PostgreSQL Source Code git master
relcache.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * relcache.c
4 * POSTGRES relation descriptor cache code
5 *
6 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/utils/cache/relcache.c
12 *
13 *-------------------------------------------------------------------------
14 */
15/*
16 * INTERFACE ROUTINES
17 * RelationCacheInitialize - initialize relcache (to empty)
18 * RelationCacheInitializePhase2 - initialize shared-catalog entries
19 * RelationCacheInitializePhase3 - finish initializing relcache
20 * RelationIdGetRelation - get a reldesc by relation id
21 * RelationClose - close an open relation
22 *
23 * NOTES
24 * The following code contains many undocumented hacks. Please be
25 * careful....
26 */
27#include "postgres.h"
28
29#include <sys/file.h>
30#include <fcntl.h>
31#include <unistd.h>
32
33#include "access/htup_details.h"
34#include "access/multixact.h"
35#include "access/parallel.h"
36#include "access/reloptions.h"
37#include "access/sysattr.h"
38#include "access/table.h"
39#include "access/tableam.h"
41#include "access/xact.h"
43#include "catalog/catalog.h"
44#include "catalog/indexing.h"
45#include "catalog/namespace.h"
46#include "catalog/partition.h"
47#include "catalog/pg_am.h"
48#include "catalog/pg_amproc.h"
49#include "catalog/pg_attrdef.h"
51#include "catalog/pg_authid.h"
53#include "catalog/pg_database.h"
55#include "catalog/pg_opclass.h"
56#include "catalog/pg_proc.h"
58#include "catalog/pg_rewrite.h"
63#include "catalog/pg_trigger.h"
64#include "catalog/pg_type.h"
65#include "catalog/schemapg.h"
66#include "catalog/storage.h"
67#include "commands/policy.h"
69#include "commands/trigger.h"
70#include "common/int.h"
71#include "miscadmin.h"
72#include "nodes/makefuncs.h"
73#include "nodes/nodeFuncs.h"
74#include "optimizer/optimizer.h"
75#include "pgstat.h"
77#include "rewrite/rowsecurity.h"
78#include "storage/lmgr.h"
79#include "storage/smgr.h"
80#include "utils/array.h"
81#include "utils/builtins.h"
82#include "utils/catcache.h"
83#include "utils/datum.h"
84#include "utils/fmgroids.h"
85#include "utils/inval.h"
86#include "utils/lsyscache.h"
87#include "utils/memutils.h"
88#include "utils/relmapper.h"
89#include "utils/resowner.h"
90#include "utils/snapmgr.h"
91#include "utils/syscache.h"
92
93#define RELCACHE_INIT_FILEMAGIC 0x573266 /* version ID value */
94
95/*
96 * Whether to bother checking if relation cache memory needs to be freed
97 * eagerly. See also RelationBuildDesc() and pg_config_manual.h.
98 */
99#if defined(RECOVER_RELATION_BUILD_MEMORY) && (RECOVER_RELATION_BUILD_MEMORY != 0)
100#define MAYBE_RECOVER_RELATION_BUILD_MEMORY 1
101#else
102#define RECOVER_RELATION_BUILD_MEMORY 0
103#ifdef DISCARD_CACHES_ENABLED
104#define MAYBE_RECOVER_RELATION_BUILD_MEMORY 1
105#endif
106#endif
107
108/*
109 * hardcoded tuple descriptors, contents generated by genbki.pl
110 */
111static const FormData_pg_attribute Desc_pg_class[Natts_pg_class] = {Schema_pg_class};
112static const FormData_pg_attribute Desc_pg_attribute[Natts_pg_attribute] = {Schema_pg_attribute};
113static const FormData_pg_attribute Desc_pg_proc[Natts_pg_proc] = {Schema_pg_proc};
114static const FormData_pg_attribute Desc_pg_type[Natts_pg_type] = {Schema_pg_type};
115static const FormData_pg_attribute Desc_pg_database[Natts_pg_database] = {Schema_pg_database};
116static const FormData_pg_attribute Desc_pg_authid[Natts_pg_authid] = {Schema_pg_authid};
117static const FormData_pg_attribute Desc_pg_auth_members[Natts_pg_auth_members] = {Schema_pg_auth_members};
118static const FormData_pg_attribute Desc_pg_index[Natts_pg_index] = {Schema_pg_index};
119static const FormData_pg_attribute Desc_pg_shseclabel[Natts_pg_shseclabel] = {Schema_pg_shseclabel};
120static const FormData_pg_attribute Desc_pg_subscription[Natts_pg_subscription] = {Schema_pg_subscription};
121
122/*
123 * Hash tables that index the relation cache
124 *
125 * We used to index the cache by both name and OID, but now there
126 * is only an index by OID.
127 */
128typedef struct relidcacheent
129{
133
135
136/*
137 * This flag is false until we have prepared the critical relcache entries
138 * that are needed to do indexscans on the tables read by relcache building.
