:54
#define XLOGDIR
#define XLP_LONG_HEADER
Definition: xlog_internal.h:76
static bool IsBackupHistoryFileName(const char *fname)
#define XLP_BKP_REMOVABLE
Definition: xlog_internal.h:78
#define XLOG_PAGE_MAGIC
Definition: xlog_internal.h:34
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void BackupHistoryFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XRecOffIsValid(xlrp)
#define SizeOfXLogShortPHD
Definition: xlog_internal.h:52
#define SizeOfXLogLongPHD
Definition: xlog_internal.h:69
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void BackupHistoryFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static bool RmgrIdExists(RmgrId rmid)
#define XLByteInPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
static bool IsPartialXLogFileName(const char *fname)
bool XLogArchiveIsReadyOrDone(const char *xlog)
Definition: xlogarchive.c:664
bool XLogArchiveIsBusy(const char *xlog)
Definition: xlogarchive.c:619
bool XLogArchiveIsReady(const char *xlog)
Definition: xlogarchive.c:694
void XLogArchiveNotifySeg(XLogSegNo segno, TimeLineID tli)
Definition: xlogarchive.c:492
void ExecuteRecoveryCommand(const char *command, const char *commandName, bool failOnSignal, uint32 wait_event_info)
Definition: xlogarchive.c:295
bool XLogArchiveCheckDone(const char *xlog)
Definition: xlogarchive.c:565
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:444
void XLogArchiveCleanup(const char *xlog)
Definition: xlogarchive.c:712
char * build_backup_content(BackupState *state, bool ishistoryfile)
Definition: xlogbackup.c:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define FirstNormalUnloggedLSN
Definition: xlogdefs.h:36
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
#define DEFAULT_WAL_SYNC_METHOD
Definition: xlogdefs.h:79
uint64 XLogSegNo
Definition: xlogdefs.h:48
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:474
void XLogRegisterData(const void *data, uint32 len)
Definition: xloginsert.c:364
void XLogSetRecordFlags(uint8 flags)
Definition: xloginsert.c:456
void XLogBeginInsert(void)
Definition: xloginsert.c:149
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:107
bool DecodeXLogRecord(XLogReaderState *state, DecodedXLogRecord *decoded, XLogRecord *record, XLogRecPtr lsn, char **errormsg)
Definition: xlogreader.c:1672
size_t DecodeXLogRecordRequiredSpace(size_t xl_tot_len)
Definition: xlogreader.c:1639
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:410
#define XLogRecGetData(decoder)
Definition: xlogreader.h:415
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
#define XLogRecMaxBlockId(decoder)
Definition: xlogreader.h:418
#define XLogRecHasBlockImage(decoder, block_id)
Definition: xlogreader.h:423
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:417
#define SizeOfXLogRecordDataHeaderShort
Definition: xlogrecord.h:217
#define XLR_BLOCK_ID_DATA_SHORT
Definition: xlogrecord.h:241
#define XLR_INFO_MASK
Definition: xlogrecord.h:62
#define SizeOfXLogRecord
Definition: xlogrecord.h:55
void ShutdownWalRecovery(void)
bool ArchiveRecoveryRequested
Definition: xlogrecovery.c:138
bool InArchiveRecovery
Definition: xlogrecovery.c:139
void RecoveryRequiresIntParameter(const char *param_name, int currValue, int minValue)
void PerformWalRecovery(void)
char * archiveCleanupCommand
Definition: xlogrecovery.c:85
XLogRecPtr GetCurrentReplayRecPtr(TimeLineID *replayEndTLI)
void xlog_outdesc(StringInfo buf, XLogReaderState *record)
bool PromoteIsTriggered(void)
static XLogRecPtr missingContrecPtr
Definition: xlogrecovery.c:379
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
static XLogRecPtr abortedRecPtr
Definition: xlogrecovery.c:378
EndOfWalRecoveryInfo * FinishWalRecovery(void)
void InitWalRecovery(ControlFileData *ControlFile, bool *wasShutdown_ptr, bool *haveBackupLabel_ptr, bool *haveTblspcMap_ptr)
Definition: xlogrecovery.c:518
char * recoveryEndCommand
Definition: xlogrecovery.c:84
TimeLineID recoveryTargetTLI
Definition: xlogrecovery.c:123
TimestampTz GetLatestXTime(void)
bool XLogHaveInvalidPages(void)
Definition: xlogutils.c:224
XLogRedoAction XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id, Buffer *buf)
Definition: xlogutils.c:303
HotStandbyState standbyState
Definition: xlogutils.c:53
bool InRecovery
Definition: xlogutils.c:50
@ STANDBY_DISABLED
Definition: xlogutils.h:52
@ STANDBY_INITIALIZED
Definition: xlogutils.h:53
#define InHotStandby
Definition: xlogutils.h:60
@ BLK_RESTORED
Definition: xlogutils.h:76