PostgreSQL Source Code git master
verify_nbtree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * verify_nbtree.c
4 * Verifies the integrity of nbtree indexes based on invariants.
5 *
6 * For B-Tree indexes, verification includes checking that each page in the
7 * target index has items in logical order as reported by an insertion scankey
8 * (the insertion scankey sort-wise NULL semantics are needed for
9 * verification).
10 *
11 * When index-to-heap verification is requested, a Bloom filter is used to
12 * fingerprint all tuples in the target index, as the index is traversed to
13 * verify its structure. A heap scan later uses Bloom filter probes to verify
14 * that every visible heap tuple has a matching index tuple.
15 *
16 *
17 * Copyright (c) 2017-2025, PostgreSQL Global Development Group
18 *
19 * IDENTIFICATION
20 * contrib/amcheck/verify_nbtree.c
21 *
22 *-------------------------------------------------------------------------
23 */
24#include "postgres.h"
25
26#include "access/heaptoast.h"
27#include "access/htup_details.h"
28#include "access/nbtree.h"
29#include "access/table.h"
30#include "access/tableam.h"
31#include "access/transam.h"
32#include "access/xact.h"
33#include "verify_common.h"
34#include "catalog/index.h"
35#include "catalog/pg_am.h"
36#include "catalog/pg_opfamily_d.h"
37#include "common/pg_prng.h"
38#include "lib/bloomfilter.h"
39#include "miscadmin.h"
40#include "storage/smgr.h"
41#include "utils/guc.h"
42#include "utils/memutils.h"
43#include "utils/snapmgr.h"
44
45
47 .name = "amcheck",
48 .version = PG_VERSION
49);
50
51/*
52 * A B-Tree cannot possibly have this many levels, since there must be one
53 * block per level, which is bound by the range of BlockNumber:
54 */
55#define InvalidBtreeLevel ((uint32) InvalidBlockNumber)
56#define BTreeTupleGetNKeyAtts(itup, rel) \
57 Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
58
59/*
60 * State associated with verifying a B-Tree index
61 *
62 * target is the point of reference for a verification operation.
63 *
64 * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
65 * they are current target's child pages). Conceptually, problems are only
66 * ever found in the current target page (or for a particular heap tuple during
67 * heapallindexed verification). Each page found by verification's left/right,
68 * top/bottom scan becomes the target exactly once.
69 */
70typedef struct BtreeCheckState
71{
72 /*
73 * Unchanging state, established at start of verification:
74 */
75
76 /* B-Tree Index Relation and associated heap relation */
79 /* rel is heapkeyspace index? */
81 /* ShareLock held on heap/index, rather than AccessShareLock? */
83 /* Also verifying heap has no unindexed tuples? */
85 /* Also making sure non-pivot tuples can be found by new search? */
87 /* Also check uniqueness constraint if index is unique */
89 /* Per-page context */
91 /* Buffer access strategy */
93
94 /*
95 * Info for uniqueness checking. Fill these fields once per index check.
96 */
99
100 /*
101 * Mutable state, for verification of particular page:
102 */
103
104 /* Current target page */
106 /* Target block number */
108 /* Target page's LSN */
110
111 /*
112 * Low key: high key of left sibling of target page. Used only for child
113 * verification. So, 'lowkey' is kept only when 'readonly' is set.
114 */
116
117 /*
118 * The rightlink and incomplete split flag of block one level down to the
119 * target page, which was visited last time via downlink from target page.
120 * We use it to check for missing downlinks.
121 */
124
125 /*
126 * Mutable state, for optional heapallindexed verification:
127 */
128
129 /* Bloom filter fingerprints B-Tree index */
131 /* Debug counter */
134
135/*
136 * Starting point for verifying an entire B-Tree index level
137 */
138typedef struct BtreeLevel
139{
140 /* Level number (0 is leaf page level). */
142
143 /* Left most block on level. Scan of level begins here. */
145
146 /* Is this level reported as "true" root level by meta page? */
149
150/*
151 * Information about the last visible entry with current B-tree key. Used
152 * for validation of the unique constraint.
153 */
155{
156 BlockNumber blkno; /* Index block */
157 OffsetNumber offset; /* Offset on index block */
158 int postingIndex; /* Number in the posting list (-1 for
159 * non-deduplicated tuples) */
160 ItemPointer tid; /* Heap tid */
162
163/*
164 * arguments for the bt_index_check_callback callback
165 */
166typedef struct BTCallbackState
167{
173
176
177static void bt_index_check_callback(Relation indrel, Relation heaprel,
178 void *state, bool readonly);
179static void bt_check_every_level(Relation rel, Relation heaprel,
180 bool heapkeyspace, bool readonly, bool heapallindexed,
181 bool rootdescend, bool checkunique);
183 BtreeLevel level);
186 BTPageOpaque start_opaque);
188 BlockNumber btpo_prev_from_target,
189 BlockNumber leftcurrent);
193 ItemPointer nexttid,
194 BlockNumber nblock, OffsetNumber noffset,
195 int nposting);
197 BlockNumber targetblock, OffsetNumber offset,
201 OffsetNumber *rightfirstoffset);
202static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
203 OffsetNumber downlinkoffnum);
205 OffsetNumber target_downlinkoffnum,
206 Page loaded_child,
207 uint32 target_level);
208static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
209 BlockNumber blkno, Page page);
211 Datum *values, bool *isnull,
212 bool tupleIsAlive, void *checkstate);
214 IndexTuple itup);
215static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
217static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
218 OffsetNumber offset);
220 OffsetNumber upperbound);
221static inline bool invariant_leq_offset(BtreeCheckState *state,
223 OffsetNumber upperbound);
225 OffsetNumber lowerbound);
228 BlockNumber nontargetblock,
229 Page nontarget,
230 OffsetNumber upperbound);
233 IndexTuple itup);
235 Page page, OffsetNumber offset);
237 IndexTuple itup, bool nonpivot);
239
240/*
241 * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
242 *
243 * Verify integrity of B-Tree index.
244 *
245 * Acquires AccessShareLock on heap & index relations. Does not consider
246 * invariants that exist between parent/child pages. Optionally verifies
247 * that heap does not contain any unindexed or incorrectly indexed tuples.
248 */
249Datum
251{
252 Oid indrelid = PG_GETARG_OID(0);
254
255 args.heapallindexed = false;
256 args.rootdescend = false;
257 args.parentcheck = false;
258 args.checkunique = false;
259
260 if (PG_NARGS() >= 2)
261 args.heapallindexed = PG_GETARG_BOOL(1);
262 if (PG_NARGS() >= 3)
263 args.checkunique = PG_GETARG_BOOL(2);
264
265 amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
268
270}
271
272/*
273 * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
274 *
275 * Verify integrity of B-Tree index.
276 *
277 * Acquires ShareLock on heap & index relations. Verifies that downlinks in
278 * parent pages are valid lower bounds on child pages. Optionally verifies
279 * that heap does not contain any unindexed or incorrectly indexed tuples.
280 */
281Datum
283{
284 Oid indrelid = PG_GETARG_OID(0);
286
287 args.heapallindexed = false;
288 args.rootdescend = false;
289 args.parentcheck = true;
290 args.checkunique = false;
291
292 if (PG_NARGS() >= 2)
293 args.heapallindexed = PG_GETARG_BOOL(1);
294 if (PG_NARGS() >= 3)
295 args.rootdescend = PG_GETARG_BOOL(2);
296 if (PG_NARGS() >= 4)
297 args.checkunique = PG_GETARG_BOOL(3);
298
299 amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
301 ShareLock, &args);
302
304}
305
306/*
307 * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
308 */
309static void
310bt_index_check_callback(Relation indrel, Relation heaprel, void *state, bool readonly)
311{
313 bool heapkeyspace,
314 allequalimage;
315
318 (errcode(ERRCODE_INDEX_CORRUPTED),
319 errmsg("index \"%s\" lacks a main relation fork",
320 RelationGetRelationName(indrel))));
321
322 /* Extract metadata from metapage, and sanitize it in passing */
323 _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
324 if (allequalimage && !heapkeyspace)
326 (errcode(ERRCODE_INDEX_CORRUPTED),
327 errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
328 RelationGetRelationName(indrel))));
329 if (allequalimage && !_bt_allequalimage(indrel, false))
330 {
331 bool has_interval_ops = false;
332
333 for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
334 if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
335 {
336 has_interval_ops = true;
338 (errcode(ERRCODE_INDEX_CORRUPTED),
339 errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
341 has_interval_ops
342 ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
343 : 0));
344 }
345 }
346
347 /* Check index, possibly against table it is an index on */
348 bt_check_every_level(indrel, heaprel, heapkeyspace, readonly,
349 args->heapallindexed, args->rootdescend, args->checkunique);
350}
351
352/*
353 * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
354 * logical order, verifying invariants as it goes. Optionally, verification
355 * checks if the heap relation contains any tuples that are not represented in
356 * the index but should be.
357 *
358 * It is the caller's responsibility to acquire appropriate heavyweight lock on
359 * the index relation, and advise us if extra checks are safe when a ShareLock
360 * is held. (A lock of the same type must also have been acquired on the heap
361 * relation.)
362 *
363 * A ShareLock is generally assumed to prevent any kind of physical
364 * modification to the index structure, including modifications that VACUUM may
365 * make. This does not include setting of the LP_DEAD bit by concurrent index
366 * scans, although that is just metadata that is not able to directly affect
367 * any check performed here. Any concurrent process that might act on the
368 * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
369 * cannot be held while we hold a ShareLock. (Besides, even if that could
370 * happen, the ad-hoc recycling when a page might otherwise split is performed
371 * per-page, and requires an exclusive buffer lock, which wouldn't cause us
372 * trouble. _bt_delitems_vacuum() may only delete leaf items, and so the extra
373 * parent/child check cannot be affected.)
374 */
375static void
376bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
377 bool readonly, bool heapallindexed, bool rootdescend,
378 bool checkunique)
379{
381 Page metapage;
382 BTMetaPageData *metad;
383 uint32 previouslevel;
384 BtreeLevel current;
385 Snapshot snapshot = SnapshotAny;
386
387 if (!readonly)
388 elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
390 else
391 elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
393
394 /*
395 * This assertion matches the one in index_getnext_tid(). See page
396 * recycling/"visible to everyone" notes in nbtree README.
397 */
399
400 /*
401 * Initialize state for entire verification operation
402 */
403 state = palloc0(sizeof(BtreeCheckState));
404 state->rel = rel;
405 state->heaprel = heaprel;
406 state->heapkeyspace = heapkeyspace;
407 state->readonly = readonly;
408 state->heapallindexed = heapallindexed;
409 state->rootdescend = rootdescend;
410 state->checkunique = checkunique;
411 state->snapshot = InvalidSnapshot;
412
413 if (state->heapallindexed)
414 {
415 int64 total_pages;
416 int64 total_elems;
417 uint64 seed;
418
419 /*
420 * Size Bloom filter based on estimated number of tuples in index,
421 * while conservatively assuming that each block must contain at least
422 * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
423 * bt_posting_plain_tuple() for definition, and details of how posting
424 * list tuples are handled.
425 */
426 total_pages = RelationGetNumberOfBlocks(rel);
427 total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
428 (int64) state->rel->rd_rel->reltuples);
429 /* Generate a random seed to avoid repetition */
431 /* Create Bloom filter to fingerprint index */
432 state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
433 state->heaptuplespresent = 0;
434
435 /*
436 * Register our own snapshot in !readonly case, rather than asking
437 * table_index_build_scan() to do this for us later. This needs to
438 * happen before index fingerprinting begins, so we can later be
439 * certain that index fingerprinting should have reached all tuples
440 * returned by table_index_build_scan().
441 */
442 if (!state->readonly)
443 {
445
446 /*
447 * GetTransactionSnapshot() always acquires a new MVCC snapshot in
448 * READ COMMITTED mode. A new snapshot is guaranteed to have all
449 * the entries it requires in the index.
450 *
451 * We must defend against the possibility that an old xact
452 * snapshot was returned at higher isolation levels when that
453 * snapshot is not safe for index scans of the target index. This
454 * is possible when the snapshot sees tuples that are before the
455 * index's indcheckxmin horizon. Throwing an error here should be
456 * very rare. It doesn't seem worth using a secondary snapshot to
457 * avoid this.
458 */
459 if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
461 snapshot->xmin))
464 errmsg("index \"%s\" cannot be verified using transaction snapshot",
466 }
467 }
468
469 /*
470 * We need a snapshot to check the uniqueness of the index. For better
471 * performance take it once per index check. If snapshot already taken
472 * reuse it.
473 */
474 if (state->checkunique)
475 {
476 state->indexinfo = BuildIndexInfo(state->rel);
477 if (state->indexinfo->ii_Unique)
478 {
479 if (snapshot != SnapshotAny)
480 state->snapshot = snapshot;
481 else
483 }
484 }
485
486 Assert(!state->rootdescend || state->readonly);
487 if (state->rootdescend && !state->heapkeyspace)
489 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
490 errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
492 errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
493
494 /* Create context for page */
496 "amcheck context",
498 state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
499
500 /* Get true root block from meta-page */
502 metad = BTPageGetMeta(metapage);
503
504 /*
505 * Certain deletion patterns can result in "skinny" B-Tree indexes, where
506 * the fast root and true root differ.
507 *
508 * Start from the true root, not the fast root, unlike conventional index
509 * scans. This approach is more thorough, and removes the risk of
510 * following a stale fast root from the meta page.
511 */
512 if (metad->btm_fastroot != metad->btm_root)
514 (errcode(ERRCODE_NO_DATA),
515 errmsg_internal("harmless fast root mismatch in index \"%s\"",
517 errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
518 metad->btm_fastroot, metad->btm_fastlevel,
519 metad->btm_root, metad->btm_level)));
520
521 /*
522 * Starting at the root, verify every level. Move left to right, top to
523 * bottom. Note that there may be no pages other than the meta page (meta
524 * page can indicate that root is P_NONE when the index is totally empty).
525 */
526 previouslevel = InvalidBtreeLevel;
527 current.level = metad->btm_level;
528 current.leftmost = metad->btm_root;
529 current.istruerootlevel = true;
530 while (current.leftmost != P_NONE)
531 {
532 /*
533 * Verify this level, and get left most page for next level down, if
534 * not at leaf level
535 */
536 current = bt_check_level_from_leftmost(state, current);
537
538 if (current.leftmost == InvalidBlockNumber)
540 (errcode(ERRCODE_INDEX_CORRUPTED),
541 errmsg("index \"%s\" has no valid pages on level below %u or first level",
542 RelationGetRelationName(rel), previouslevel)));
543
544 previouslevel = current.level;
545 }
546
547 /*
548 * * Check whether heap contains unindexed/malformed tuples *
549 */
550 if (state->heapallindexed)
551 {
552 IndexInfo *indexinfo = BuildIndexInfo(state->rel);
553 TableScanDesc scan;
554
555 /*
556 * Create our own scan for table_index_build_scan(), rather than
557 * getting it to do so for us. This is required so that we can
558 * actually use the MVCC snapshot registered earlier in !readonly
559 * case.
560 *
561 * Note that table_index_build_scan() calls heap_endscan() for us.
562 */
563 scan = table_beginscan_strat(state->heaprel, /* relation */
564 snapshot, /* snapshot */
565 0, /* number of keys */
566 NULL, /* scan key */
567 true, /* buffer access strategy OK */
568 true); /* syncscan OK? */
569
570 /*
571 * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
572 * behaves in !readonly case.
573 *
574 * It's okay that we don't actually use the same lock strength for the
575 * heap relation as any other ii_Concurrent caller would in !readonly
576 * case. We have no reason to care about a concurrent VACUUM
577 * operation, since there isn't going to be a second scan of the heap
578 * that needs to be sure that there was no concurrent recycling of
579 * TIDs.
580 */
581 indexinfo->ii_Concurrent = !state->readonly;
582
583 /*
584 * Don't wait for uncommitted tuple xact commit/abort when index is a
585 * unique index on a catalog (or an index used by an exclusion
586 * constraint). This could otherwise happen in the readonly case.
587 */
588 indexinfo->ii_Unique = false;
589 indexinfo->ii_ExclusionOps = NULL;
590 indexinfo->ii_ExclusionProcs = NULL;
591 indexinfo->ii_ExclusionStrats = NULL;
592
593 elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
596
597 table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
599
601 (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
602 state->heaptuplespresent, RelationGetRelationName(heaprel),
603 100.0 * bloom_prop_bits_set(state->filter))));
604
605 if (snapshot != SnapshotAny)
606 UnregisterSnapshot(snapshot);
607
608 bloom_free(state->filter);
609 }
610
611 /* Be tidy: */
612 if (snapshot == SnapshotAny && state->snapshot != InvalidSnapshot)
613 UnregisterSnapshot(state->snapshot);
614 MemoryContextDelete(state->targetcontext);
615}
616
617/*
618 * Given a left-most block at some level, move right, verifying each page
619 * individually (with more verification across pages for "readonly"
620 * callers). Caller should pass the true root page as the leftmost initially,
621 * working their way down by passing what is returned for the last call here
622 * until level 0 (leaf page level) was reached.