139 */
141
142/*
143 * This flag is false until we have prepared the critical relcache entries
144 * for shared catalogs (which are the tables needed for login).
145 */
147
148/*
149 * This counter counts relcache inval events received since backend startup
150 * (but only for rels that are actually in cache). Presently, we use it only
151 * to detect whether data about to be written by write_relcache_init_file()
152 * might already be obsolete.
153 */
154static long relcacheInvalsReceived = 0L;
155
156/*
157 * in_progress_list is a stack of ongoing RelationBuildDesc() calls. CREATE
158 * INDEX CONCURRENTLY makes catalog changes under ShareUpdateExclusiveLock.
159 * It critically relies on each backend absorbing those changes no later than
160 * next transaction start. Hence, RelationBuildDesc() loops until it finishes
161 * without accepting a relevant invalidation. (Most invalidation consumers
162 * don't do this.)
163 */
164typedef struct inprogressent
165{
166 Oid reloid; /* OID of relation being built */
167 bool invalidated; /* whether an invalidation arrived for it */
169
173
174/*
175 * eoxact_list[] stores the OIDs of relations that (might) need AtEOXact
176 * cleanup work. This list intentionally has limited size; if it overflows,
177 * we fall back to scanning the whole hashtable. There is no value in a very
178 * large list because (1) at some point, a hash_seq_search scan is faster than
179 * retail lookups, and (2) the value of this is to reduce EOXact work for
180 * short transactions, which can't have dirtied all that many tables anyway.
181 * EOXactListAdd() does not bother to prevent duplicate list entries, so the
182 * cleanup processing must be idempotent.
183 */
184#define MAX_EOXACT_LIST 32
186static int eoxact_list_len = 0;
187static bool eoxact_list_overflowed = false;
188
189#define EOXactListAdd(rel) \
190 do { \
191 if (eoxact_list_len < MAX_EOXACT_LIST) \
192 eoxact_list[eoxact_list_len++] = (rel)->rd_id; \
193 else \
194 eoxact_list_overflowed = true; \
195 } while (0)
196
197/*
198 * EOXactTupleDescArray stores TupleDescs that (might) need AtEOXact
199 * cleanup work. The array expands as needed; there is no hashtable because
200 * we don't need to access individual items except at EOXact.
201 */
205
206/*
207 * macros to manipulate the lookup hashtable
208 */
209#define RelationCacheInsert(RELATION, replace_allowed) \
210do { \
211 RelIdCacheEnt *hentry; bool found; \
212 hentry = (RelIdCacheEnt *) hash_search(RelationIdCache, \
213 &((RELATION)->rd_id), \
214 HASH_ENTER, &found); \
215 if (found) \
216 { \
217 /* see comments in RelationBuildDesc and RelationBuildLocalRelation */ \
218 Relation _old_rel = hentry->reldesc; \
219 Assert(replace_allowed); \
220 hentry->reldesc = (RELATION); \
221 if (RelationHasReferenceCountZero(_old_rel)) \
222 RelationDestroyRelation(_old_rel, false); \
223 else if (!IsBootstrapProcessingMode()) \
224 elog(WARNING, "leaking still-referenced relcache entry for \"%s\"", \
225 RelationGetRelationName(_old_rel)); \
226 } \
227 else \
228 hentry->reldesc = (RELATION); \
229} while(0)
230
231#define RelationIdCacheLookup(ID, RELATION) \
232do { \
233 RelIdCacheEnt *hentry; \
234 hentry = (RelIdCacheEnt *) hash_search(RelationIdCache, \
235 &(ID), \
236 HASH_FIND, NULL); \
237 if (hentry) \
238 RELATION = hentry->reldesc; \
239 else \
240 RELATION = NULL; \
241} while(0)
242
243#define RelationCacheDelete(RELATION) \
244do { \
245 RelIdCacheEnt *hentry; \
246 hentry = (RelIdCacheEnt *) hash_search(RelationIdCache, \
247 &((RELATION)->rd_id), \
248 HASH_REMOVE, NULL); \
249 if (hentry == NULL) \
250 elog(WARNING, "failed to delete relcache entry for OID %u", \
251 (RELATION)->rd_id); \
252} while(0)
253
254
255/*
256 * Special cache for opclass-related information
257 *
258 * Note: only default support procs get cached, ie, those with
259 * lefttype = righttype = opcintype.
260 */
261typedef struct opclasscacheent
262{
263 Oid opclassoid; /* lookup key: OID of opclass */
264 bool valid; /* set true after successful fill-in */
265 StrategyNumber numSupport; /* max # of support procs (from pg_am) */
266 Oid opcfamily; /* OID of opclass's family */
267 Oid opcintype; /* OID of opclass's declared input type */
268 RegProcedure *supportProcs; /* OIDs of support procedures */
270
271static HTAB *OpClassCache = NULL;
272
273
274/* non-export function prototypes */
275
276static void RelationCloseCleanup(Relation relation);
277static void RelationDestroyRelation(Relation relation, bool remember_tupdesc);
278static void RelationInvalidateRelation(Relation relation);
279static void RelationClearRelation(Relation relation);
280static void RelationRebuildRelation(Relation relation);
281
282static void RelationReloadIndexInfo(Relation relation);
283static void RelationReloadNailed(Relation relation);
284static void RelationFlushRelation(Relation relation);
286#ifdef USE_ASSERT_CHECKING
287static void AssertPendingSyncConsistency(Relation relation);
288#endif
289static void AtEOXact_cleanup(Relation relation, bool isCommit);
290static void AtEOSubXact_cleanup(Relation relation, bool isCommit,
291 SubTransactionId mySubid, SubTransactionId parentSubid);
292static bool load_relcache_init_file(bool shared);
293static void write_relcache_init_file(bool shared);
294static void write_item(const void *data, Size len, FILE *fp);
295
296static void formrdesc(const char *relationName, Oid relationReltype,
297 bool isshared, int natts, const FormData_pg_attribute *attrs);
298
299static HeapTuple ScanPgRelation(Oid targetRelId, bool indexOK, bool force_non_historic);
301static void RelationParseRelOptions(Relation relation, HeapTuple tuple);
302static void RelationBuildTupleDesc(Relation relation);
303static Relation RelationBuildDesc(Oid targetRelId, bool insertIt);
304static void RelationInitPhysicalAddr(Relation relation);
305static void load_critical_index(Oid indexoid, Oid heapoid);
308static void AttrDefaultFetch(Relation relation, int ndef);
309static int AttrDefaultCmp(const void *a, const void *b);
310static void CheckNNConstraintFetch(Relation relation);
311static int CheckConstraintCmp(const void *a, const void *b);
312static void InitIndexAmRoutine(Relation relation);
313static void IndexSupportInitialize(oidvector *indclass,
314 RegProcedure *indexSupport,
315 Oid *opFamily,
316 Oid *opcInType,
317 StrategyNumber maxSupportNumber,
318 AttrNumber maxAttributeNumber);
319static OpClassCacheEnt *LookupOpclassInfo(Oid operatorClassOid,
320 StrategyNumber numSupport);
321static void RelationCacheInitFileRemoveInDir(const char *tblspcpath);
322static void unlink_initfile(const char *initfilename, int elevel);
323
324
325/*
326 * ScanPgRelation
327 *
328 * This is used by RelationBuildDesc to find a pg_class
329 * tuple matching targetRelId. The caller must hold at least
330 * AccessShareLock on the target relid to prevent concurrent-update
331 * scenarios; it isn't guaranteed that all scans used to build the
332 * relcache entry will use the same snapshot. If, for example,
333 * an attribute were to be added after scanning pg_class and before
334 * scanning pg_attribute, relnatts wouldn't match.
335 *
336 * NB: the returned tuple has been copied into palloc'd storage
337 * and must eventually be freed with heap_freetuple.
338 */
339static HeapTuple
340ScanPgRelation(Oid targetRelId, bool indexOK, bool force_non_historic)
341{
342 HeapTuple pg_class_tuple;
343 Relation pg_class_desc;
344 SysScanDesc pg_class_scan;
345 ScanKeyData key[1];
346 Snapshot snapshot = NULL;
347
348 /*
349 * If something goes wrong during backend startup, we might find ourselves
350 * trying to read pg_class before we've selected a database. That ain't
351 * gonna work, so bail out with a useful error message. If this happens,
352 * it probably means a relcache entry that needs to be nailed isn't.
353 */
355 elog(FATAL, "cannot read pg_class without having selected a database");
356
357 /*
358 * form a scan key
359 */
360 ScanKeyInit(&key[0],
361 Anum_pg_class_oid,
362 BTEqualStrategyNumber, F_OIDEQ,
363 ObjectIdGetDatum(targetRelId));
364
365 /*
366 * Open pg_class and fetch a tuple. Force heap scan if we haven't yet
367 * built the critical relcache entries (this includes initdb and startup
368 * without a pg_internal.init file). The caller can also force a heap
369 * scan by setting indexOK == false.
370 */
371 pg_class_desc = table_open(RelationRelationId, AccessShareLock);
372
373 /*
374 * The caller might need a tuple that's newer than what's visible to the
375 * historic snapshot; currently the only case requiring to do so is
376 * looking up the relfilenumber of non mapped system relations during
377 * decoding.
378 */
379 if (force_non_historic)
380 snapshot = RegisterSnapshot(GetNonHistoricCatalogSnapshot(RelationRelationId));
381
382 pg_class_scan = systable_beginscan(pg_class_desc, ClassOidIndexId,
383 indexOK && criticalRelcachesBuilt,
384 snapshot,
385 1, key);
386
387 pg_class_tuple = systable_getnext(pg_class_scan);
388
389 /*
390 * Must copy tuple before releasing buffer.