623 *
624 * Returns state for next call, if any. This includes left-most block number
625 * one level lower that should be passed on next level/call, which is set to
626 * P_NONE on last call here (when leaf level is verified). Level numbers
627 * follow the nbtree convention: higher levels have higher numbers, because new
628 * levels are added only due to a root page split. Note that prior to the
629 * first root page split, the root is also a leaf page, so there is always a
630 * level 0 (leaf level), and it's always the last level processed.
631 *
632 * Note on memory management: State's per-page context is reset here, between
633 * each call to bt_target_page_check().
634 */
635static BtreeLevel
637{
638 /* State to establish early, concerning entire level */
639 BTPageOpaque opaque;
640 MemoryContext oldcontext;
641 BtreeLevel nextleveldown;
642
643 /* Variables for iterating across level using right links */
644 BlockNumber leftcurrent = P_NONE;
645 BlockNumber current = level.leftmost;
646
647 /* Initialize return state */
648 nextleveldown.leftmost = InvalidBlockNumber;
649 nextleveldown.level = InvalidBtreeLevel;
650 nextleveldown.istruerootlevel = false;
651
652 /* Use page-level context for duration of this call */
653 oldcontext = MemoryContextSwitchTo(state->targetcontext);
654
655 elog(DEBUG1, "verifying level %u%s", level.level,
656 level.istruerootlevel ?
657 " (true root level)" : level.level == 0 ? " (leaf level)" : "");
658
659 state->prevrightlink = InvalidBlockNumber;
660 state->previncompletesplit = false;
661
662 do
663 {
664 /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
666
667 /* Initialize state for this iteration */
668 state->targetblock = current;
669 state->target = palloc_btree_page(state, state->targetblock);
670 state->targetlsn = PageGetLSN(state->target);
671
672 opaque = BTPageGetOpaque(state->target);
673
674 if (P_IGNORE(opaque))
675 {
676 /*
677 * Since there cannot be a concurrent VACUUM operation in readonly
678 * mode, and since a page has no links within other pages
679 * (siblings and parent) once it is marked fully deleted, it
680 * should be impossible to land on a fully deleted page in
681 * readonly mode. See bt_child_check() for further details.
682 *
683 * The bt_child_check() P_ISDELETED() check is repeated here so
684 * that pages that are only reachable through sibling links get
685 * checked.
686 */
687 if (state->readonly && P_ISDELETED(opaque))
689 (errcode(ERRCODE_INDEX_CORRUPTED),
690 errmsg("downlink or sibling link points to deleted block in index \"%s\"",
692 errdetail_internal("Block=%u left block=%u left link from block=%u.",
693 current, leftcurrent, opaque->btpo_prev)));
694
695 if (P_RIGHTMOST(opaque))
697 (errcode(ERRCODE_INDEX_CORRUPTED),
698 errmsg("block %u fell off the end of index \"%s\"",
699 current, RelationGetRelationName(state->rel))));
700 else
702 (errcode(ERRCODE_NO_DATA),
703 errmsg_internal("block %u of index \"%s\" concurrently deleted",
704 current, RelationGetRelationName(state->rel))));
705 goto nextpage;
706 }
707 else if (nextleveldown.leftmost == InvalidBlockNumber)
708 {
709 /*
710 * A concurrent page split could make the caller supplied leftmost
711 * block no longer contain the leftmost page, or no longer be the
712 * true root, but where that isn't possible due to heavyweight
713 * locking, check that the first valid page meets caller's
714 * expectations.
715 */
716 if (state->readonly)
717 {
718 if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
720 (errcode(ERRCODE_INDEX_CORRUPTED),
721 errmsg("block %u is not leftmost in index \"%s\"",
722 current, RelationGetRelationName(state->rel))));
723
724 if (level.istruerootlevel && !P_ISROOT(opaque))
726 (errcode(ERRCODE_INDEX_CORRUPTED),
727 errmsg("block %u is not true root in index \"%s\"",
728 current, RelationGetRelationName(state->rel))));
729 }
730
731 /*
732 * Before beginning any non-trivial examination of level, prepare
733 * state for next bt_check_level_from_leftmost() invocation for
734 * the next level for the next level down (if any).
735 *
736 * There should be at least one non-ignorable page per level,
737 * unless this is the leaf level, which is assumed by caller to be
738 * final level.
739 */
740 if (!P_ISLEAF(opaque))
741 {
742 IndexTuple itup;
743 ItemId itemid;
744
745 /* Internal page -- downlink gets leftmost on next level */
746 itemid = PageGetItemIdCareful(state, state->targetblock,
747 state->target,
748 P_FIRSTDATAKEY(opaque));
749 itup = (IndexTuple) PageGetItem(state->target, itemid);
750 nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
751 nextleveldown.level = opaque->btpo_level - 1;
752 }
753 else
754 {
755 /*
756 * Leaf page -- final level caller must process.
757 *
758 * Note that this could also be the root page, if there has
759 * been no root page split yet.
760 */
761 nextleveldown.leftmost = P_NONE;
762 nextleveldown.level = InvalidBtreeLevel;
763 }
764
765 /*
766 * Finished setting up state for this call/level. Control will
767 * never end up back here in any future loop iteration for this
768 * level.
769 */
770 }
771
772 /*
773 * Sibling links should be in mutual agreement. There arises
774 * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
775 * of the parent's low-key downlink is half-dead. (A half-dead page
776 * has no downlink from its parent.) Under heavyweight locking, the
777 * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
778 * Without heavyweight locking, validation of the P_NONE case remains
779 * unimplemented.
780 */
781 if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
782 bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
783
784 /* Check level */
785 if (level.level != opaque->btpo_level)
787 (errcode(ERRCODE_INDEX_CORRUPTED),
788 errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
790 errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
791 current, level.level, opaque->btpo_level)));
792
793 /* Verify invariants for page */
795
796nextpage:
797
798 /* Try to detect circular links */
799 if (current == leftcurrent || current == opaque->btpo_prev)
801 (errcode(ERRCODE_INDEX_CORRUPTED),
802 errmsg("circular link chain found in block %u of index \"%s\"",
803 current, RelationGetRelationName(state->rel))));
804
805 leftcurrent = current;
806 current = opaque->btpo_next;
807
808 if (state->lowkey)
809 {
810 Assert(state->readonly);
811 pfree(state->lowkey);
812 state->lowkey = NULL;
813 }
814
815 /*
816 * Copy current target high key as the low key of right sibling.
817 * Allocate memory in upper level context, so it would be cleared
818 * after reset of target context.
819 *
820 * We only need the low key in corner cases of checking child high
821 * keys. We use high key only when incomplete split on the child level
822 * falls to the boundary of pages on the target level. See
823 * bt_child_highkey_check() for details. So, typically we won't end
824 * up doing anything with low key, but it's simpler for general case
825 * high key verification to always have it available.
826 *
827 * The correctness of managing low key in the case of concurrent
828 * splits wasn't investigated yet. Thankfully we only need low key
829 * for readonly verification and concurrent splits won't happen.
830 */
831 if (state->readonly && !P_RIGHTMOST(opaque))
832 {
833 IndexTuple itup;
834 ItemId itemid;
835
836 itemid = PageGetItemIdCareful(state, state->targetblock,
837 state->target, P_HIKEY);
838 itup = (IndexTuple) PageGetItem(state->target, itemid);
839
840 state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
841 memcpy(state->lowkey, itup, IndexTupleSize(itup));
842 }
843
844 /* Free page and associated memory for this iteration */
845 MemoryContextReset(state->targetcontext);
846 }
847 while (current != P_NONE);
848
849 if (state->lowkey)
850 {
851 Assert(state->readonly);
852 pfree(state->lowkey);
853 state->lowkey = NULL;
854 }
855
856 /* Don't change context for caller */
857 MemoryContextSwitchTo(oldcontext);
858
859 return nextleveldown;
860}
861
862/* Check visibility of the table entry referenced by nbtree index */
863static bool
865{
866 bool tid_visible;
867
868 TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
869
870 tid_visible = table_tuple_fetch_row_version(state->heaprel,
871 tid, state->snapshot, slot);
872 if (slot != NULL)
874
875 return tid_visible;
876}
877
878/*
879 * Prepare an error message for unique constrain violation in
880 * a btree index and report ERROR.
881 */
882static void
885 ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
886 int nposting)
887{
888 char *htid,
889 *nhtid,
890 *itid,
891 *nitid = "",
892 *pposting = "",
893 *pnposting = "";
894
895 htid = psprintf("tid=(%u,%u)",
898 nhtid = psprintf("tid=(%u,%u)",
901 itid = psprintf("tid=(%u,%u)", lVis->blkno, lVis->offset);
902
903 if (nblock != lVis->blkno || noffset != lVis->offset)
904 nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
905
906 if (lVis->postingIndex >= 0)
907 pposting = psprintf(" posting %u", lVis->postingIndex);
908
909 if (nposting >= 0)
910 pnposting = psprintf(" posting %u", nposting);
911
913 (errcode(ERRCODE_INDEX_CORRUPTED),
914 errmsg("index uniqueness is violated for index \"%s\"",
916 errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%X.",
917 itid, pposting, nitid, pnposting, htid, nhtid,
918 LSN_FORMAT_ARGS(state->targetlsn))));
919}
920
921/* Check if current nbtree leaf entry complies with UNIQUE constraint */
922static void
924 BlockNumber targetblock, OffsetNumber offset,
926{
927 ItemPointer tid;
928 bool has_visible_entry = false;
929
930 Assert(targetblock != P_NONE);
931
932 /*
933 * Current tuple has posting list. Report duplicate if TID of any posting
934 * list entry is visible and lVis->tid is valid.
935 */
936 if (BTreeTupleIsPosting(itup))
937 {
938 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
939 {
940 tid = BTreeTupleGetPostingN(itup, i);
942 {
943 has_visible_entry = true;
944 if (ItemPointerIsValid(lVis->tid))
945 {
947 lVis,
948 tid, targetblock,
949 offset, i);
950 }
951
952 /*
953 * Prevent double reporting unique constraint violation
954 * between the posting list entries of the first tuple on the
955 * page after cross-page check.
956 */
957 if (lVis->blkno != targetblock && ItemPointerIsValid(lVis->tid))
958 return;
959
960 lVis->blkno = targetblock;
961 lVis->offset = offset;
962 lVis->postingIndex = i;
963 lVis->tid = tid;
964 }
965 }
966 }
967
968 /*
969 * Current tuple has no posting list. If TID is visible save info about it
970 * for the next comparisons in the loop in bt_target_page_check(). Report
971 * duplicate if lVis->tid is already valid.
972 */
973 else
974 {
975 tid = BTreeTupleGetHeapTID(itup);
977 {
978 has_visible_entry = true;
979 if (ItemPointerIsValid(lVis->tid))
980 {
982 lVis,
983 tid, targetblock,
984 offset, -1);
985 }
986
987 lVis->blkno = targetblock;
988 lVis->offset = offset;
989 lVis->tid = tid;
990 lVis->postingIndex = -1;
991 }
992 }
993
994 if (!has_visible_entry &&
995 lVis->blkno != InvalidBlockNumber &&
996 lVis->blkno != targetblock)
997 {
998 char *posting = "";
999
1000 if (lVis->postingIndex >= 0)
1001 posting = psprintf(" posting %u", lVis->postingIndex);
1003 (errcode(ERRCODE_NO_DATA),
1004 errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
1005 targetblock, offset,
1007 errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
1008 lVis->blkno, lVis->offset, posting,
1011 errhint("VACUUM the table and repeat the check.")));
1012 }
1013}
1014
1015/*
1016 * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
1017 * half-dead, sibling-linked pages to the left. If a half-dead page appears
1018 * under state->readonly, the database exited recovery between the first-stage
1019 * and second-stage WAL records of a deletion.
1020 */
1021static bool
1024 BTPageOpaque start_opaque)
1025{
1026 BlockNumber reached = start_opaque->btpo_prev,
1027 reached_from = start;
1028 bool all_half_dead = true;
1029
1030 /*
1031 * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
1032 * potentially observe nbtree/README "Page deletion and backwards scans".
1033 */
1034 Assert(state->readonly);
1035
1036 while (reached != P_NONE && all_half_dead)
1037 {
1038 Page page = palloc_btree_page(state, reached);
1039 BTPageOpaque reached_opaque = BTPageGetOpaque(page);
1040
1042
1043 /*
1044 * Try to detect btpo_prev circular links. _bt_unlink_halfdead_page()
1045 * writes that side-links will continue to point to the siblings.
1046 * Check btpo_next for that property.
1047 */
1048 all_half_dead = P_ISHALFDEAD(reached_opaque) &&
1049 reached != start &&
1050 reached != reached_from &&
1051 reached_opaque->btpo_next == reached_from;
1052 if (all_half_dead)
1053 {
1054 XLogRecPtr pagelsn = PageGetLSN(page);
1055
1056 /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
1058 (errcode(ERRCODE_NO_DATA),
1059 errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
1061 errdetail_internal("Block=%u right block=%u page lsn=%X/%X.",
1062 reached, reached_from,
1063 LSN_FORMAT_ARGS(pagelsn))));
1064
1065 reached_from = reached;
1066 reached = reached_opaque->btpo_prev;
1067 }
1068
1069 pfree(page);
1070 }
1071
1072 return all_half_dead;
1073}
1074
1075/*
1076 * Raise an error when target page's left link does not point back to the
1077 * previous target page, called leftcurrent here. The leftcurrent page's
1078 * right link was followed to get to the current target page, and we expect
1079 * mutual agreement among leftcurrent and the current target page. Make sure
1080 * that this condition has definitely been violated in the !readonly case,
1081 * where concurrent page splits are something that we need to deal with.
1082 *
1083 * Cross-page inconsistencies involving pages that don't agree about being
1084 * siblings are known to be a particularly good indicator of corruption
1085 * involving partial writes/lost updates. The bt_right_page_check_scankey
1086 * check also provides a way of detecting cross-page inconsistencies for
1087 * !readonly callers, but it can only detect sibling pages that have an
1088 * out-of-order keyspace, which can't catch many of the problems that we
1089 * expect to catch here.
1090 *
1091 * The classic example of the kind of inconsistency that we can only catch
1092 * with this check (when in !readonly mode) involves three sibling pages that
1093 * were affected by a faulty page split at some point in the past. The
1094 * effects of the split are reflected in the original page and its new right
1095 * sibling page, with a lack of any accompanying changes for the _original_
1096 * right sibling page. The original right sibling page's left link fails to
1097 * point to the new right sibling page (its left link still points to the
1098 * original page), even though the first phase of a page split is supposed to
1099 * work as a single atomic action. This subtle inconsistency will probably
1100 * only break backwards scans in practice.
1101 *
1102 * Note that this is the only place where amcheck will "couple" buffer locks
1103 * (and only for !readonly callers). In general we prefer to avoid more
1104 * thorough cross-page checks in !readonly mode, but it seems worth the
1105 * complexity here. Also, the performance overhead of performing lock
1106 * coupling here is negligible in practice. Control only reaches here with a
1107 * non-corrupt index when there is a concurrent page split at the instant
1108 * caller crossed over to target page from leftcurrent page.
1109 */
1110static void
1112 BlockNumber btpo_prev_from_target,
1113 BlockNumber leftcurrent)
1114{
1115 /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
1116 Assert(leftcurrent != P_NONE);
1117
1118 if (!state->readonly)
1119 {
1120 Buffer lbuf;
1121 Buffer newtargetbuf;
1122 Page page;
1123 BTPageOpaque opaque;
1124 BlockNumber newtargetblock;
1125
1126 /* Couple locks in the usual order for nbtree: Left to right */
1127 lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
1128 RBM_NORMAL, state->checkstrategy);
1129 LockBuffer(lbuf, BT_READ);
1130 _bt_checkpage(state->rel, lbuf);
1131 page = BufferGetPage(lbuf);
1132 opaque = BTPageGetOpaque(page);
1133 if (P_ISDELETED(opaque))
1134 {
1135 /*
1136 * Cannot reason about concurrently deleted page -- the left link
1137 * in the page to the right is expected to point to some other
1138 * page to the left (not leftcurrent page).
1139 *
1140 * Note that we deliberately don't give up with a half-dead page.
1141 */
1142 UnlockReleaseBuffer(lbuf);
1143 return;
1144 }
1145
1146 newtargetblock = opaque->btpo_next;
1147 /* Avoid self-deadlock when newtargetblock == leftcurrent */
1148 if (newtargetblock != leftcurrent)
1149 {
1150 newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
1151 newtargetblock, RBM_NORMAL,
1152 state->checkstrategy);
1153 LockBuffer(newtargetbuf, BT_READ);
1154 _bt_checkpage(state->rel, newtargetbuf);
1155 page = BufferGetPage(newtargetbuf);
1156 opaque = BTPageGetOpaque(page);
1157 /* btpo_prev_from_target may have changed; update it */
1158 btpo_prev_from_target = opaque->btpo_prev;
1159 }
1160 else
1161 {
1162 /*
1163 * leftcurrent right sibling points back to leftcurrent block.