391 */
392 if (HeapTupleIsValid(pg_class_tuple))
393 pg_class_tuple = heap_copytuple(pg_class_tuple);
394
395 /* all done */
396 systable_endscan(pg_class_scan);
397
398 if (snapshot)
399 UnregisterSnapshot(snapshot);
400
401 table_close(pg_class_desc, AccessShareLock);
402
403 return pg_class_tuple;
404}
405
406/*
407 * AllocateRelationDesc
408 *
409 * This is used to allocate memory for a new relation descriptor
410 * and initialize the rd_rel field from the given pg_class tuple.
411 */
412static Relation
414{
415 Relation relation;
416 MemoryContext oldcxt;
417 Form_pg_class relationForm;
418
419 /* Relcache entries must live in CacheMemoryContext */
421
422 /*
423 * allocate and zero space for new relation descriptor
424 */
425 relation = palloc0_object(RelationData);
426
427 /* make sure relation is marked as having no open file yet */
428 relation->rd_smgr = NULL;
429
430 /*
431 * Copy the relation tuple form
432 *
433 * We only allocate space for the fixed fields, ie, CLASS_TUPLE_SIZE. The
434 * variable-length fields (relacl, reloptions) are NOT stored in the
435 * relcache --- there'd be little point in it, since we don't copy the
436 * tuple's nulls bitmap and hence wouldn't know if the values are valid.
437 * Bottom line is that relacl *cannot* be retrieved from the relcache. Get
438 * it from the syscache if you need it. The same goes for the original
439 * form of reloptions (however, we do store the parsed form of reloptions
440 * in rd_options).
441 */
442 relationForm = (Form_pg_class) palloc(CLASS_TUPLE_SIZE);
443
444 memcpy(relationForm, relp, CLASS_TUPLE_SIZE);
445
446 /* initialize relation tuple form */
447 relation->rd_rel = relationForm;
448
449 /* and allocate attribute tuple form storage */
450 relation->rd_att = CreateTemplateTupleDesc(relationForm->relnatts);
451 /* which we mark as a reference-counted tupdesc */
452 relation->rd_att->tdrefcount = 1;
453
454 MemoryContextSwitchTo(oldcxt);
455
456 return relation;
457}
458
459/*
460 * RelationParseRelOptions
461 * Convert pg_class.reloptions into pre-parsed rd_options
462 *
463 * tuple is the real pg_class tuple (not rd_rel!) for relation
464 *
465 * Note: rd_rel and (if an index) rd_indam must be valid already
466 */
467static void
469{
470 bytea *options;
471 amoptions_function amoptsfn;
472
473 relation->rd_options = NULL;
474
475 /*
476 * Look up any AM-specific parse function; fall out if relkind should not
477 * have options.
478 */
479 switch (relation->rd_rel->relkind)
480 {
481 case RELKIND_RELATION:
482 case RELKIND_TOASTVALUE:
483 case RELKIND_VIEW:
484 case RELKIND_MATVIEW:
485 case RELKIND_PARTITIONED_TABLE:
486 amoptsfn = NULL;
487 break;
488 case RELKIND_INDEX:
489 case RELKIND_PARTITIONED_INDEX:
490 amoptsfn = relation->rd_indam->amoptions;
491 break;
492 default:
493 return;
494 }
495
496 /*
497 * Fetch reloptions from tuple; have to use a hardwired descriptor because
498 * we might not have any other for pg_class yet (consider executing this
499 * code for pg_class itself)
500 */
501 options = extractRelOptions(tuple, GetPgClassDescriptor(), amoptsfn);
502
503 /*
504 * Copy parsed data into CacheMemoryContext. To guard against the
505 * possibility of leaks in the reloptions code, we want to do the actual
506 * parsing in the caller's memory context and copy the results into
507 * CacheMemoryContext after the fact.
508 */
509 if (options)
510 {
513 memcpy(relation->rd_options, options, VARSIZE(options));
514 pfree(options);
515 }
516}
517
518/*
519 * RelationBuildTupleDesc
520 *
521 * Form the relation's tuple descriptor from information in
522 * the pg_attribute, pg_attrdef & pg_constraint system catalogs.
523 */
524static void
526{
527 HeapTuple pg_attribute_tuple;
528 Relation pg_attribute_desc;
529 SysScanDesc pg_attribute_scan;
530 ScanKeyData skey[2];
531 int need;
532 TupleConstr *constr;
533 AttrMissing *attrmiss = NULL;
534 int ndef = 0;
535
536 /* fill rd_att's type ID fields (compare heap.c's AddNewRelationTuple) */
537 relation->rd_att->tdtypeid =
538 relation->rd_rel->reltype ? relation->rd_rel->reltype : RECORDOID;
539 relation->rd_att->tdtypmod = -1; /* just to be sure */
540
542 sizeof(TupleConstr));
543
544 /*
545 * Form a scan key that selects only user attributes (attnum > 0).
546 * (Eliminating system attribute rows at the index level is lots faster
547 * than fetching them.)
548 */
549 ScanKeyInit(&skey[0],
550 Anum_pg_attribute_attrelid,
551 BTEqualStrategyNumber, F_OIDEQ,
553 ScanKeyInit(&skey[1],
554 Anum_pg_attribute_attnum,
555 BTGreaterStrategyNumber, F_INT2GT,
556 Int16GetDatum(0));
557
558 /*
559 * Open pg_attribute and begin a scan. Force heap scan if we haven't yet
560 * built the critical relcache entries (this includes initdb and startup
561 * without a pg_internal.init file).
562 */
563 pg_attribute_desc = table_open(AttributeRelationId, AccessShareLock);
564 pg_attribute_scan = systable_beginscan(pg_attribute_desc,
565 AttributeRelidNumIndexId,
567 NULL,
568 2, skey);
569
570 /*
571 * add attribute data to relation->rd_att
572 */
573 need = RelationGetNumberOfAttributes(relation);
574
575 while (HeapTupleIsValid(pg_attribute_tuple = systable_getnext(pg_attribute_scan)))
576 {
578 int attnum;
579
580 attp = (Form_pg_attribute) GETSTRUCT(pg_attribute_tuple);
581
582 attnum = attp->attnum;
583 if (attnum <= 0 || attnum > RelationGetNumberOfAttributes(relation))
584 elog(ERROR, "invalid attribute number %d for relation \"%s\"",
585 attp->attnum, RelationGetRelationName(relation));
586
587 memcpy(TupleDescAttr(relation->rd_att, attnum - 1),
588 attp,
590
592
593 /* Update constraint/default info */
594 if (attp->attnotnull)
595 constr->has_not_null = true;
596 if (attp->attgenerated == ATTRIBUTE_GENERATED_STORED)
597 constr->has_generated_stored = true;
598 if (attp->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
599 constr->has_generated_virtual = true;
600 if (attp->atthasdef)
601 ndef++;
602
603 /* If the column has a "missing" value, put it in the attrmiss array */
604 if (attp->atthasmissing)
605 {
606 Datum missingval;
607 bool missingNull;
608
609 /* Do we have a missing value? */
610 missingval = heap_getattr(pg_attribute_tuple,
611 Anum_pg_attribute_attmissingval,
612 pg_attribute_desc->rd_att,
613 &missingNull);
614 if (!missingNull)
615 {
616 /* Yes, fetch from the array */
617 MemoryContext oldcxt;
618 bool is_null;
619 int one = 1;
620 Datum missval;
621
622 if (attrmiss == NULL)
623 attrmiss = (AttrMissing *)
625 relation->rd_rel->relnatts *
626 sizeof(AttrMissing));
627
628 missval = array_get_element(missingval,
629 1,
630 &one,
631 -1,
632 attp->attlen,
633 attp->attbyval,
634 attp->attalign,
635 &is_null);
636 Assert(!is_null);
637 if (attp->attbyval)
638 {
639 /* for copy by val just copy the datum direct */
640 attrmiss[attnum - 1].am_value = missval;
641 }
642 else
643 {
644 /* otherwise copy in the correct context */
646 attrmiss[attnum - 1].am_value = datumCopy(missval,
647 attp->attbyval,
648 attp->attlen);
649 MemoryContextSwitchTo(oldcxt);
650 }
651 attrmiss[attnum - 1].am_present = true;
652 }
653 }
654 need--;
655 if (need == 0)
656 break;
657 }
658
659 /*
660 * end the scan and close the attribute relation
661 */
662 systable_endscan(pg_attribute_scan);
663 table_close(pg_attribute_desc, AccessShareLock);
664
665 if (need != 0)
666 elog(ERROR, "pg_attribute catalog is missing %d attribute(s) for relation OID %u",
667 need, RelationGetRelid(relation));
668
669 /*
670 * We can easily set the attcacheoff value for the first attribute: it
671 * must be zero. This eliminates the need for special cases for attnum=1
672 * that used to exist in fastgetattr() and index_getattr().
673 */
674 if (RelationGetNumberOfAttributes(relation) > 0)
675 TupleDescCompactAttr(relation->rd_att, 0)->attcacheoff = 0;
676
677 /*
678 * Set up constraint/default info
679 */
680 if (constr->has_not_null ||
681 constr->has_generated_stored ||
682 constr->has_generated_virtual ||
683 ndef > 0 ||
684 attrmiss ||
685 relation->rd_rel->relchecks > 0)
686 {
687 bool is_catalog = IsCatalogRelation(relation);
688
689 relation->rd_att->constr = constr;
690
691 if (ndef > 0) /* DEFAULTs */
692 AttrDefaultFetch(relation, ndef);
693 else
694 constr->num_defval = 0;
695
696 constr->missing = attrmiss;
697
698 /* CHECK and NOT NULLs */
699 if (relation->rd_rel->relchecks > 0 ||
700 (!is_catalog && constr->has_not_null))
701 CheckNNConstraintFetch(relation);
702
703 /*
704 * Any not-null constraint that wasn't marked invalid by
705 * CheckNNConstraintFetch must necessarily be valid; make it so in the
706 * CompactAttribute array.