1164 * Index is corrupt. Easiest way to handle this is to pretend
1165 * that we actually read from a distinct page that has an invalid
1166 * block number in its btpo_prev.
1167 */
1168 newtargetbuf = InvalidBuffer;
1169 btpo_prev_from_target = InvalidBlockNumber;
1170 }
1171
1172 /*
1173 * No need to check P_ISDELETED here, since new target block cannot be
1174 * marked deleted as long as we hold a lock on lbuf
1175 */
1176 if (BufferIsValid(newtargetbuf))
1177 UnlockReleaseBuffer(newtargetbuf);
1178 UnlockReleaseBuffer(lbuf);
1179
1180 if (btpo_prev_from_target == leftcurrent)
1181 {
1182 /* Report split in left sibling, not target (or new target) */
1184 (errcode(ERRCODE_INTERNAL_ERROR),
1185 errmsg_internal("harmless concurrent page split detected in index \"%s\"",
1187 errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
1188 leftcurrent, newtargetblock,
1189 state->targetblock)));
1190 return;
1191 }
1192
1193 /*
1194 * Index is corrupt. Make sure that we report correct target page.
1195 *
1196 * This could have changed in cases where there was a concurrent page
1197 * split, as well as index corruption (at least in theory). Note that
1198 * btpo_prev_from_target was already updated above.
1199 */
1200 state->targetblock = newtargetblock;
1201 }
1202
1203 ereport(ERROR,
1204 (errcode(ERRCODE_INDEX_CORRUPTED),
1205 errmsg("left link/right link pair in index \"%s\" not in agreement",
1207 errdetail_internal("Block=%u left block=%u left link from block=%u.",
1208 state->targetblock, leftcurrent,
1209 btpo_prev_from_target)));
1210}
1211
1212/*
1213 * Function performs the following checks on target page, or pages ancillary to
1214 * target page:
1215 *
1216 * - That every "real" data item is less than or equal to the high key, which
1217 * is an upper bound on the items on the page. Data items should be
1218 * strictly less than the high key when the page is an internal page.
1219 *
1220 * - That within the page, every data item is strictly less than the item
1221 * immediately to its right, if any (i.e., that the items are in order
1222 * within the page, so that the binary searches performed by index scans are
1223 * sane).
1224 *
1225 * - That the last data item stored on the page is strictly less than the
1226 * first data item on the page to the right (when such a first item is
1227 * available).
1228 *
1229 * - Various checks on the structure of tuples themselves. For example, check
1230 * that non-pivot tuples have no truncated attributes.
1231 *
1232 * - For index with unique constraint make sure that only one of table entries
1233 * for equal keys is visible.
1234 *
1235 * Furthermore, when state passed shows ShareLock held, function also checks:
1236 *
1237 * - That all child pages respect strict lower bound from parent's pivot
1238 * tuple.
1239 *
1240 * - That downlink to block was encountered in parent where that's expected.
1241 *
1242 * - That high keys of child pages matches corresponding pivot keys in parent.
1243 *
1244 * This is also where heapallindexed callers use their Bloom filter to
1245 * fingerprint IndexTuples for later table_index_build_scan() verification.
1246 *
1247 * Note: Memory allocated in this routine is expected to be released by caller
1248 * resetting state->targetcontext.
1249 */
1250static void
1252{
1253 OffsetNumber offset;
1254 OffsetNumber max;
1255 BTPageOpaque topaque;
1256
1257 /* Last visible entry info for checking indexes with unique constraint */
1259
1260 topaque = BTPageGetOpaque(state->target);
1261 max = PageGetMaxOffsetNumber(state->target);
1262
1263 elog(DEBUG2, "verifying %u items on %s block %u", max,
1264 P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
1265
1266 /*
1267 * Check the number of attributes in high key. Note, rightmost page
1268 * doesn't contain a high key, so nothing to check
1269 */
1270 if (!P_RIGHTMOST(topaque))
1271 {
1272 ItemId itemid;
1273 IndexTuple itup;
1274
1275 /* Verify line pointer before checking tuple */
1276 itemid = PageGetItemIdCareful(state, state->targetblock,
1277 state->target, P_HIKEY);
1278 if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1279 P_HIKEY))
1280 {
1281 itup = (IndexTuple) PageGetItem(state->target, itemid);
1282 ereport(ERROR,
1283 (errcode(ERRCODE_INDEX_CORRUPTED),
1284 errmsg("wrong number of high key index tuple attributes in index \"%s\"",
1286 errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%X.",
1287 state->targetblock,
1288 BTreeTupleGetNAtts(itup, state->rel),
1289 P_ISLEAF(topaque) ? "heap" : "index",
1290 LSN_FORMAT_ARGS(state->targetlsn))));
1291 }
1292 }
1293
1294 /*
1295 * Loop over page items, starting from first non-highkey item, not high
1296 * key (if any). Most tests are not performed for the "negative infinity"
1297 * real item (if any).
1298 */
1299 for (offset = P_FIRSTDATAKEY(topaque);
1300 offset <= max;
1301 offset = OffsetNumberNext(offset))
1302 {
1303 ItemId itemid;
1304 IndexTuple itup;
1305 size_t tupsize;
1306 BTScanInsert skey;
1307 bool lowersizelimit;
1308 ItemPointer scantid;
1309
1310 /*
1311 * True if we already called bt_entry_unique_check() for the current
1312 * item. This helps to avoid visiting the heap for keys, which are
1313 * anyway presented only once and can't comprise a unique violation.
1314 */
1315 bool unique_checked = false;
1316
1318
1319 itemid = PageGetItemIdCareful(state, state->targetblock,
1320 state->target, offset);
1321 itup = (IndexTuple) PageGetItem(state->target, itemid);
1322 tupsize = IndexTupleSize(itup);
1323
1324 /*
1325 * lp_len should match the IndexTuple reported length exactly, since
1326 * lp_len is completely redundant in indexes, and both sources of
1327 * tuple length are MAXALIGN()'d. nbtree does not use lp_len all that
1328 * frequently, and is surprisingly tolerant of corrupt lp_len fields.
1329 */
1330 if (tupsize != ItemIdGetLength(itemid))
1331 ereport(ERROR,
1332 (errcode(ERRCODE_INDEX_CORRUPTED),
1333 errmsg("index tuple size does not equal lp_len in index \"%s\"",
1335 errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%X.",
1336 state->targetblock, offset,
1337 tupsize, ItemIdGetLength(itemid),
1338 LSN_FORMAT_ARGS(state->targetlsn)),
1339 errhint("This could be a torn page problem.")));
1340
1341 /* Check the number of index tuple attributes */
1342 if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1343 offset))
1344 {
1345 ItemPointer tid;
1346 char *itid,
1347 *htid;
1348
1349 itid = psprintf("(%u,%u)", state->targetblock, offset);
1350 tid = BTreeTupleGetPointsToTID(itup);
1351 htid = psprintf("(%u,%u)",
1354
1355 ereport(ERROR,
1356 (errcode(ERRCODE_INDEX_CORRUPTED),
1357 errmsg("wrong number of index tuple attributes in index \"%s\"",
1359 errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%X.",
1360 itid,
1361 BTreeTupleGetNAtts(itup, state->rel),
1362 P_ISLEAF(topaque) ? "heap" : "index",
1363 htid,
1364 LSN_FORMAT_ARGS(state->targetlsn))));
1365 }
1366
1367 /*
1368 * Don't try to generate scankey using "negative infinity" item on
1369 * internal pages. They are always truncated to zero attributes.
1370 */
1371 if (offset_is_negative_infinity(topaque, offset))
1372 {
1373 /*
1374 * We don't call bt_child_check() for "negative infinity" items.
1375 * But if we're performing downlink connectivity check, we do it
1376 * for every item including "negative infinity" one.
1377 */
1378 if (!P_ISLEAF(topaque) && state->readonly)
1379 {
1381 offset,
1382 NULL,
1383 topaque->btpo_level);
1384 }
1385 continue;
1386 }
1387
1388 /*
1389 * Readonly callers may optionally verify that non-pivot tuples can
1390 * each be found by an independent search that starts from the root.
1391 * Note that we deliberately don't do individual searches for each
1392 * TID, since the posting list itself is validated by other checks.
1393 */
1394 if (state->rootdescend && P_ISLEAF(topaque) &&
1395 !bt_rootdescend(state, itup))
1396 {
1398 char *itid,
1399 *htid;
1400
1401 itid = psprintf("(%u,%u)", state->targetblock, offset);
1402 htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
1404
1405 ereport(ERROR,
1406 (errcode(ERRCODE_INDEX_CORRUPTED),
1407 errmsg("could not find tuple using search from root page in index \"%s\"",
1409 errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%X.",
1410 itid, htid,
1411 LSN_FORMAT_ARGS(state->targetlsn))));
1412 }
1413
1414 /*
1415 * If tuple is a posting list tuple, make sure posting list TIDs are
1416 * in order
1417 */
1418 if (BTreeTupleIsPosting(itup))
1419 {
1420 ItemPointerData last;
1421 ItemPointer current;
1422
1424
1425 for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1426 {
1427
1428 current = BTreeTupleGetPostingN(itup, i);
1429
1430 if (ItemPointerCompare(current, &last) <= 0)
1431 {
1432 char *itid = psprintf("(%u,%u)", state->targetblock, offset);
1433
1434 ereport(ERROR,
1435 (errcode(ERRCODE_INDEX_CORRUPTED),
1436 errmsg_internal("posting list contains misplaced TID in index \"%s\"",
1438 errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%X.",
1439 itid, i,
1440 LSN_FORMAT_ARGS(state->targetlsn))));
1441 }
1442
1443 ItemPointerCopy(current, &last);
1444 }
1445 }
1446
1447 /* Build insertion scankey for current page offset */
1448 skey = bt_mkscankey_pivotsearch(state->rel, itup);
1449
1450 /*
1451 * Make sure tuple size does not exceed the relevant BTREE_VERSION
1452 * specific limit.
1453 *
1454 * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
1455 * a small amount of space from BTMaxItemSize() in order to ensure
1456 * that suffix truncation always has enough space to add an explicit
1457 * heap TID back to a tuple -- we pessimistically assume that every
1458 * newly inserted tuple will eventually need to have a heap TID
1459 * appended during a future leaf page split, when the tuple becomes
1460 * the basis of the new high key (pivot tuple) for the leaf page.
1461 *
1462 * Since the reclaimed space is reserved for that purpose, we must not
1463 * enforce the slightly lower limit when the extra space has been used
1464 * as intended. In other words, there is only a cross-version
1465 * difference in the limit on tuple size within leaf pages.
1466 *
1467 * Still, we're particular about the details within BTREE_VERSION 4
1468 * internal pages. Pivot tuples may only use the extra space for its
1469 * designated purpose. Enforce the lower limit for pivot tuples when
1470 * an explicit heap TID isn't actually present. (In all other cases
1471 * suffix truncation is guaranteed to generate a pivot tuple that's no
1472 * larger than the firstright tuple provided to it by its caller.)
1473 */
1474 lowersizelimit = skey->heapkeyspace &&
1475 (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
1476 if (tupsize > (lowersizelimit ? BTMaxItemSize : BTMaxItemSizeNoHeapTid))
1477 {
1479 char *itid,
1480 *htid;
1481
1482 itid = psprintf("(%u,%u)", state->targetblock, offset);
1483 htid = psprintf("(%u,%u)",
1486
1487 ereport(ERROR,
1488 (errcode(ERRCODE_INDEX_CORRUPTED),
1489 errmsg("index row size %zu exceeds maximum for index \"%s\"",
1490 tupsize, RelationGetRelationName(state->rel)),
1491 errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1492 itid,
1493 P_ISLEAF(topaque) ? "heap" : "index",
1494 htid,
1495 LSN_FORMAT_ARGS(state->targetlsn))));
1496 }
1497
1498 /* Fingerprint leaf page tuples (those that point to the heap) */
1499 if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
1500 {
1501 IndexTuple norm;
1502
1503 if (BTreeTupleIsPosting(itup))
1504 {
1505 /* Fingerprint all elements as distinct "plain" tuples */
1506 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1507 {
1508 IndexTuple logtuple;
1509
1510 logtuple = bt_posting_plain_tuple(itup, i);
1511 norm = bt_normalize_tuple(state, logtuple);
1512 bloom_add_element(state->filter, (unsigned char *) norm,
1513 IndexTupleSize(norm));
1514 /* Be tidy */
1515 if (norm != logtuple)
1516 pfree(norm);
1517 pfree(logtuple);
1518 }
1519 }
1520 else
1521 {
1522 norm = bt_normalize_tuple(state, itup);
1523 bloom_add_element(state->filter, (unsigned char *) norm,
1524 IndexTupleSize(norm));
1525 /* Be tidy */
1526 if (norm != itup)
1527 pfree(norm);
1528 }
1529 }
1530
1531 /*
1532 * * High key check *
1533 *
1534 * If there is a high key (if this is not the rightmost page on its
1535 * entire level), check that high key actually is upper bound on all
1536 * page items. If this is a posting list tuple, we'll need to set
1537 * scantid to be highest TID in posting list.
1538 *
1539 * We prefer to check all items against high key rather than checking
1540 * just the last and trusting that the operator class obeys the
1541 * transitive law (which implies that all previous items also
1542 * respected the high key invariant if they pass the item order
1543 * check).
1544 *
1545 * Ideally, we'd compare every item in the index against every other
1546 * item in the index, and not trust opclass obedience of the
1547 * transitive law to bridge the gap between children and their
1548 * grandparents (as well as great-grandparents, and so on). We don't
1549 * go to those lengths because that would be prohibitively expensive,
1550 * and probably not markedly more effective in practice.
1551 *
1552 * On the leaf level, we check that the key is <= the highkey.
1553 * However, on non-leaf levels we check that the key is < the highkey,
1554 * because the high key is "just another separator" rather than a copy
1555 * of some existing key item; we expect it to be unique among all keys
1556 * on the same level. (Suffix truncation will sometimes produce a
1557 * leaf highkey that is an untruncated copy of the lastleft item, but
1558 * never any other item, which necessitates weakening the leaf level
1559 * check to <=.)
1560 *
1561 * Full explanation for why a highkey is never truly a copy of another
1562 * item from the same level on internal levels:
1563 *
1564 * While the new left page's high key is copied from the first offset
1565 * on the right page during an internal page split, that's not the
1566 * full story. In effect, internal pages are split in the middle of
1567 * the firstright tuple, not between the would-be lastleft and
1568 * firstright tuples: the firstright key ends up on the left side as
1569 * left's new highkey, and the firstright downlink ends up on the
1570 * right side as right's new "negative infinity" item. The negative
1571 * infinity tuple is truncated to zero attributes, so we're only left
1572 * with the downlink. In other words, the copying is just an
1573 * implementation detail of splitting in the middle of a (pivot)
1574 * tuple. (See also: "Notes About Data Representation" in the nbtree
1575 * README.)
1576 */
1577 scantid = skey->scantid;
1578 if (state->heapkeyspace && BTreeTupleIsPosting(itup))
1579 skey->scantid = BTreeTupleGetMaxHeapTID(itup);
1580
1581 if (!P_RIGHTMOST(topaque) &&
1582 !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
1584 {
1586 char *itid,
1587 *htid;
1588
1589 itid = psprintf("(%u,%u)", state->targetblock, offset);
1590 htid = psprintf("(%u,%u)",
1593
1594 ereport(ERROR,
1595 (errcode(ERRCODE_INDEX_CORRUPTED),
1596 errmsg("high key invariant violated for index \"%s\"",
1598 errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1599 itid,
1600 P_ISLEAF(topaque) ? "heap" : "index",
1601 htid,
1602 LSN_FORMAT_ARGS(state->targetlsn))));
1603 }
1604 /* Reset, in case scantid was set to (itup) posting tuple's max TID */
1605 skey->scantid = scantid;
1606
1607 /*
1608 * * Item order check *
1609 *
1610 * Check that items are stored on page in logical order, by checking
1611 * current item is strictly less than next item (if any).