707 */
708 if (!is_catalog)
709 {
710 for (int i = 0; i < relation->rd_rel->relnatts; i++)
711 {
712 CompactAttribute *attr;
713
714 attr = TupleDescCompactAttr(relation->rd_att, i);
715
718 else
721 }
722 }
723
724 if (relation->rd_rel->relchecks == 0)
725 constr->num_check = 0;
726 }
727 else
728 {
729 pfree(constr);
730 relation->rd_att->constr = NULL;
731 }
732}
733
734/*
735 * RelationBuildRuleLock
736 *
737 * Form the relation's rewrite rules from information in
738 * the pg_rewrite system catalog.
739 *
740 * Note: The rule parsetrees are potentially very complex node structures.
741 * To allow these trees to be freed when the relcache entry is flushed,
742 * we make a private memory context to hold the RuleLock information for
743 * each relcache entry that has associated rules. The context is used
744 * just for rule info, not for any other subsidiary data of the relcache
745 * entry, because that keeps the update logic in RelationRebuildRelation()
746 * manageable. The other subsidiary data structures are simple enough
747 * to be easy to free explicitly, anyway.
748 *
749 * Note: The relation's reloptions must have been extracted first.
750 */
751static void
753{
754 MemoryContext rulescxt;
755 MemoryContext oldcxt;
756 HeapTuple rewrite_tuple;
757 Relation rewrite_desc;
758 TupleDesc rewrite_tupdesc;
759 SysScanDesc rewrite_scan;
761 RuleLock *rulelock;
762 int numlocks;
764 int maxlocks;
765
766 /*
767 * Make the private context. Assume it'll not contain much data.
768 */
770 "relation rules",
772 relation->rd_rulescxt = rulescxt;
774 RelationGetRelationName(relation));
775
776 /*
777 * allocate an array to hold the rewrite rules (the array is extended if
778 * necessary)
779 */
780 maxlocks = 4;
781 rules = (RewriteRule **)
782 MemoryContextAlloc(rulescxt, sizeof(RewriteRule *) * maxlocks);
783 numlocks = 0;
784
785 /*
786 * form a scan key
787 */
789 Anum_pg_rewrite_ev_class,
790 BTEqualStrategyNumber, F_OIDEQ,
792
793 /*
794 * open pg_rewrite and begin a scan
795 *
796 * Note: since we scan the rules using RewriteRelRulenameIndexId, we will
797 * be reading the rules in name order, except possibly during
798 * emergency-recovery operations (ie, IgnoreSystemIndexes). This in turn
799 * ensures that rules will be fired in name order.
800 */
801 rewrite_desc = table_open(RewriteRelationId, AccessShareLock);
802 rewrite_tupdesc = RelationGetDescr(rewrite_desc);
803 rewrite_scan = systable_beginscan(rewrite_desc,
804 RewriteRelRulenameIndexId,
805 true, NULL,
806 1, &key);
807
808 while (HeapTupleIsValid(rewrite_tuple = systable_getnext(rewrite_scan)))
809 {
810 Form_pg_rewrite rewrite_form = (Form_pg_rewrite) GETSTRUCT(rewrite_tuple);
811 bool isnull;
812 Datum rule_datum;
813 char *rule_str;
815 Oid check_as_user;
816
817 rule = (RewriteRule *) MemoryContextAlloc(rulescxt,
818 sizeof(RewriteRule));
819
820 rule->ruleId = rewrite_form->oid;
821
822 rule->event = rewrite_form->ev_type - '0';
823 rule->enabled = rewrite_form->ev_enabled;
824 rule->isInstead = rewrite_form->is_instead;
825
826 /*
827 * Must use heap_getattr to fetch ev_action and ev_qual. Also, the
828 * rule strings are often large enough to be toasted. To avoid
829 * leaking memory in the caller's context, do the detoasting here so
830 * we can free the detoasted version.
831 */
832 rule_datum = heap_getattr(rewrite_tuple,
833 Anum_pg_rewrite_ev_action,
834 rewrite_tupdesc,
835 &isnull);
836 Assert(!isnull);
837 rule_str = TextDatumGetCString(rule_datum);
838 oldcxt = MemoryContextSwitchTo(rulescxt);
839 rule->actions = (List *) stringToNode(rule_str);
840 MemoryContextSwitchTo(oldcxt);
841 pfree(rule_str);
842
843 rule_datum = heap_getattr(rewrite_tuple,
844 Anum_pg_rewrite_ev_qual,
845 rewrite_tupdesc,
846 &isnull);
847 Assert(!isnull);
848 rule_str = TextDatumGetCString(rule_datum);
849 oldcxt = MemoryContextSwitchTo(rulescxt);
850 rule->qual = (Node *) stringToNode(rule_str);
851 MemoryContextSwitchTo(oldcxt);
852 pfree(rule_str);
853
854 /*
855 * If this is a SELECT rule defining a view, and the view has
856 * "security_invoker" set, we must perform all permissions checks on
857 * relations referred to by the rule as the invoking user.