1612 */
1613 if (OffsetNumberNext(offset) <= max &&
1614 !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
1615 {
1616 ItemPointer tid;
1617 char *itid,
1618 *htid,
1619 *nitid,
1620 *nhtid;
1621
1622 itid = psprintf("(%u,%u)", state->targetblock, offset);
1623 tid = BTreeTupleGetPointsToTID(itup);
1624 htid = psprintf("(%u,%u)",
1627 nitid = psprintf("(%u,%u)", state->targetblock,
1628 OffsetNumberNext(offset));
1629
1630 /* Reuse itup to get pointed-to heap location of second item */
1631 itemid = PageGetItemIdCareful(state, state->targetblock,
1632 state->target,
1633 OffsetNumberNext(offset));
1634 itup = (IndexTuple) PageGetItem(state->target, itemid);
1635 tid = BTreeTupleGetPointsToTID(itup);
1636 nhtid = psprintf("(%u,%u)",
1639
1640 ereport(ERROR,
1641 (errcode(ERRCODE_INDEX_CORRUPTED),
1642 errmsg("item order invariant violated for index \"%s\"",
1644 errdetail_internal("Lower index tid=%s (points to %s tid=%s) "
1645 "higher index tid=%s (points to %s tid=%s) "
1646 "page lsn=%X/%X.",
1647 itid,
1648 P_ISLEAF(topaque) ? "heap" : "index",
1649 htid,
1650 nitid,
1651 P_ISLEAF(topaque) ? "heap" : "index",
1652 nhtid,
1653 LSN_FORMAT_ARGS(state->targetlsn))));
1654 }
1655
1656 /*
1657 * If the index is unique verify entries uniqueness by checking the
1658 * heap tuples visibility. Immediately check posting tuples and
1659 * tuples with repeated keys. Postpone check for keys, which have the
1660 * first appearance.
1661 */
1662 if (state->checkunique && state->indexinfo->ii_Unique &&
1663 P_ISLEAF(topaque) && !skey->anynullkeys &&
1665 {
1666 bt_entry_unique_check(state, itup, state->targetblock, offset,
1667 &lVis);
1668 unique_checked = true;
1669 }
1670
1671 if (state->checkunique && state->indexinfo->ii_Unique &&
1672 P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
1673 {
1674 /* Save current scankey tid */
1675 scantid = skey->scantid;
1676
1677 /*
1678 * Invalidate scankey tid to make _bt_compare compare only keys in
1679 * the item to report equality even if heap TIDs are different
1680 */
1681 skey->scantid = NULL;
1682
1683 /*
1684 * If next key tuple is different, invalidate last visible entry
1685 * data (whole index tuple or last posting in index tuple). Key
1686 * containing null value does not violate unique constraint and
1687 * treated as different to any other key.
1688 *
1689 * If the next key is the same as the previous one, do the
1690 * bt_entry_unique_check() call if it was postponed.
1691 */
1692 if (_bt_compare(state->rel, skey, state->target,
1693 OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
1694 {
1697 lVis.postingIndex = -1;
1698 lVis.tid = NULL;
1699 }
1700 else if (!unique_checked)
1701 {
1702 bt_entry_unique_check(state, itup, state->targetblock, offset,
1703 &lVis);
1704 }
1705 skey->scantid = scantid; /* Restore saved scan key state */
1706 }
1707
1708 /*
1709 * * Last item check *
1710 *
1711 * Check last item against next/right page's first data item's when
1712 * last item on page is reached. This additional check will detect
1713 * transposed pages iff the supposed right sibling page happens to
1714 * belong before target in the key space. (Otherwise, a subsequent
1715 * heap verification will probably detect the problem.)
1716 *
1717 * This check is similar to the item order check that will have
1718 * already been performed for every other "real" item on target page
1719 * when last item is checked. The difference is that the next item
1720 * (the item that is compared to target's last item) needs to come
1721 * from the next/sibling page. There may not be such an item
1722 * available from sibling for various reasons, though (e.g., target is
1723 * the rightmost page on level).
1724 */
1725 if (offset == max)
1726 {
1727 BTScanInsert rightkey;
1728
1729 /* first offset on a right index page (log only) */
1730 OffsetNumber rightfirstoffset = InvalidOffsetNumber;
1731
1732 /* Get item in next/right page */
1733 rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
1734
1735 if (rightkey &&
1736 !invariant_g_offset(state, rightkey, max))
1737 {
1738 /*
1739 * As explained at length in bt_right_page_check_scankey(),
1740 * there is a known !readonly race that could account for
1741 * apparent violation of invariant, which we must check for
1742 * before actually proceeding with raising error. Our canary
1743 * condition is that target page was deleted.
1744 */
1745 if (!state->readonly)
1746 {
1747 /* Get fresh copy of target page */
1748 state->target = palloc_btree_page(state, state->targetblock);
1749 /* Note that we deliberately do not update target LSN */
1750 topaque = BTPageGetOpaque(state->target);
1751
1752 /*
1753 * All !readonly checks now performed; just return
1754 */
1755 if (P_IGNORE(topaque))
1756 return;
1757 }
1758
1759 ereport(ERROR,
1760 (errcode(ERRCODE_INDEX_CORRUPTED),
1761 errmsg("cross page item order invariant violated for index \"%s\"",
1763 errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%X.",
1764 state->targetblock, offset,
1765 LSN_FORMAT_ARGS(state->targetlsn))));
1766 }
1767
1768 /*
1769 * If index has unique constraint make sure that no more than one
1770 * found equal items is visible.
1771 */
1772 if (state->checkunique && state->indexinfo->ii_Unique &&
1773 rightkey && P_ISLEAF(topaque) && !P_RIGHTMOST(topaque))
1774 {
1775 BlockNumber rightblock_number = topaque->btpo_next;
1776
1777 elog(DEBUG2, "check cross page unique condition");
1778
1779 /*
1780 * Make _bt_compare compare only index keys without heap TIDs.
1781 * rightkey->scantid is modified destructively but it is ok
1782 * for it is not used later.
1783 */
1784 rightkey->scantid = NULL;
1785
1786 /* The first key on the next page is the same */
1787 if (_bt_compare(state->rel, rightkey, state->target, max) == 0 &&
1788 !rightkey->anynullkeys)
1789 {
1790 Page rightpage;
1791
1792 /*
1793 * Do the bt_entry_unique_check() call if it was
1794 * postponed.
1795 */
1796 if (!unique_checked)
1797 bt_entry_unique_check(state, itup, state->targetblock,
1798 offset, &lVis);
1799
1800 elog(DEBUG2, "cross page equal keys");
1801 rightpage = palloc_btree_page(state,
1802 rightblock_number);
1803 topaque = BTPageGetOpaque(rightpage);
1804
1805 if (P_IGNORE(topaque))
1806 {
1807 pfree(rightpage);
1808 break;
1809 }
1810
1811 if (unlikely(!P_ISLEAF(topaque)))
1812 ereport(ERROR,
1813 (errcode(ERRCODE_INDEX_CORRUPTED),
1814 errmsg("right block of leaf block is non-leaf for index \"%s\"",
1816 errdetail_internal("Block=%u page lsn=%X/%X.",
1817 state->targetblock,
1818 LSN_FORMAT_ARGS(state->targetlsn))));
1819
1820 itemid = PageGetItemIdCareful(state, rightblock_number,
1821 rightpage,
1822 rightfirstoffset);
1823 itup = (IndexTuple) PageGetItem(rightpage, itemid);
1824
1825 bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset, &lVis);
1826
1827 pfree(rightpage);
1828 }
1829 }
1830 }
1831
1832 /*
1833 * * Downlink check *
1834 *
1835 * Additional check of child items iff this is an internal page and
1836 * caller holds a ShareLock. This happens for every downlink (item)
1837 * in target excluding the negative-infinity downlink (again, this is
1838 * because it has no useful value to compare).
1839 */
1840 if (!P_ISLEAF(topaque) && state->readonly)
1841 bt_child_check(state, skey, offset);
1842 }
1843
1844 /*
1845 * Special case bt_child_highkey_check() call
1846 *
1847 * We don't pass a real downlink, but we've to finish the level
1848 * processing. If condition is satisfied, we've already processed all the
1849 * downlinks from the target level. But there still might be pages to the
1850 * right of the child page pointer to by our rightmost downlink. And they
1851 * might have missing downlinks. This final call checks for them.
1852 */
1853 if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
1854 {
1856 NULL, topaque->btpo_level);
1857 }
1858}
1859
1860/*
1861 * Return a scankey for an item on page to right of current target (or the
1862 * first non-ignorable page), sufficient to check ordering invariant on last
1863 * item in current target page. Returned scankey relies on local memory
1864 * allocated for the child page, which caller cannot pfree(). Caller's memory
1865 * context should be reset between calls here.
1866 *
1867 * This is the first data item, and so all adjacent items are checked against
1868 * their immediate sibling item (which may be on a sibling page, or even a
1869 * "cousin" page at parent boundaries where target's rightlink points to page
1870 * with different parent page). If no such valid item is available, return
1871 * NULL instead.
1872 *
1873 * Note that !readonly callers must reverify that target page has not
1874 * been concurrently deleted.
1875 *
1876 * Save rightfirstoffset for detailed error message.
1877 */
1878static BTScanInsert
1880{
1881 BTPageOpaque opaque;
1882 ItemId rightitem;
1883 IndexTuple firstitup;
1884 BlockNumber targetnext;
1885 Page rightpage;
1886 OffsetNumber nline;
1887
1888 /* Determine target's next block number */
1889 opaque = BTPageGetOpaque(state->target);
1890
1891 /* If target is already rightmost, no right sibling; nothing to do here */
1892 if (P_RIGHTMOST(opaque))
1893 return NULL;
1894
1895 /*
1896 * General notes on concurrent page splits and page deletion:
1897 *
1898 * Routines like _bt_search() don't require *any* page split interlock
1899 * when descending the tree, including something very light like a buffer
1900 * pin. That's why it's okay that we don't either. This avoidance of any
1901 * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
1902 * algorithm, in fact.
1903 *
1904 * That leaves deletion. A deleted page won't actually be recycled by
1905 * VACUUM early enough for us to fail to at least follow its right link
1906 * (or left link, or downlink) and find its sibling, because recycling
1907 * does not occur until no possible index scan could land on the page.
1908 * Index scans can follow links with nothing more than their snapshot as
1909 * an interlock and be sure of at least that much. (See page
1910 * recycling/"visible to everyone" notes in nbtree README.)
1911 *
1912 * Furthermore, it's okay if we follow a rightlink and find a half-dead or
1913 * dead (ignorable) page one or more times. There will either be a
1914 * further right link to follow that leads to a live page before too long
1915 * (before passing by parent's rightmost child), or we will find the end
1916 * of the entire level instead (possible when parent page is itself the
1917 * rightmost on its level).
1918 */
1919 targetnext = opaque->btpo_next;
1920 for (;;)
1921 {
1923
1924 rightpage = palloc_btree_page(state, targetnext);
1925 opaque = BTPageGetOpaque(rightpage);
1926
1927 if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
1928 break;
1929
1930 /*
1931 * We landed on a deleted or half-dead sibling page. Step right until
1932 * we locate a live sibling page.
1933 */
1935 (errcode(ERRCODE_NO_DATA),
1936 errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
1937 opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
1938 errdetail_internal("Deleted page found when building scankey from right sibling.")));
1939
1940 targetnext = opaque->btpo_next;
1941
1942 /* Be slightly more pro-active in freeing this memory, just in case */
1943 pfree(rightpage);
1944 }
1945
1946 /*
1947 * No ShareLock held case -- why it's safe to proceed.
1948 *
1949 * Problem:
1950 *
1951 * We must avoid false positive reports of corruption when caller treats
1952 * item returned here as an upper bound on target's last item. In
1953 * general, false positives are disallowed. Avoiding them here when
1954 * caller is !readonly is subtle.
1955 *
1956 * A concurrent page deletion by VACUUM of the target page can result in
1957 * the insertion of items on to this right sibling page that would
1958 * previously have been inserted on our target page. There might have
1959 * been insertions that followed the target's downlink after it was made
1960 * to point to right sibling instead of target by page deletion's first
1961 * phase. The inserters insert items that would belong on target page.
1962 * This race is very tight, but it's possible. This is our only problem.
1963 *
1964 * Non-problems:
1965 *
1966 * We are not hindered by a concurrent page split of the target; we'll
1967 * never land on the second half of the page anyway. A concurrent split
1968 * of the right page will also not matter, because the first data item
1969 * remains the same within the left half, which we'll reliably land on. If
1970 * we had to skip over ignorable/deleted pages, it cannot matter because
1971 * their key space has already been atomically merged with the first
1972 * non-ignorable page we eventually find (doesn't matter whether the page
1973 * we eventually find is a true sibling or a cousin of target, which we go
1974 * into below).
1975 *
1976 * Solution:
1977 *
1978 * Caller knows that it should reverify that target is not ignorable
1979 * (half-dead or deleted) when cross-page sibling item comparison appears
1980 * to indicate corruption (invariant fails). This detects the single race
1981 * condition that exists for caller. This is correct because the
1982 * continued existence of target block as non-ignorable (not half-dead or
1983 * deleted) implies that target page was not merged into from the right by
1984 * deletion; the key space at or after target never moved left. Target's
1985 * parent either has the same downlink to target as before, or a <
1986 * downlink due to deletion at the left of target. Target either has the
1987 * same highkey as before, or a highkey < before when there is a page
1988 * split. (The rightmost concurrently-split-from-target-page page will
1989 * still have the same highkey as target was originally found to have,
1990 * which for our purposes is equivalent to target's highkey itself never
1991 * changing, since we reliably skip over
1992 * concurrently-split-from-target-page pages.)
1993 *
1994 * In simpler terms, we allow that the key space of the target may expand
1995 * left (the key space can move left on the left side of target only), but
1996 * the target key space cannot expand right and get ahead of us without
1997 * our detecting it. The key space of the target cannot shrink, unless it
1998 * shrinks to zero due to the deletion of the original page, our canary
1999 * condition. (To be very precise, we're a bit stricter than that because
2000 * it might just have been that the target page split and only the
2001 * original target page was deleted. We can be more strict, just not more
2002 * lax.)
2003 *
2004 * Top level tree walk caller moves on to next page (makes it the new
2005 * target) following recovery from this race. (cf. The rationale for
2006 * child/downlink verification needing a ShareLock within
2007 * bt_child_check(), where page deletion is also the main source of
2008 * trouble.)
2009 *
2010 * Note that it doesn't matter if right sibling page here is actually a
2011 * cousin page, because in order for the key space to be readjusted in a
2012 * way that causes us issues in next level up (guiding problematic
2013 * concurrent insertions to the cousin from the grandparent rather than to
2014 * the sibling from the parent), there'd have to be page deletion of
2015 * target's parent page (affecting target's parent's downlink in target's
2016 * grandparent page). Internal page deletion only occurs when there are
2017 * no child pages (they were all fully deleted), and caller is checking
2018 * that the target's parent has at least one non-deleted (so
2019 * non-ignorable) child: the target page. (Note that the first phase of
2020 * deletion atomically marks the page to be deleted half-dead/ignorable at
2021 * the same time downlink in its parent is removed, so caller will
2022 * definitely not fail to detect that this happened.)
2023 *
2024 * This trick is inspired by the method backward scans use for dealing
2025 * with concurrent page splits; concurrent page deletion is a problem that
2026 * similarly receives special consideration sometimes (it's possible that
2027 * the backwards scan will re-read its "original" block after failing to
2028 * find a right-link to it, having already moved in the opposite direction
2029 * (right/"forwards") a few times to try to locate one). Just like us,
2030 * that happens only to determine if there was a concurrent page deletion
2031 * of a reference page, and just like us if there was a page deletion of
2032 * that reference page it means we can move on from caring about the
2033 * reference page. See the nbtree README for a full description of how
2034 * that works.
2035 */
2036 nline = PageGetMaxOffsetNumber(rightpage);
2037
2038 /*
2039 * Get first data item, if any
2040 */
2041 if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
2042 {
2043 /* Return first data item (if any) */
2044 rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2045 P_FIRSTDATAKEY(opaque));
2046 *rightfirstoffset = P_FIRSTDATAKEY(opaque);
2047 }
2048 else if (!P_ISLEAF(opaque) &&
2049 nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
2050 {
2051 /*
2052 * Return first item after the internal page's "negative infinity"
2053 * item
2054 */
2055 rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2057 }
2058 else
2059 {
2060 /*
2061 * No first item. Page is probably empty leaf page, but it's also
2062 * possible that it's an internal page with only a negative infinity
2063 * item.
2064 */
2066 (errcode(ERRCODE_NO_DATA),
2067 errmsg_internal("%s block %u of index \"%s\" has no first data item",
2068 P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
2070 return NULL;
2071 }
2072
2073 /*
2074 * Return first real item scankey. Note that this relies on right page
2075 * memory remaining allocated.
2076 */
2077 firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
2078 return bt_mkscankey_pivotsearch(state->rel, firstitup);
2079}
2080
2081/*
2082 * Check if two tuples are binary identical except the block number. So,
2083 * this function is capable to compare pivot keys on different levels.
2084 */
2085static bool
2086bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
2087{
2088 if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
2089 return false;
2090
2091 if (heapkeyspace)
2092 {
2093 /*
2094 * Offset number will contain important information in heapkeyspace
2095 * indexes: the number of attributes left in the pivot tuple following
2096 * suffix truncation. Don't skip over it (compare it too).
2097 */
2098 if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
2099 IndexTupleSize(itup1) -
2100 offsetof(ItemPointerData, ip_posid)) != 0)
2101 return false;
2102 }
2103 else
2104 {
2105 /*
2106 * Cannot rely on offset number field having consistent value across
2107 * levels on pg_upgrade'd !heapkeyspace indexes. Compare contents of
2108 * tuple starting from just after item pointer (i.e. after block
2109 * number and offset number).
2110 */
2111 if (memcmp(&itup1->t_info, &itup2->t_info,
2112 IndexTupleSize(itup1) -
2113 offsetof(IndexTupleData, t_info)) != 0)
2114 return false;
2115 }
2116
2117 return true;
2118}
2119
2120/*---
2121 * Check high keys on the child level. Traverse rightlinks from previous
2122 * downlink to the current one. Check that there are no intermediate pages
2123 * with missing downlinks.
2124 *
2125 * If 'loaded_child' is given, it's assumed to be the page pointed to by the
2126 * downlink referenced by 'downlinkoffnum' of the target page.
2127 *
2128 * Basically this function is called for each target downlink and checks two
2129 * invariants:
2130 *
2131 * 1) You can reach the next child from previous one via rightlinks;
2132 * 2) Each child high key have matching pivot key on target level.
2133 *
2134 * Consider the sample tree picture.
2135 *
2136 * 1
2137 * / \
2138 * 2 <-> 3
2139 * / \ / \
2140 * 4 <> 5 <> 6 <> 7 <> 8
2141 *
2142 * This function will be called for blocks 4, 5, 6 and 8. Consider what is
2143 * happening for each function call.
2144 *
2145 * - The function call for block 4 initializes data structure and matches high
2146 * key of block 4 to downlink's pivot key of block 2.
2147 * - The high key of block 5 is matched to the high key of block 2.
2148 * - The block 6 has an incomplete split flag set, so its high key isn't
2149 * matched to anything.
2150 * - The function call for block 8 checks that block 8 can be found while
2151 * following rightlinks from block 6. The high key of block 7 will be
2152 * matched to downlink's pivot key in block 3.
2153 *
2154 * There is also final call of this function, which checks that there is no
2155 * missing downlinks for children to the right of the child referenced by
2156 * rightmost downlink in target level.
2157 */
2158static void
2160 OffsetNumber target_downlinkoffnum,
2161 Page loaded_child,
2162 uint32 target_level)
2163{
2164 BlockNumber blkno = state->prevrightlink;
2165 Page page;
2166 BTPageOpaque opaque;
2167 bool rightsplit = state->previncompletesplit;
2168 bool first = true;
2169 ItemId itemid;
2170 IndexTuple itup;
2171 BlockNumber downlink;
2172
2173 if (OffsetNumberIsValid(target_downlinkoffnum))
2174 {
2175 itemid = PageGetItemIdCareful(state, state->targetblock,
2176 state->target, target_downlinkoffnum);
2177 itup = (IndexTuple) PageGetItem(state->target, itemid);
2178 downlink = BTreeTupleGetDownLink(itup);
2179 }
2180 else
2181 {
2182 downlink = P_NONE;
2183 }
2184
2185 /*
2186 * If no previous rightlink is memorized for current level just below
2187 * target page's level, we are about to start from the leftmost page. We
2188 * can't follow rightlinks from previous page, because there is no
2189 * previous page. But we still can match high key.
2190 *
2191 * So we initialize variables for the loop above like there is previous
2192 * page referencing current child. Also we imply previous page to not
2193 * have incomplete split flag, that would make us require downlink for
2194 * current child. That's correct, because leftmost page on the level
2195 * should always have parent downlink.
2196 */
2197 if (!BlockNumberIsValid(blkno))
2198 {
2199 blkno = downlink;
2200 rightsplit = false;
2201 }
2202
2203 /* Move to the right on the child level */
2204 while (true)
2205 {
2206 /*
2207 * Did we traverse the whole tree level and this is check for pages to
2208 * the right of rightmost downlink?
2209 */
2210 if (blkno == P_NONE && downlink == P_NONE)
2211 {
2212 state->prevrightlink = InvalidBlockNumber;
2213 state->previncompletesplit = false;
2214 return;
2215 }
2216
2217 /* Did we traverse the whole tree level and don't find next downlink? */
2218 if (blkno == P_NONE)
2219 ereport(ERROR,
2220 (errcode(ERRCODE_INDEX_CORRUPTED),
2221 errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
2222 state->prevrightlink, downlink,
2224
2225 /* Load page contents */
2226 if (blkno == downlink && loaded_child)
2227 page = loaded_child;
2228 else
2229 page = palloc_btree_page(state, blkno);
2230
2231 opaque = BTPageGetOpaque(page);
2232
2233 /* The first page we visit at the level should be leftmost */
2234 if (first && !BlockNumberIsValid(state->prevrightlink) &&
2235 !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
2236 ereport(ERROR,
2237 (errcode(ERRCODE_INDEX_CORRUPTED),
2238 errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
2240 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2241 state->targetblock, blkno,
2242 LSN_FORMAT_ARGS(state->targetlsn))));
2243
2244 /* Do level sanity check */
2245 if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
2246 opaque->btpo_level != target_level - 1)
2247 ereport(ERROR,
2248 (errcode(ERRCODE_INDEX_CORRUPTED),
2249 errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
2251 errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
2252 blkno, target_level - 1, opaque->btpo_level)));
2253
2254 /* Try to detect circular links */
2255 if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
2256 ereport(ERROR,
2257 (errcode(ERRCODE_INDEX_CORRUPTED),
2258 errmsg("circular link chain found in block %u of index \"%s\"",
2259 blkno, RelationGetRelationName(state->rel))));
2260
2261 if (blkno != downlink && !P_IGNORE(opaque))
2262 {
2263 /* blkno probably has missing parent downlink */
2264 bt_downlink_missing_check(state, rightsplit, blkno, page);
2265 }
2266
2267 rightsplit = P_INCOMPLETE_SPLIT(opaque);
2268
2269 /*
2270 * If we visit page with high key, check that it is equal to the
2271 * target key next to corresponding downlink.
2272 */
2273 if (!rightsplit && !P_RIGHTMOST(opaque))
2274 {
2275 BTPageOpaque topaque;
2276 IndexTuple highkey;
2277 OffsetNumber pivotkey_offset;
2278
2279 /* Get high key */
2280 itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
2281 highkey = (IndexTuple) PageGetItem(page, itemid);
2282
2283 /*
2284 * There might be two situations when we examine high key. If
2285 * current child page is referenced by given target downlink, we
2286 * should look to the next offset number for matching key from
2287 * target page.
2288 *
2289 * Alternatively, we're following rightlinks somewhere in the
2290 * middle between page referenced by previous target's downlink
2291 * and the page referenced by current target's downlink. If
2292 * current child page hasn't incomplete split flag set, then its
2293 * high key should match to the target's key of current offset
2294 * number. This happens when a previous call here (to
2295 * bt_child_highkey_check()) found an incomplete split, and we
2296 * reach a right sibling page without a downlink -- the right
2297 * sibling page's high key still needs to be matched to a
2298 * separator key on the parent/target level.
2299 *
2300 * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
2301 * already had to step right on the child level. Our traversal of
2302 * the child level must try to move in perfect lockstep behind (to
2303 * the left of) the target/parent level traversal.
2304 */
2305 if (blkno == downlink)
2306 pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
2307 else
2308 pivotkey_offset = target_downlinkoffnum;
2309
2310 topaque = BTPageGetOpaque(state->target);
2311
2312 if (!offset_is_negative_infinity(topaque, pivotkey_offset))
2313 {
2314 /*
2315 * If we're looking for the next pivot tuple in target page,
2316 * but there is no more pivot tuples, then we should match to
2317 * high key instead.
2318 */
2319 if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
2320 {
2321 if (P_RIGHTMOST(topaque))
2322 ereport(ERROR,
2323 (errcode(ERRCODE_INDEX_CORRUPTED),
2324 errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
2326 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2327 state->targetblock, blkno,
2328 LSN_FORMAT_ARGS(state->targetlsn))));
2329 pivotkey_offset = P_HIKEY;
2330 }
2331 itemid = PageGetItemIdCareful(state, state->targetblock,
2332 state->target, pivotkey_offset);
2333 itup = (IndexTuple) PageGetItem(state->target, itemid);
2334 }
2335 else
2336 {
2337 /*
2338 * We cannot try to match child's high key to a negative
2339 * infinity key in target, since there is nothing to compare.
2340 * However, it's still possible to match child's high key
2341 * outside of target page. The reason why we're are is that
2342 * bt_child_highkey_check() was previously called for the
2343 * cousin page of 'loaded_child', which is incomplete split.
2344 * So, now we traverse to the right of that cousin page and
2345 * current child level page under consideration still belongs
2346 * to the subtree of target's left sibling. Thus, we need to
2347 * match child's high key to its left uncle page high key.
2348 * Thankfully we saved it, it's called a "low key" of target
2349 * page.
2350 */
2351 if (!state->lowkey)
2352 ereport(ERROR,
2353 (errcode(ERRCODE_INDEX_CORRUPTED),
2354 errmsg("can't find left sibling high key in index \"%s\"",
2356 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2357 state->targetblock, blkno,
2358 LSN_FORMAT_ARGS(state->targetlsn))));
2359 itup = state->lowkey;
2360 }
2361
2362 if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
2363 {
2364 ereport(ERROR,
2365 (errcode(ERRCODE_INDEX_CORRUPTED),
2366 errmsg("mismatch between parent key and child high key in index \"%s\"",
2368 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2369 state->targetblock, blkno,
2370 LSN_FORMAT_ARGS(state->targetlsn))));
2371 }
2372 }
2373
2374 /* Exit if we already found next downlink */
2375 if (blkno == downlink)
2376 {
2377 state->prevrightlink = opaque->btpo_next;
2378 state->previncompletesplit = rightsplit;
2379 return;
2380 }
2381
2382 /* Traverse to the next page using rightlink */
2383 blkno = opaque->btpo_next;
2384
2385 /* Free page contents if it's allocated by us */
2386 if (page != loaded_child)
2387 pfree(page);
2388 first = false;
2389 }
2390}
2391
2392/*
2393 * Checks one of target's downlink against its child page.
2394 *
2395 * Conceptually, the target page continues to be what is checked here. The
2396 * target block is still blamed in the event of finding an invariant violation.
2397 * The downlink insertion into the target is probably where any problem raised
2398 * here arises, and there is no such thing as a parent link, so doing the
2399 * verification this way around is much more practical.
2400 *
2401 * This function visits child page and it's sequentially called for each
2402 * downlink of target page. Assuming this we also check downlink connectivity
2403 * here in order to save child page visits.
2404 */
2405static void
2407 OffsetNumber downlinkoffnum)
2408{
2409 ItemId itemid;
2410 IndexTuple itup;
2411 BlockNumber childblock;
2412 OffsetNumber offset;
2413 OffsetNumber maxoffset;
2414 Page child;
2415 BTPageOpaque copaque;
2416 BTPageOpaque topaque;
2417
2418 itemid = PageGetItemIdCareful(state, state->targetblock,
2419 state->target, downlinkoffnum);
2420 itup = (IndexTuple) PageGetItem(state->target, itemid);
2421 childblock = BTreeTupleGetDownLink(itup);
2422
2423 /*
2424 * Caller must have ShareLock on target relation, because of
2425 * considerations around page deletion by VACUUM.
2426 *
2427 * NB: In general, page deletion deletes the right sibling's downlink, not
2428 * the downlink of the page being deleted; the deleted page's downlink is
2429 * reused for its sibling. The key space is thereby consolidated between
2430 * the deleted page and its right sibling. (We cannot delete a parent
2431 * page's rightmost child unless it is the last child page, and we intend
2432 * to also delete the parent itself.)
2433 *
2434 * If this verification happened without a ShareLock, the following race
2435 * condition could cause false positives:
2436 *
2437 * In general, concurrent page deletion might occur, including deletion of
2438 * the left sibling of the child page that is examined here. If such a
2439 * page deletion were to occur, closely followed by an insertion into the
2440 * newly expanded key space of the child, a window for the false positive
2441 * opens up: the stale parent/target downlink originally followed to get
2442 * to the child legitimately ceases to be a lower bound on all items in
2443 * the page, since the key space was concurrently expanded "left".
2444 * (Insertion followed the "new" downlink for the child, not our now-stale
2445 * downlink, which was concurrently physically removed in target/parent as
2446 * part of deletion's first phase.)
2447 *
2448 * While we use various techniques elsewhere to perform cross-page
2449 * verification for !readonly callers, a similar trick seems difficult
2450 * here. The tricks used by bt_recheck_sibling_links and by
2451 * bt_right_page_check_scankey both involve verification of a same-level,
2452 * cross-sibling invariant. Cross-level invariants are far more squishy,
2453 * though. The nbtree REDO routines do not actually couple buffer locks
2454 * across levels during page splits, so making any cross-level check work
2455 * reliably in !readonly mode may be impossible.
2456 */
2457 Assert(state->readonly);
2458
2459 /*
2460 * Verify child page has the downlink key from target page (its parent) as
2461 * a lower bound; downlink must be strictly less than all keys on the
2462 * page.
2463 *
2464 * Check all items, rather than checking just the first and trusting that
2465 * the operator class obeys the transitive law.
2466 */
2467 topaque = BTPageGetOpaque(state->target);
2468 child = palloc_btree_page(state, childblock);
2469 copaque = BTPageGetOpaque(child);
2470 maxoffset = PageGetMaxOffsetNumber(child);
2471
2472 /*
2473 * Since we've already loaded the child block, combine this check with
2474 * check for downlink connectivity.
2475 */
2476 bt_child_highkey_check(state, downlinkoffnum,
2477 child, topaque->btpo_level);
2478
2479 /*
2480 * Since there cannot be a concurrent VACUUM operation in readonly mode,
2481 * and since a page has no links within other pages (siblings and parent)
2482 * once it is marked fully deleted, it should be impossible to land on a
2483 * fully deleted page.
2484 *
2485 * It does not quite make sense to enforce that the page cannot even be
2486 * half-dead, despite the fact the downlink is modified at the same stage
2487 * that the child leaf page is marked half-dead. That's incorrect because
2488 * there may occasionally be multiple downlinks from a chain of pages
2489 * undergoing deletion, where multiple successive calls are made to
2490 * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
2491 * the leaf page as fully dead. While _bt_mark_page_halfdead() usually
2492 * removes the downlink to the leaf page that is marked half-dead, that's
2493 * not guaranteed, so it's possible we'll land on a half-dead page with a
2494 * downlink due to an interrupted multi-level page deletion.
2495 *
2496 * We go ahead with our checks if the child page is half-dead. It's safe
2497 * to do so because we do not test the child's high key, so it does not
2498 * matter that the original high key will have been replaced by a dummy
2499 * truncated high key within _bt_mark_page_halfdead(). All other page
2500 * items are left intact on a half-dead page, so there is still something
2501 * to test.
2502 */
2503 if (P_ISDELETED(copaque))
2504 ereport(ERROR,
2505 (errcode(ERRCODE_INDEX_CORRUPTED),
2506 errmsg("downlink to deleted page found in index \"%s\"",
2508 errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%X.",
2509 state->targetblock, childblock,
2510 LSN_FORMAT_ARGS(state->targetlsn))));
2511
2512 for (offset = P_FIRSTDATAKEY(copaque);
2513 offset <= maxoffset;
2514 offset = OffsetNumberNext(offset))
2515 {
2516 /*
2517 * Skip comparison of target page key against "negative infinity"
2518 * item, if any. Checking it would indicate that it's not a strict
2519 * lower bound, but that's only because of the hard-coding for
2520 * negative infinity items within _bt_compare().
2521 *
2522 * If nbtree didn't truncate negative infinity tuples during internal
2523 * page splits then we'd expect child's negative infinity key to be
2524 * equal to the scankey/downlink from target/parent (it would be a
2525 * "low key" in this hypothetical scenario, and so it would still need
2526 * to be treated as a special case here).
2527 *
2528 * Negative infinity items can be thought of as a strict lower bound
2529 * that works transitively, with the last non-negative-infinity pivot
2530 * followed during a descent from the root as its "true" strict lower
2531 * bound. Only a small number of negative infinity items are truly
2532 * negative infinity; those that are the first items of leftmost
2533 * internal pages. In more general terms, a negative infinity item is
2534 * only negative infinity with respect to the subtree that the page is
2535 * at the root of.
2536 *
2537 * See also: bt_rootdescend(), which can even detect transitive
2538 * inconsistencies on cousin leaf pages.
2539 */
2540 if (offset_is_negative_infinity(copaque, offset))
2541 continue;
2542
2543 if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
2544 offset))
2545 ereport(ERROR,
2546 (errcode(ERRCODE_INDEX_CORRUPTED),
2547 errmsg("down-link lower bound invariant violated for index \"%s\"",
2549 errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%X.",
2550 state->targetblock, childblock, offset,
2551 LSN_FORMAT_ARGS(state->targetlsn))));
2552 }
2553
2554 pfree(child);
2555}
2556
2557/*
2558 * Checks if page is missing a downlink that it should have.