858 *
859 * In all other cases (including non-SELECT rules on security invoker
860 * views), perform the permissions checks as the relation owner.
861 */
862 if (rule->event == CMD_SELECT &&
863 relation->rd_rel->relkind == RELKIND_VIEW &&
865 check_as_user = InvalidOid;
866 else
867 check_as_user = relation->rd_rel->relowner;
868
869 /*
870 * Scan through the rule's actions and set the checkAsUser field on
871 * all RTEPermissionInfos. We have to look at the qual as well, in
872 * case it contains sublinks.
873 *
874 * The reason for doing this when the rule is loaded, rather than when
875 * it is stored, is that otherwise ALTER TABLE OWNER would have to
876 * grovel through stored rules to update checkAsUser fields. Scanning
877 * the rule tree during load is relatively cheap (compared to
878 * constructing it in the first place), so we do it here.
879 */
880 setRuleCheckAsUser((Node *) rule->actions, check_as_user);
881 setRuleCheckAsUser(rule->qual, check_as_user);
882
883 if (numlocks >= maxlocks)
884 {
885 maxlocks *= 2;
886 rules = (RewriteRule **)
887 repalloc(rules, sizeof(RewriteRule *) * maxlocks);
888 }
889 rules[numlocks++] = rule;
890 }
891
892 /*
893 * end the scan and close the attribute relation
894 */
895 systable_endscan(rewrite_scan);
896 table_close(rewrite_desc, AccessShareLock);
897
898 /*
899 * there might not be any rules (if relhasrules is out-of-date)
900 */
901 if (numlocks == 0)
902 {
903 relation->rd_rules = NULL;
904 relation->rd_rulescxt = NULL;
905 MemoryContextDelete(rulescxt);
906 return;
907 }
908
909 /*
910 * form a RuleLock and insert into relation
911 */
912 rulelock = (RuleLock *) MemoryContextAlloc(rulescxt, sizeof(RuleLock));
913 rulelock->numLocks = numlocks;
914 rulelock->rules = rules;
915
916 relation->rd_rules = rulelock;
917}
918
919/*
920 * equalRuleLocks
921 *
922 * Determine whether two RuleLocks are equivalent
923 *
924 * Probably this should be in the rules code someplace...
925 */
926static bool
928{
929 int i;
930
931 /*
932 * As of 7.3 we assume the rule ordering is repeatable, because
933 * RelationBuildRuleLock should read 'em in a consistent order. So just
934 * compare corresponding slots.
935 */
936 if (rlock1 != NULL)
937 {
938 if (rlock2 == NULL)
939 return false;
940 if (rlock1->numLocks != rlock2->numLocks)
941 return false;
942 for (i = 0; i < rlock1->numLocks; i++)
943 {
944 RewriteRule *rule1 = rlock1->rules[i];
945 RewriteRule *rule2 = rlock2->rules[i];
946
947 if (rule1->ruleId != rule2->ruleId)
948 return false;
949 if (rule1->event != rule2->event)
950 return false;
951 if (rule1->enabled != rule2->enabled)
952 return false;
953 if (rule1->isInstead != rule2->isInstead)
954 return false;
955 if (!equal(rule1->qual, rule2->qual))
956 return false;
957 if (!equal(rule1->actions, rule2->actions))
958 return false;
959 }
960 }
961 else if (rlock2 != NULL)
962 return false;
963 return true;
964}
965
966/*
967 * equalPolicy
968 *
969 * Determine whether two policies are equivalent
970 */
971static bool
973{
974 int i;
975 Oid *r1,
976 *r2;
977
978 if (policy1 != NULL)
979 {
980 if (policy2 == NULL)
981 return false;
982
983 if (policy1->polcmd != policy2->polcmd)
984 return false;
985 if (policy1->hassublinks != policy2->hassublinks)
986 return false;
987 if (strcmp(policy1->policy_name, policy2->policy_name) != 0)
988 return false;
989 if (ARR_DIMS(policy1->roles)[0] != ARR_DIMS(policy2->roles)[0])
990 return false;
991
992 r1 = (Oid *) ARR_DATA_PTR(policy1->roles);
993 r2 = (Oid *) ARR_DATA_PTR(policy2->roles);
994
995 for (i = 0; i < ARR_DIMS(policy1->roles)[0]; i++)
996 {
997 if (r1[i] != r2[i])
998 return false;
999 }
1000
1001 if (!equal(policy1->qual, policy2->qual))
1002 return false;
1003 if (!equal(policy1->with_check_qual, policy2->with_check_qual))
1004 return false;
1005 }
1006 else if (policy2 != NULL)
1007 return false;
1008
1009 return true;
1010}
1011
1012/*
1013 * equalRSDesc
1014 *
1015 * Determine whether two RowSecurityDesc's are equivalent
1016 */
1017static bool
1019{
1020 ListCell *lc,
1021 *rc;
1022
1023 if (rsdesc1 == NULL && rsdesc2 == NULL)
1024 return true;
1025
1026 if ((rsdesc1 != NULL && rsdesc2 == NULL) ||
1027 (rsdesc1 == NULL && rsdesc2 != NULL))
1028 return false;
1029
1030 if (list_length(rsdesc1->policies) != list_length(rsdesc2->policies))
1031 return false;
1032
1033 /* RelationBuildRowSecurity should build policies in order */
1034 forboth(lc, rsdesc1->policies, rc, rsdesc2->policies)
1035 {
1038
1039 if (!equalPolicy(l, r))
1040 return false;
1041 }
1042
1043 return true;
1044}
1045
1046/*
1047 * RelationBuildDesc
1048 *
1049 * Build a relation descriptor. The caller must hold at least
1050 * AccessShareLock on the target relid.