2559 *
2560 * A page that lacks a downlink/parent may indicate corruption. However, we
2561 * must account for the fact that a missing downlink can occasionally be
2562 * encountered in a non-corrupt index. This can be due to an interrupted page
2563 * split, or an interrupted multi-level page deletion (i.e. there was a hard
2564 * crash or an error during a page split, or while VACUUM was deleting a
2565 * multi-level chain of pages).
2566 *
2567 * Note that this can only be called in readonly mode, so there is no need to
2568 * be concerned about concurrent page splits or page deletions.
2569 */
2570static void
2572 BlockNumber blkno, Page page)
2573{
2574 BTPageOpaque opaque = BTPageGetOpaque(page);
2575 ItemId itemid;
2576 IndexTuple itup;
2577 Page child;
2578 BTPageOpaque copaque;
2579 uint32 level;
2580 BlockNumber childblk;
2581 XLogRecPtr pagelsn;
2582
2583 Assert(state->readonly);
2584 Assert(!P_IGNORE(opaque));
2585
2586 /* No next level up with downlinks to fingerprint from the true root */
2587 if (P_ISROOT(opaque))
2588 return;
2589
2590 pagelsn = PageGetLSN(page);
2591
2592 /*
2593 * Incomplete (interrupted) page splits can account for the lack of a
2594 * downlink. Some inserting transaction should eventually complete the
2595 * page split in passing, when it notices that the left sibling page is
2596 * P_INCOMPLETE_SPLIT().
2597 *
2598 * In general, VACUUM is not prepared for there to be no downlink to a
2599 * page that it deletes. This is the main reason why the lack of a
2600 * downlink can be reported as corruption here. It's not obvious that an
2601 * invalid missing downlink can result in wrong answers to queries,
2602 * though, since index scans that land on the child may end up
2603 * consistently moving right. The handling of concurrent page splits (and
2604 * page deletions) within _bt_moveright() cannot distinguish
2605 * inconsistencies that last for a moment from inconsistencies that are
2606 * permanent and irrecoverable.
2607 *
2608 * VACUUM isn't even prepared to delete pages that have no downlink due to
2609 * an incomplete page split, but it can detect and reason about that case
2610 * by design, so it shouldn't be taken to indicate corruption. See
2611 * _bt_pagedel() for full details.
2612 */
2613 if (rightsplit)
2614 {
2616 (errcode(ERRCODE_NO_DATA),
2617 errmsg_internal("harmless interrupted page split detected in index \"%s\"",
2619 errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%X.",
2620 blkno, opaque->btpo_level,
2621 opaque->btpo_prev,
2622 LSN_FORMAT_ARGS(pagelsn))));
2623 return;
2624 }
2625
2626 /*
2627 * Page under check is probably the "top parent" of a multi-level page
2628 * deletion. We'll need to descend the subtree to make sure that
2629 * descendant pages are consistent with that, though.
2630 *
2631 * If the page (which must be non-ignorable) is a leaf page, then clearly
2632 * it can't be the top parent. The lack of a downlink is probably a
2633 * symptom of a broad problem that could just as easily cause
2634 * inconsistencies anywhere else.
2635 */
2636 if (P_ISLEAF(opaque))
2637 ereport(ERROR,
2638 (errcode(ERRCODE_INDEX_CORRUPTED),
2639 errmsg("leaf index block lacks downlink in index \"%s\"",
2641 errdetail_internal("Block=%u page lsn=%X/%X.",
2642 blkno,
2643 LSN_FORMAT_ARGS(pagelsn))));
2644
2645 /* Descend from the given page, which is an internal page */
2646 elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
2648
2649 level = opaque->btpo_level;
2650 itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
2651 itup = (IndexTuple) PageGetItem(page, itemid);
2652 childblk = BTreeTupleGetDownLink(itup);
2653 for (;;)
2654 {
2656
2657 child = palloc_btree_page(state, childblk);
2658 copaque = BTPageGetOpaque(child);
2659
2660 if (P_ISLEAF(copaque))
2661 break;
2662
2663 /* Do an extra sanity check in passing on internal pages */
2664 if (copaque->btpo_level != level - 1)
2665 ereport(ERROR,
2666 (errcode(ERRCODE_INDEX_CORRUPTED),
2667 errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
2669 errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
2670 blkno, childblk,
2671 level - 1, copaque->btpo_level)));
2672
2673 level = copaque->btpo_level;
2674 itemid = PageGetItemIdCareful(state, childblk, child,
2675 P_FIRSTDATAKEY(copaque));
2676 itup = (IndexTuple) PageGetItem(child, itemid);
2677 childblk = BTreeTupleGetDownLink(itup);
2678 /* Be slightly more pro-active in freeing this memory, just in case */
2679 pfree(child);
2680 }
2681
2682 /*
2683 * Since there cannot be a concurrent VACUUM operation in readonly mode,
2684 * and since a page has no links within other pages (siblings and parent)
2685 * once it is marked fully deleted, it should be impossible to land on a
2686 * fully deleted page. See bt_child_check() for further details.
2687 *
2688 * The bt_child_check() P_ISDELETED() check is repeated here because
2689 * bt_child_check() does not visit pages reachable through negative
2690 * infinity items. Besides, bt_child_check() is unwilling to descend
2691 * multiple levels. (The similar bt_child_check() P_ISDELETED() check
2692 * within bt_check_level_from_leftmost() won't reach the page either,
2693 * since the leaf's live siblings should have their sibling links updated
2694 * to bypass the deletion target page when it is marked fully dead.)
2695 *
2696 * If this error is raised, it might be due to a previous multi-level page
2697 * deletion that failed to realize that it wasn't yet safe to mark the
2698 * leaf page as fully dead. A "dangling downlink" will still remain when
2699 * this happens. The fact that the dangling downlink's page (the leaf's
2700 * parent/ancestor page) lacked a downlink is incidental.
2701 */
2702 if (P_ISDELETED(copaque))
2703 ereport(ERROR,
2704 (errcode(ERRCODE_INDEX_CORRUPTED),
2705 errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
2707 errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%X.",
2708 blkno, childblk,
2709 LSN_FORMAT_ARGS(pagelsn))));
2710
2711 /*
2712 * Iff leaf page is half-dead, its high key top parent link should point
2713 * to what VACUUM considered to be the top parent page at the instant it
2714 * was interrupted. Provided the high key link actually points to the
2715 * page under check, the missing downlink we detected is consistent with
2716 * there having been an interrupted multi-level page deletion. This means
2717 * that the subtree with the page under check at its root (a page deletion
2718 * chain) is in a consistent state, enabling VACUUM to resume deleting the
2719 * entire chain the next time it encounters the half-dead leaf page.
2720 */
2721 if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
2722 {
2723 itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
2724 itup = (IndexTuple) PageGetItem(child, itemid);
2725 if (BTreeTupleGetTopParent(itup) == blkno)
2726 return;
2727 }
2728
2729 ereport(ERROR,
2730 (errcode(ERRCODE_INDEX_CORRUPTED),
2731 errmsg("internal index block lacks downlink in index \"%s\"",
2733 errdetail_internal("Block=%u level=%u page lsn=%X/%X.",
2734 blkno, opaque->btpo_level,
2735 LSN_FORMAT_ARGS(pagelsn))));
2736}
2737
2738/*
2739 * Per-tuple callback from table_index_build_scan, used to determine if index has
2740 * all the entries that definitely should have been observed in leaf pages of
2741 * the target index (that is, all IndexTuples that were fingerprinted by our
2742 * Bloom filter). All heapallindexed checks occur here.
2743 *
2744 * The redundancy between an index and the table it indexes provides a good
2745 * opportunity to detect corruption, especially corruption within the table.
2746 * The high level principle behind the verification performed here is that any
2747 * IndexTuple that should be in an index following a fresh CREATE INDEX (based
2748 * on the same index definition) should also have been in the original,
2749 * existing index, which should have used exactly the same representation
2750 *
2751 * Since the overall structure of the index has already been verified, the most
2752 * likely explanation for error here is a corrupt heap page (could be logical
2753 * or physical corruption). Index corruption may still be detected here,
2754 * though. Only readonly callers will have verified that left links and right
2755 * links are in agreement, and so it's possible that a leaf page transposition
2756 * within index is actually the source of corruption detected here (for
2757 * !readonly callers). The checks performed only for readonly callers might
2758 * more accurately frame the problem as a cross-page invariant issue (this
2759 * could even be due to recovery not replaying all WAL records). The !readonly
2760 * ERROR message raised here includes a HINT about retrying with readonly
2761 * verification, just in case it's a cross-page invariant issue, though that
2762 * isn't particularly likely.
2763 *
2764 * table_index_build_scan() expects to be able to find the root tuple when a
2765 * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
2766 * indexed, in order to replace the actual tuple's TID with the root tuple's
2767 * TID (which is what we're actually passed back here). The index build heap
2768 * scan code will raise an error when a tuple that claims to be the root of the
2769 * heap-only tuple's HOT chain cannot be located. This catches cases where the
2770 * original root item offset/root tuple for a HOT chain indicates (for whatever
2771 * reason) that the entire HOT chain is dead, despite the fact that the latest
2772 * heap-only tuple should be indexed. When this happens, sequential scans may
2773 * always give correct answers, and all indexes may be considered structurally
2774 * consistent (i.e. the nbtree structural checks would not detect corruption).
2775 * It may be the case that only index scans give wrong answers, and yet heap or
2776 * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
2777 * setting will probably also leave the index in a corrupt state before too
2778 * long, the problem is nonetheless that there is heap corruption.)
2779 *
2780 * Heap-only tuple handling within table_index_build_scan() works in a way that
2781 * helps us to detect index tuples that contain the wrong values (values that
2782 * don't match the latest tuple in the HOT chain). This can happen when there
2783 * is no superseding index tuple due to a faulty assessment of HOT safety,
2784 * perhaps during the original CREATE INDEX. Because the latest tuple's
2785 * contents are used with the root TID, an error will be raised when a tuple
2786 * with the same TID but non-matching attribute values is passed back to us.
2787 * Faulty assessment of HOT-safety was behind at least two distinct CREATE
2788 * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
2789 * undetected for many years. In short, the same principle that allows a
2790 * REINDEX to repair corruption when there was an (undetected) broken HOT chain
2791 * also allows us to detect the corruption in many cases.
2792 */
2793static void
2795 bool *isnull, bool tupleIsAlive, void *checkstate)
2796{
2797 BtreeCheckState *state = (BtreeCheckState *) checkstate;
2798 IndexTuple itup,
2799 norm;
2800
2801 Assert(state->heapallindexed);
2802
2803 /* Generate a normalized index tuple for fingerprinting */
2805 itup->t_tid = *tid;
2806 norm = bt_normalize_tuple(state, itup);
2807
2808 /* Probe Bloom filter -- tuple should be present */
2809 if (bloom_lacks_element(state->filter, (unsigned char *) norm,
2810 IndexTupleSize(norm)))
2811 ereport(ERROR,
2813 errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
2818 !state->readonly
2819 ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
2820 : 0));
2821
2822 state->heaptuplespresent++;
2823 pfree(itup);
2824 /* Cannot leak memory here */
2825 if (norm != itup)
2826 pfree(norm);
2827}
2828
2829/*
2830 * Normalize an index tuple for fingerprinting.
2831 *
2832 * In general, index tuple formation is assumed to be deterministic by
2833 * heapallindexed verification, and IndexTuples are assumed immutable. While
2834 * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
2835 * not fingerprinted. Normalization is required to compensate for corner
2836 * cases where the determinism assumption doesn't quite work.
2837 *
2838 * There is currently one such case: index_form_tuple() does not try to hide
2839 * the source TOAST state of input datums. The executor applies TOAST
2840 * compression for heap tuples based on different criteria to the compression
2841 * applied within btinsert()'s call to index_form_tuple(): it sometimes
2842 * compresses more aggressively, resulting in compressed heap tuple datums but
2843 * uncompressed corresponding index tuple datums. A subsequent heapallindexed
2844 * verification will get a logically equivalent though bitwise unequal tuple
2845 * from index_form_tuple(). False positive heapallindexed corruption reports
2846 * could occur without normalizing away the inconsistency.
2847 *
2848 * Returned tuple is often caller's own original tuple. Otherwise, it is a
2849 * new representation of caller's original index tuple, palloc()'d in caller's
2850 * memory context.
2851 *
2852 * Note: This routine is not concerned with distinctions about the
2853 * representation of tuples beyond those that might break heapallindexed
2854 * verification. In particular, it won't try to normalize opclass-equal
2855 * datums with potentially distinct representations (e.g., btree/numeric_ops
2856 * index datums will not get their display scale normalized-away here).
2857 * Caller does normalization for non-pivot tuples that have a posting list,
2858 * since dummy CREATE INDEX callback code generates new tuples with the same
2859 * normalized representation.
2860 */
2861static IndexTuple
2863{
2864 TupleDesc tupleDescriptor = RelationGetDescr(state->rel);
2865 Datum normalized[INDEX_MAX_KEYS];
2866 bool isnull[INDEX_MAX_KEYS];
2867 bool need_free[INDEX_MAX_KEYS];
2868 bool formnewtup = false;
2869 IndexTuple reformed;
2870 int i;
2871
2872 /* Caller should only pass "logical" non-pivot tuples here */
2874
2875 /* Easy case: It's immediately clear that tuple has no varlena datums */
2876 if (!IndexTupleHasVarwidths(itup))
2877 return itup;
2878
2879 for (i = 0; i < tupleDescriptor->natts; i++)
2880 {
2882
2883 att = TupleDescAttr(tupleDescriptor, i);
2884
2885 /* Assume untoasted/already normalized datum initially */
2886 need_free[i] = false;
2887 normalized[i] = index_getattr(itup, att->attnum,
2888 tupleDescriptor,
2889 &isnull[i]);
2890 if (att->attbyval || att->attlen != -1 || isnull[i])
2891 continue;
2892
2893 /*
2894 * Callers always pass a tuple that could safely be inserted into the
2895 * index without further processing, so an external varlena header
2896 * should never be encountered here
2897 */
2898 if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
2899 ereport(ERROR,
2900 (errcode(ERRCODE_INDEX_CORRUPTED),
2901 errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
2905 else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
2906 VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
2907 (att->attstorage == TYPSTORAGE_EXTENDED ||
2908 att->attstorage == TYPSTORAGE_MAIN))
2909 {
2910 /*
2911 * This value will be compressed by index_form_tuple() with the
2912 * current storage settings. We may be here because this tuple
2913 * was formed with different storage settings. So, force forming.
2914 */
2915 formnewtup = true;
2916 }
2917 else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
2918 {
2919 formnewtup = true;
2920 normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
2921 need_free[i] = true;
2922 }
2923
2924 /*
2925 * Short tuples may have 1B or 4B header. Convert 4B header of short
2926 * tuples to 1B
2927 */
2928 else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
2929 {
2930 /* convert to short varlena */
2932 char *data = palloc(len);
2933
2935 memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
2936
2937 formnewtup = true;
2938 normalized[i] = PointerGetDatum(data);
2939 need_free[i] = true;
2940 }
2941 }
2942
2943 /*
2944 * Easier case: Tuple has varlena datums, none of which are compressed or
2945 * short with 4B header
2946 */
2947 if (!formnewtup)
2948 return itup;
2949
2950 /*
2951 * Hard case: Tuple had compressed varlena datums that necessitate
2952 * creating normalized version of the tuple from uncompressed input datums
2953 * (normalized input datums). This is rather naive, but shouldn't be
2954 * necessary too often.
2955 *
2956 * In the heap, tuples may contain short varlena datums with both 1B
2957 * header and 4B headers. But the corresponding index tuple should always
2958 * have such varlena's with 1B headers. So, if there is a short varlena
2959 * with 4B header, we need to convert it for fingerprinting.
2960 *
2961 * Note that we rely on deterministic index_form_tuple() TOAST compression
2962 * of normalized input.
2963 */
2964 reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
2965 reformed->t_tid = itup->t_tid;
2966
2967 /* Cannot leak memory here */
2968 for (i = 0; i < tupleDescriptor->natts; i++)
2969 if (need_free[i])
2970 pfree(DatumGetPointer(normalized[i]));
2971
2972 return reformed;
2973}
2974
2975/*
2976 * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
2977 *
2978 * In general, deduplication is not supposed to change the logical contents of
2979 * an index. Multiple index tuples are merged together into one equivalent
2980 * posting list index tuple when convenient.
2981 *
2982 * heapallindexed verification must normalize-away this variation in
2983 * representation by converting posting list tuples into two or more "plain"
2984 * tuples. Each tuple must be fingerprinted separately -- there must be one
2985 * tuple for each corresponding Bloom filter probe during the heap scan.
2986 *
2987 * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
2988 */
2989static inline IndexTuple
2991{
2993
2994 /* Returns non-posting-list tuple */
2995 return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
2996}
2997
2998/*
2999 * Search for itup in index, starting from fast root page. itup must be a
3000 * non-pivot tuple. This is only supported with heapkeyspace indexes, since
3001 * we rely on having fully unique keys to find a match with only a single
3002 * visit to a leaf page, barring an interrupted page split, where we may have
3003 * to move right. (A concurrent page split is impossible because caller must
3004 * be readonly caller.)
3005 *
3006 * This routine can detect very subtle transitive consistency issues across
3007 * more than one level of the tree. Leaf pages all have a high key (even the
3008 * rightmost page has a conceptual positive infinity high key), but not a low
3009 * key. Their downlink in parent is a lower bound, which along with the high
3010 * key is almost enough to detect every possible inconsistency. A downlink
3011 * separator key value won't always be available from parent, though, because
3012 * the first items of internal pages are negative infinity items, truncated
3013 * down to zero attributes during internal page splits. While it's true that
3014 * bt_child_check() and the high key check can detect most imaginable key
3015 * space problems, there are remaining problems it won't detect with non-pivot
3016 * tuples in cousin leaf pages. Starting a search from the root for every
3017 * existing leaf tuple detects small inconsistencies in upper levels of the
3018 * tree that cannot be detected any other way. (Besides all this, this is
3019 * probably also useful as a direct test of the code used by index scans
3020 * themselves.)
3021 */
3022static bool
3024{
3026 BTStack stack;
3027 Buffer lbuf;
3028 bool exists;
3029
3030 key = _bt_mkscankey(state->rel, itup);
3031 Assert(key->heapkeyspace && key->scantid != NULL);
3032
3033 /*
3034 * Search from root.
3035 *
3036 * Ideally, we would arrange to only move right within _bt_search() when
3037 * an interrupted page split is detected (i.e. when the incomplete split
3038 * bit is found to be set), but for now we accept the possibility that
3039 * that could conceal an inconsistency.
3040 */
3041 Assert(state->readonly && state->rootdescend);
3042 exists = false;
3043 stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
3044
3045 if (BufferIsValid(lbuf))
3046 {
3047 BTInsertStateData insertstate;
3048 OffsetNumber offnum;
3049 Page page;
3050
3051 insertstate.itup = itup;
3052 insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
3053 insertstate.itup_key = key;
3054 insertstate.postingoff = 0;
3055 insertstate.bounds_valid = false;
3056 insertstate.buf = lbuf;
3057
3058 /* Get matching tuple on leaf page */
3059 offnum = _bt_binsrch_insert(state->rel, &insertstate);
3060 /* Compare first >= matching item on leaf page, if any */
3061 page = BufferGetPage(lbuf);
3062 /* Should match on first heap TID when tuple has a posting list */
3063 if (offnum <= PageGetMaxOffsetNumber(page) &&
3064 insertstate.postingoff <= 0 &&
3065 _bt_compare(state->rel, key, page, offnum) == 0)
3066 exists = true;
3067 _bt_relbuf(state->rel, lbuf);
3068 }
3069
3070 _bt_freestack(stack);
3071 pfree(key);
3072
3073 return exists;
3074}
3075
3076/*
3077 * Is particular offset within page (whose special state is passed by caller)
3078 * the page negative-infinity item?
3079 *
3080 * As noted in comments above _bt_compare(), there is special handling of the
3081 * first data item as a "negative infinity" item. The hard-coding within
3082 * _bt_compare() makes comparing this item for the purposes of verification
3083 * pointless at best, since the IndexTuple only contains a valid TID (a
3084 * reference TID to child page).
3085 */
3086static inline bool
3088{
3089 /*
3090 * For internal pages only, the first item after high key, if any, is
3091 * negative infinity item. Internal pages always have a negative infinity
3092 * item, whereas leaf pages never have one. This implies that negative
3093 * infinity item is either first or second line item, or there is none
3094 * within page.
3095 *
3096 * Negative infinity items are a special case among pivot tuples. They
3097 * always have zero attributes, while all other pivot tuples always have
3098 * nkeyatts attributes.
3099 *
3100 * Right-most pages don't have a high key, but could be said to
3101 * conceptually have a "positive infinity" high key. Thus, there is a
3102 * symmetry between down link items in parent pages, and high keys in
3103 * children. Together, they represent the part of the key space that
3104 * belongs to each page in the index. For example, all children of the
3105 * root page will have negative infinity as a lower bound from root
3106 * negative infinity downlink, and positive infinity as an upper bound
3107 * (implicitly, from "imaginary" positive infinity high key in root).
3108 */
3109 return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
3110}
3111
3112/*
3113 * Does the invariant hold that the key is strictly less than a given upper
3114 * bound offset item?
3115 *
3116 * Verifies line pointer on behalf of caller.
3117 *
3118 * If this function returns false, convention is that caller throws error due
3119 * to corruption.
3120 */
3121static inline bool
3123 OffsetNumber upperbound)
3124{
3125 ItemId itemid;
3126 int32 cmp;
3127
3128 Assert(!key->nextkey && key->backward);
3129
3130 /* Verify line pointer before checking tuple */
3131 itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
3132 upperbound);
3133 /* pg_upgrade'd indexes may legally have equal sibling tuples */
3134 if (!key->heapkeyspace)
3135 return invariant_leq_offset(state, key, upperbound);
3136
3137 cmp = _bt_compare(state->rel, key, state->target, upperbound);
3138
3139 /*
3140 * _bt_compare() is capable of determining that a scankey with a
3141 * filled-out attribute is greater than pivot tuples where the comparison
3142 * is resolved at a truncated attribute (value of attribute in pivot is
3143 * minus infinity). However, it is not capable of determining that a
3144 * scankey is _less than_ a tuple on the basis of a comparison resolved at
3145 * _scankey_ minus infinity attribute. Complete an extra step to simulate
3146 * having minus infinity values for omitted scankey attribute(s).
3147 */
3148 if (cmp == 0)
3149 {
3150 BTPageOpaque topaque;
3151 IndexTuple ritup;
3152 int uppnkeyatts;
3153 ItemPointer rheaptid;
3154 bool nonpivot;
3155
3156 ritup = (IndexTuple) PageGetItem(state->target, itemid);
3157 topaque = BTPageGetOpaque(state->target);
3158 nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
3159
3160 /* Get number of keys + heap TID for item to the right */
3161 uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
3162 rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
3163
3164 /* Heap TID is tiebreaker key attribute */
3165 if (key->keysz == uppnkeyatts)
3166 return key->scantid == NULL && rheaptid != NULL;
3167
3168 return key->keysz < uppnkeyatts;
3169 }
3170
3171 return cmp < 0;
3172}
3173
3174/*
3175 * Does the invariant hold that the key is less than or equal to a given upper
3176 * bound offset item?
3177 *
3178 * Caller should have verified that upperbound's line pointer is consistent
3179 * using PageGetItemIdCareful() call.
3180 *
3181 * If this function returns false, convention is that caller throws error due
3182 * to corruption.
3183 */
3184static inline bool
3186 OffsetNumber upperbound)
3187{
3188 int32 cmp;
3189
3190 Assert(!key->nextkey && key->backward);
3191
3192 cmp = _bt_compare(state->rel, key, state->target, upperbound);
3193
3194 return cmp <= 0;
3195}
3196
3197/*
3198 * Does the invariant hold that the key is strictly greater than a given lower
3199 * bound offset item?
3200 *
3201 * Caller should have verified that lowerbound's line pointer is consistent
3202 * using PageGetItemIdCareful() call.
3203 *
3204 * If this function returns false, convention is that caller throws error due
3205 * to corruption.
3206 */
3207static inline bool
3209 OffsetNumber lowerbound)
3210{
3211 int32 cmp;
3212
3213 Assert(!key->nextkey && key->backward);
3214
3215 cmp = _bt_compare(state->rel, key, state->target, lowerbound);
3216
3217 /* pg_upgrade'd indexes may legally have equal sibling tuples */
3218 if (!key->heapkeyspace)
3219 return cmp >= 0;
3220
3221 /*
3222 * No need to consider the possibility that scankey has attributes that we
3223 * need to force to be interpreted as negative infinity. _bt_compare() is
3224 * able to determine that scankey is greater than negative infinity. The
3225 * distinction between "==" and "<" isn't interesting here, since
3226 * corruption is indicated either way.
3227 */
3228 return cmp > 0;
3229}
3230
3231/*
3232 * Does the invariant hold that the key is strictly less than a given upper
3233 * bound offset item, with the offset relating to a caller-supplied page that
3234 * is not the current target page?
3235 *
3236 * Caller's non-target page is a child page of the target, checked as part of
3237 * checking a property of the target page (i.e. the key comes from the
3238 * target). Verifies line pointer on behalf of caller.
3239 *
3240 * If this function returns false, convention is that caller throws error due
3241 * to corruption.
3242 */
3243static inline bool
3245 BlockNumber nontargetblock, Page nontarget,
3246 OffsetNumber upperbound)
3247{
3248 ItemId itemid;
3249 int32 cmp;
3250
3251 Assert(!key->nextkey && key->backward);
3252
3253 /* Verify line pointer before checking tuple */
3254 itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
3255 upperbound);
3256 cmp = _bt_compare(state->rel, key, nontarget, upperbound);
3257
3258 /* pg_upgrade'd indexes may legally have equal sibling tuples */
3259 if (!key->heapkeyspace)
3260 return cmp <= 0;
3261
3262 /* See invariant_l_offset() for an explanation of this extra step */
3263 if (cmp == 0)
3264 {
3265 IndexTuple child;
3266 int uppnkeyatts;
3267 ItemPointer childheaptid;
3268 BTPageOpaque copaque;
3269 bool nonpivot;
3270
3271 child = (IndexTuple) PageGetItem(nontarget, itemid);
3272 copaque = BTPageGetOpaque(nontarget);
3273 nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
3274
3275 /* Get number of keys + heap TID for child/non-target item */
3276 uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
3277 childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
3278
3279 /* Heap TID is tiebreaker key attribute */
3280 if (key->keysz == uppnkeyatts)
3281 return key->scantid == NULL && childheaptid != NULL;
3282
3283 return key->keysz < uppnkeyatts;
3284 }
3285
3286 return cmp < 0;
3287}
3288
3289/*
3290 * Given a block number of a B-Tree page, return page in palloc()'d memory.
3291 * While at it, perform some basic checks of the page.
3292 *
3293 * There is never an attempt to get a consistent view of multiple pages using
3294 * multiple concurrent buffer locks; in general, we only acquire a single pin
3295 * and buffer lock at a time, which is often all that the nbtree code requires.
3296 * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
3297 * exception to this general rule.)
3298 *
3299 * Operating on a copy of the page is useful because it prevents control
3300 * getting stuck in an uninterruptible state when an underlying operator class
3301 * misbehaves.
3302 */
3303static Page
3305{
3306 Buffer buffer;
3307 Page page;
3308 BTPageOpaque opaque;
3309 OffsetNumber maxoffset;
3310
3311 page = palloc(BLCKSZ);
3312
3313 /*
3314 * We copy the page into local storage to avoid holding pin on the buffer
3315 * longer than we must.
3316 */
3317 buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
3318 state->checkstrategy);
3319 LockBuffer(buffer, BT_READ);
3320
3321 /*
3322 * Perform the same basic sanity checking that nbtree itself performs for
3323 * every page:
3324 */
3325 _bt_checkpage(state->rel, buffer);
3326
3327 /* Only use copy of page in palloc()'d memory */
3328 memcpy(page, BufferGetPage(buffer), BLCKSZ);
3329 UnlockReleaseBuffer(buffer);
3330
3331 opaque = BTPageGetOpaque(page);
3332
3333 if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
3334 ereport(ERROR,
3335 (errcode(ERRCODE_INDEX_CORRUPTED),
3336 errmsg("invalid meta page found at block %u in index \"%s\"",
3337 blocknum, RelationGetRelationName(state->rel))));
3338
3339 /* Check page from block that ought to be meta page */
3340 if (blocknum == BTREE_METAPAGE)
3341 {
3342 BTMetaPageData *metad = BTPageGetMeta(page);
3343
3344 if (!P_ISMETA(opaque) ||
3345 metad->btm_magic != BTREE_MAGIC)
3346 ereport(ERROR,
3347 (errcode(ERRCODE_INDEX_CORRUPTED),
3348 errmsg("index \"%s\" meta page is corrupt",
3350
3351 if (metad->btm_version < BTREE_MIN_VERSION ||
3352 metad->btm_version > BTREE_VERSION)
3353 ereport(ERROR,
3354 (errcode(ERRCODE_INDEX_CORRUPTED),
3355 errmsg("version mismatch in index \"%s\": file version %d, "
3356 "current version %d, minimum supported version %d",
3358 metad->btm_version, BTREE_VERSION,
3360
3361 /* Finished with metapage checks */
3362 return page;
3363 }
3364
3365 /*
3366 * Deleted pages that still use the old 32-bit XID representation have no
3367 * sane "level" field because they type pun the field, but all other pages
3368 * (including pages deleted on Postgres 14+) have a valid value.
3369 */
3370 if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
3371 {
3372 /* Okay, no reason not to trust btpo_level field from page */
3373
3374 if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
3375 ereport(ERROR,
3376 (errcode(ERRCODE_INDEX_CORRUPTED),
3377 errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
3378 opaque->btpo_level, blocknum,
3380
3381 if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
3382 ereport(ERROR,
3383 (errcode(ERRCODE_INDEX_CORRUPTED),
3384 errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
3385 blocknum,
3387 }
3388
3389 /*
3390 * Sanity checks for number of items on page.
3391 *
3392 * As noted at the beginning of _bt_binsrch(), an internal page must have
3393 * children, since there must always be a negative infinity downlink
3394 * (there may also be a highkey). In the case of non-rightmost leaf
3395 * pages, there must be at least a highkey. The exceptions are deleted
3396 * pages, which contain no items.
3397 *
3398 * This is correct when pages are half-dead, since internal pages are
3399 * never half-dead, and leaf pages must have a high key when half-dead
3400 * (the rightmost page can never be deleted). It's also correct with
3401 * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
3402 * about the target page other than setting the page as fully dead, and
3403 * setting its xact field. In particular, it doesn't change the sibling
3404 * links in the deletion target itself, since they're required when index
3405 * scans land on the deletion target, and then need to move right (or need
3406 * to move left, in the case of backward index scans).
3407 */
3408 maxoffset = PageGetMaxOffsetNumber(page);
3409 if (maxoffset > MaxIndexTuplesPerPage)
3410 ereport(ERROR,
3411 (errcode(ERRCODE_INDEX_CORRUPTED),
3412 errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
3413 blocknum, RelationGetRelationName(state->rel),
3415
3416 if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
3417 ereport(ERROR,
3418 (errcode(ERRCODE_INDEX_CORRUPTED),
3419 errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
3420 blocknum, RelationGetRelationName(state->rel))));
3421
3422 if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
3423 ereport(ERROR,
3424 (errcode(ERRCODE_INDEX_CORRUPTED),
3425 errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
3426 blocknum, RelationGetRelationName(state->rel))));
3427
3428 /*
3429 * In general, internal pages are never marked half-dead, except on
3430 * versions of Postgres prior to 9.4, where it can be valid transient
3431 * state. This state is nonetheless treated as corruption by VACUUM on
3432 * from version 9.4 on, so do the same here. See _bt_pagedel() for full
3433 * details.
3434 */
3435 if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
3436 ereport(ERROR,
3437 (errcode(ERRCODE_INDEX_CORRUPTED),
3438 errmsg("internal page block %u in index \"%s\" is half-dead",
3439 blocknum, RelationGetRelationName(state->rel)),
3440 errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
3441
3442 /*
3443 * Check that internal pages have no garbage items, and that no page has
3444 * an invalid combination of deletion-related page level flags
3445 */
3446 if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
3447 ereport(ERROR,
3448 (errcode(ERRCODE_INDEX_CORRUPTED),
3449 errmsg_internal("internal page block %u in index \"%s\" has garbage items",
3450 blocknum, RelationGetRelationName(state->rel))));
3451
3452 if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
3453 ereport(ERROR,
3454 (errcode(ERRCODE_INDEX_CORRUPTED),
3455 errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
3456 blocknum, RelationGetRelationName(state->rel))));
3457
3458 if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
3459 ereport(ERROR,
3460 (errcode(ERRCODE_INDEX_CORRUPTED),
3461 errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
3462 blocknum, RelationGetRelationName(state->rel))));
3463
3464 return page;
3465}
3466
3467/*
3468 * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
3469 * being considered greater than the pivot tuple that its values originated
3470 * from (or some other identical pivot tuple) in the common case where there
3471 * are truncated/minus infinity attributes. Without this extra step, there
3472 * are forms of corruption that amcheck could theoretically fail to report.
3473 *
3474 * For example, invariant_g_offset() might miss a cross-page invariant failure
3475 * on an internal level if the scankey built from the first item on the
3476 * target's right sibling page happened to be equal to (not greater than) the
3477 * last item on target page. The !backward tiebreaker in _bt_compare() might
3478 * otherwise cause amcheck to assume (rather than actually verify) that the
3479 * scankey is greater.
3480 */
3481static inline BTScanInsert
3483{
3484 BTScanInsert skey;
3485
3486 skey = _bt_mkscankey(rel, itup);
3487 skey->backward = true;
3488
3489 return skey;
3490}
3491
3492/*
3493 * PageGetItemId() wrapper that validates returned line pointer.
3494 *
3495 * Buffer page/page item access macros generally trust that line pointers are
3496 * not corrupt, which might cause problems for verification itself. For
3497 * example, there is no bounds checking in PageGetItem(). Passing it a
3498 * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
3499 * to dereference.
3500 *
3501 * Validating line pointers before tuples avoids undefined behavior and
3502 * assertion failures with corrupt indexes, making the verification process
3503 * more robust and predictable.
3504 */
3505static ItemId
3507 OffsetNumber offset)
3508{
3509 ItemId itemid = PageGetItemId(page, offset);
3510
3511 if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
3512 BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
3513 ereport(ERROR,
3514 (errcode(ERRCODE_INDEX_CORRUPTED),
3515 errmsg("line pointer points past end of tuple space in index \"%s\"",
3517 errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3518 block, offset, ItemIdGetOffset(itemid),
3519 ItemIdGetLength(itemid),
3520 ItemIdGetFlags(itemid))));
3521
3522 /*
3523 * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
3524 * never uses either. Verify that line pointer has storage, too, since
3525 * even LP_DEAD items should within nbtree.
3526 */
3527 if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
3528 ItemIdGetLength(itemid) == 0)
3529 ereport(ERROR,
3530 (errcode(ERRCODE_INDEX_CORRUPTED),
3531 errmsg("invalid line pointer storage in index \"%s\"",
3533 errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3534 block, offset, ItemIdGetOffset(itemid),
3535 ItemIdGetLength(itemid),
3536 ItemIdGetFlags(itemid))));
3537
3538 return itemid;
3539}
3540
3541/*
3542 * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
3543 * cases where that is mandatory (i.e. for non-pivot tuples)
3544 */
3545static inline ItemPointer
3547 bool nonpivot)
3548{
3549 ItemPointer htid;
3550
3551 /*
3552 * Caller determines whether this is supposed to be a pivot or non-pivot
3553 * tuple using page type and item offset number. Verify that tuple
3554 * metadata agrees with this.
3555 */
3556 Assert(state->heapkeyspace);
3557 if (BTreeTupleIsPivot(itup) && nonpivot)
3558 ereport(ERROR,
3559 (errcode(ERRCODE_INDEX_CORRUPTED),
3560 errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
3561 state->targetblock,
3563
3564 if (!BTreeTupleIsPivot(itup) && !nonpivot)
3565 ereport(ERROR,
3566 (errcode(ERRCODE_INDEX_CORRUPTED),
3567 errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
3568 state->targetblock,
3570
3571 htid = BTreeTupleGetHeapTID(itup);
3572 if (!ItemPointerIsValid(htid) && nonpivot)
3573 ereport(ERROR,
3574 (errcode(ERRCODE_INDEX_CORRUPTED),
3575 errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
3576 state->targetblock,
3578
3579 return htid;
3580}
3581
3582/*
3583 * Return the "pointed to" TID for itup, which is used to generate a
3584 * descriptive error message. itup must be a "data item" tuple (it wouldn't
3585 * make much sense to call here with a high key tuple, since there won't be a
3586 * valid downlink/block number to display).
3587 *
3588 * Returns either a heap TID (which will be the first heap TID in posting list
3589 * if itup is posting list tuple), or a TID that contains downlink block
3590 * number, plus some encoded metadata (e.g., the number of attributes present
3591 * in itup).
3592 */
3593static inline ItemPointer
3595{
3596 /*
3597 * Rely on the assumption that !heapkeyspace internal page data items will
3598 * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
3599 * recognize it as a pivot tuple, but everything still works out because
3600 * the t_tid field is still returned
3601 */
3602 if (!BTreeTupleIsPivot(itup))
3603 return BTreeTupleGetHeapTID(itup);
3604
3605 /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
3606 return &itup->t_tid;
3607}
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
void bloom_free(bloom_filter *filter)
Definition: bloomfilter.c:126
bloom_filter * bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
Definition: bloomfilter.c:87
double bloom_prop_bits_set(bloom_filter *filter)
Definition: bloomfilter.c:187
bool bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:157
void bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:135
static Datum values[MAXATTR]
Definition: bootstrap.c:151
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5390
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:5607
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:805
@ BAS_BULKREAD
Definition: bufmgr.h:37
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:283
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:417
@ RBM_NORMAL
Definition: bufmgr.h:46
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:368
static Item PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:354
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:244
PageData * Page
Definition: bufpage.h:82
static XLogRecPtr PageGetLSN(const PageData *page)
Definition: bufpage.h:386
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:372
#define MAXALIGN(LEN)
Definition: c.h:782
#define Max(x, y)
Definition: c.h:969
#define INT64_FORMAT
Definition: c.h:520
int64_t int64
Definition: c.h:499
int32_t int32
Definition: c.h:498
uint64_t uint64
Definition: c.h:503
#define unlikely(x)
Definition: c.h:347
uint32_t uint32
Definition: c.h:502
size_t Size
Definition: c.h:576
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1158
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1231
int errdetail(const char *fmt,...)
Definition: elog.c:1204
int errhint(const char *fmt,...)
Definition: elog.c:1318
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1443
#define PG_RETURN_VOID()
Definition: fmgr.h:349
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define PG_NARGS()
Definition: fmgr.h:203
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
#define PG_GETARG_BOOL(n)
Definition: fmgr.h:274
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:541
int maintenance_work_mem
Definition: globals.c:134
Assert(PointerIsAligned(start, uint64))
return str start
#define TOAST_INDEX_TARGET
Definition: heaptoast.h:68
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2428
IndexTuple index_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: indextuple.c:44
int i
Definition: isn.c:77
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
#define ItemIdGetOffset(itemId)
Definition: itemid.h:65
#define ItemIdIsDead(itemId)
Definition: itemid.h:113
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
#define ItemIdIsRedirected(itemId)
Definition: itemid.h:106
#define ItemIdGetFlags(itemId)
Definition: itemid.h:71
int32 ItemPointerCompare(ItemPointer arg1, ItemPointer arg2)
Definition: itemptr.c:51
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
static void ItemPointerCopy(const ItemPointerData *fromPointer, ItemPointerData *toPointer)
Definition: itemptr.h:172
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition: itemptr.h:83
static bool IndexTupleHasVarwidths(const IndexTupleData *itup)
Definition: itup.h:83
IndexTupleData * IndexTuple
Definition: itup.h:53
static Datum index_getattr(IndexTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: itup.h:131
static Size IndexTupleSize(const IndexTupleData *itup)
Definition: itup.h:71
#define MaxIndexTuplesPerPage
Definition: itup.h:181
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareLock
Definition: lockdefs.h:40
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1260
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:414
void pfree(void *pointer)
Definition: mcxt.c:2150
void * palloc0(Size size)
Definition: mcxt.c:1973
void * palloc(Size size)
Definition: mcxt.c:1943
MemoryContext CurrentMemoryContext
Definition: mcxt.c:159
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:485
#define AllocSetContextCreate
Definition: memutils.h:149
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:180
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
IndexTuple _bt_form_posting(IndexTuple base, ItemPointer htids, int nhtids)
Definition: nbtdedup.c:864
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1023
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:797
void _bt_metaversion(Relation rel, bool *heapkeyspace, bool *allequalimage)
Definition: nbtpage.c:739
#define P_HAS_FULLXID(opaque)
Definition: nbtree.h:229
#define P_ISHALFDEAD(opaque)
Definition: nbtree.h:225
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:519
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:481
#define BTPageGetMeta(p)
Definition: nbtree.h:122
#define P_ISLEAF(opaque)
Definition: nbtree.h:221
#define BTREE_MIN_VERSION
Definition: nbtree.h:152
#define P_HIKEY
Definition: nbtree.h:368
#define P_HAS_GARBAGE(opaque)
Definition: nbtree.h:227
#define P_ISMETA(opaque)
Definition: nbtree.h:224
#define BTPageGetOpaque(page)
Definition: nbtree.h:74
#define P_ISDELETED(opaque)
Definition: nbtree.h:223
#define BTREE_MAGIC
Definition: nbtree.h:150
#define BTREE_VERSION
Definition: nbtree.h:151
static BlockNumber BTreeTupleGetTopParent(IndexTuple leafhikey)
Definition: nbtree.h:621
#define MaxTIDsPerBTreePage
Definition: nbtree.h:186
#define P_FIRSTDATAKEY(opaque)
Definition: nbtree.h:370
#define P_ISROOT(opaque)
Definition: nbtree.h:222
#define P_NONE
Definition: nbtree.h:213
#define P_RIGHTMOST(opaque)
Definition: nbtree.h:220
#define P_INCOMPLETE_SPLIT(opaque)
Definition: nbtree.h:228
#define BTREE_METAPAGE
Definition: nbtree.h:149
static ItemPointer BTreeTupleGetPostingN(IndexTuple posting, int n)
Definition: nbtree.h:545
#define BT_READ
Definition: nbtree.h:730
static BlockNumber BTreeTupleGetDownLink(IndexTuple pivot)
Definition: nbtree.h:557
#define P_IGNORE(opaque)
Definition: nbtree.h:226
static ItemPointer BTreeTupleGetMaxHeapTID(IndexTuple itup)
Definition: nbtree.h:665
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:493
#define BTMaxItemSizeNoHeapTid
Definition: nbtree.h:170
static ItemPointer BTreeTupleGetHeapTID(IndexTuple itup)
Definition: nbtree.h:639
#define BTMaxItemSize
Definition: nbtree.h:165
#define BTreeTupleGetNAtts(itup, rel)
Definition: nbtree.h:578
BTStack _bt_search(Relation rel, Relation heaprel, BTScanInsert key, Buffer *bufP, int access)
Definition: nbtsearch.c:102
OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate)
Definition: nbtsearch.c:474
int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum)
Definition: nbtsearch.c:688
void _bt_freestack(BTStack stack)
Definition: nbtutils.c:187
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:95
bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
Definition: nbtutils.c:4067
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:4284
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define INDEX_MAX_KEYS
const void size_t len
const void * data
uint64 pg_prng_uint64(pg_prng_state *state)
Definition: pg_prng.c:134
pg_prng_state pg_global_prng_state
Definition: pg_prng.c:34
#define ERRCODE_T_R_SERIALIZATION_FAILURE
Definition: pgbench.c:77
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:327
uintptr_t Datum
Definition: postgres.h:69
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:317
unsigned int Oid
Definition: postgres_ext.h:30
char * psprintf(const char *fmt,...)
Definition: psprintf.c:43
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:578
#define RelationGetDescr(relation)
Definition: rel.h:542
#define RelationGetRelationName(relation)
Definition: rel.h:550
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:535
@ MAIN_FORKNUM
Definition: relpath.h:58
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:462
TransactionId RecentXmin
Definition: snapmgr.c:159
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:271
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:853
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:811
#define SnapshotAny
Definition: snapmgr.h:33
#define InvalidSnapshot
Definition: snapshot.h:119
bool bounds_valid
Definition: nbtree.h:834
IndexTuple itup
Definition: nbtree.h:822
BTScanInsert itup_key
Definition: nbtree.h:824
uint32 btm_level
Definition: nbtree.h:109
BlockNumber btm_fastroot
Definition: nbtree.h:110
uint32 btm_version
Definition: nbtree.h:107
uint32 btm_magic
Definition: nbtree.h:106
BlockNumber btm_root
Definition: nbtree.h:108
uint32 btm_fastlevel
Definition: nbtree.h:111
BlockNumber btpo_next
Definition: nbtree.h:66
BlockNumber btpo_prev
Definition: nbtree.h:65
uint32 btpo_level
Definition: nbtree.h:67
ItemPointer scantid
Definition: nbtree.h:802
bool heapkeyspace
Definition: nbtree.h:797
bool anynullkeys
Definition: nbtree.h:799
BufferAccessStrategy checkstrategy
Definition: verify_nbtree.c:92
Snapshot snapshot
Definition: verify_nbtree.c:98
bloom_filter * filter
BlockNumber targetblock
BlockNumber prevrightlink
XLogRecPtr targetlsn
MemoryContext targetcontext
Definition: verify_nbtree.c:90
IndexTuple lowkey
Relation heaprel
Definition: verify_nbtree.c:78
IndexInfo * indexinfo
Definition: verify_nbtree.c:97
bool istruerootlevel
uint32 level
BlockNumber leftmost
HeapTupleHeader t_data
Definition: htup.h:68
bool ii_Unique
Definition: execnodes.h:209
uint16 * ii_ExclusionStrats
Definition: execnodes.h:205
Oid * ii_ExclusionOps
Definition: execnodes.h:203
bool ii_Concurrent
Definition: execnodes.h:214
Oid * ii_ExclusionProcs
Definition: execnodes.h:204
ItemPointerData t_tid
Definition: itup.h:37
unsigned short t_info
Definition: itup.h:49
OffsetNumber ip_posid
Definition: itemptr.h:39
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
TransactionId xmin
Definition: snapshot.h:153
Definition: type.h:96
Definition: regguts.h:323
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:92
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:894
static double table_index_build_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, bool allow_sync, bool progress, IndexBuildCallback callback, void *callback_state, TableScanDesc scan)
Definition: tableam.h:1735
static bool table_tuple_fetch_row_version(Relation rel, ItemPointer tid, Snapshot snapshot, TupleTableSlot *slot)
Definition: tableam.h:1248
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
#define SET_VARSIZE_SHORT(PTR, len)
Definition: varatt.h:306
#define VARATT_CAN_MAKE_SHORT(PTR)
Definition: varatt.h:258
#define VARDATA(PTR)
Definition: varatt.h:278
#define VARATT_IS_COMPRESSED(PTR)
Definition: varatt.h:288
#define VARSIZE(PTR)
Definition: varatt.h:279
#define VARATT_CONVERTED_SHORT_SIZE(PTR)
Definition: varatt.h:261
#define VARATT_IS_EXTERNAL(PTR)
Definition: varatt.h:289
void amcheck_lock_relation_and_check(Oid indrelid, Oid am_id, IndexDoCheckCallback check, LOCKMODE lockmode, void *state)
Definition: verify_common.c:60
static bool offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state, BlockNumber start, BTPageOpaque start_opaque)
static bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
static ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup)
struct BtreeCheckState BtreeCheckState
PG_MODULE_MAGIC_EXT(.name="amcheck",.version=PG_VERSION)
static IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n)
struct BTCallbackState BTCallbackState
struct BtreeLastVisibleEntry BtreeLastVisibleEntry
static void bt_target_page_check(BtreeCheckState *state)
static void bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace, bool readonly, bool heapallindexed, bool rootdescend, bool checkunique)
static void bt_report_duplicate(BtreeCheckState *state, BtreeLastVisibleEntry *lVis, ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset, int nposting)
static bool bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
static bool invariant_leq_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
Datum bt_index_parent_check(PG_FUNCTION_ARGS)
static void bt_child_highkey_check(BtreeCheckState *state, OffsetNumber target_downlinkoffnum, Page loaded_child, uint32 target_level)
static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
static BTScanInsert bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
Datum bt_index_check(PG_FUNCTION_ARGS)
static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit, BlockNumber blkno, Page page)
PG_FUNCTION_INFO_V1(bt_index_check)
static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page, OffsetNumber offset)
static void bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values, bool *isnull, bool tupleIsAlive, void *checkstate)
static void bt_index_check_callback(Relation indrel, Relation heaprel, void *state, bool readonly)
static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
static bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber lowerbound)
#define InvalidBtreeLevel
Definition: verify_nbtree.c:55
static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
static IndexTuple bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
static void bt_recheck_sibling_links(BtreeCheckState *state, BlockNumber btpo_prev_from_target, BlockNumber leftcurrent)
static ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup, bool nonpivot)
#define BTreeTupleGetNKeyAtts(itup, rel)
Definition: verify_nbtree.c:56
static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey, OffsetNumber downlinkoffnum)
static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup, BlockNumber targetblock, OffsetNumber offset, BtreeLastVisibleEntry *lVis)
static bool invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key, BlockNumber nontargetblock, Page nontarget, OffsetNumber upperbound)
struct BtreeLevel BtreeLevel
const char * name
#define IsolationUsesXactSnapshot()
Definition: xact.h:51
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
uint64 XLogRecPtr
Definition: xlogdefs.h:21