1051 *
1052 * The new descriptor is inserted into the hash table if insertIt is true.
1053 *
1054 * Returns NULL if no pg_class row could be found for the given relid
1055 * (suggesting we are trying to access a just-deleted relation).
1056 * Any other error is reported via elog.
1057 */
1058static Relation
1059RelationBuildDesc(Oid targetRelId, bool insertIt)
1060{
1061 int in_progress_offset;
1062 Relation relation;
1063 Oid relid;
1064 HeapTuple pg_class_tuple;
1065 Form_pg_class relp;
1066
1067 /*
1068 * This function and its subroutines can allocate a good deal of transient
1069 * data in CurrentMemoryContext. Traditionally we've just leaked that
1070 * data, reasoning that the caller's context is at worst of transaction
1071 * scope, and relcache loads shouldn't happen so often that it's essential
1072 * to recover transient data before end of statement/transaction. However
1073 * that's definitely not true when debug_discard_caches is active, and
1074 * perhaps it's not true in other cases.
1075 *
1076 * When debug_discard_caches is active or when forced to by
1077 * RECOVER_RELATION_BUILD_MEMORY=1, arrange to allocate the junk in a
1078 * temporary context that we'll free before returning. Make it a child of
1079 * caller's context so that it will get cleaned up appropriately if we
1080 * error out partway through.
1081 */
1082#ifdef MAYBE_RECOVER_RELATION_BUILD_MEMORY
1083 MemoryContext tmpcxt = NULL;
1084 MemoryContext oldcxt = NULL;
1085
1087 {
1089 "RelationBuildDesc workspace",
1091 oldcxt = MemoryContextSwitchTo(tmpcxt);
1092 }
1093#endif
1094
1095 /* Register to catch invalidation messages */
1097 {
1098 int allocsize;
1099
1100 allocsize = in_progress_list_maxlen * 2;
1102 allocsize * sizeof(*in_progress_list));
1103 in_progress_list_maxlen = allocsize;
1104 }
1105 in_progress_offset = in_progress_list_len++;
1106 in_progress_list[in_progress_offset].reloid = targetRelId;
1107retry:
1108 in_progress_list[in_progress_offset].invalidated = false;
1109
1110 /*
1111 * find the tuple in pg_class corresponding to the given relation id
1112 */
1113 pg_class_tuple = ScanPgRelation(targetRelId, true, false);
1114
1115 /*
1116 * if no such tuple exists, return NULL
1117 */
1118 if (!HeapTupleIsValid(pg_class_tuple))
1119 {
1120#ifdef MAYBE_RECOVER_RELATION_BUILD_MEMORY
1121 if (tmpcxt)
1122 {
1123 /* Return to caller's context, and blow away the temporary context */
1124 MemoryContextSwitchTo(oldcxt);
1125 MemoryContextDelete(tmpcxt);
1126 }
1127#endif
1128 Assert(in_progress_offset + 1 == in_progress_list_len);
1130 return NULL;
1131 }
1132
1133 /*
1134 * get information from the pg_class_tuple
1135 */
1136 relp = (Form_pg_class) GETSTRUCT(pg_class_tuple);
1137 relid = relp->oid;
1138 Assert(relid == targetRelId);
1139
1140 /*
1141 * allocate storage for the relation descriptor, and copy pg_class_tuple
1142 * to relation->rd_rel.
1143 */
1144 relation = AllocateRelationDesc(relp);
1145
1146 /*
1147 * initialize the relation's relation id (relation->rd_id)
1148 */
1149 RelationGetRelid(relation) = relid;
1150
1151 /*
1152 * Normal relations are not nailed into the cache. Since we don't flush
1153 * new relations, it won't be new. It could be temp though.
1154 */
1155 relation->rd_refcnt = 0;
1156 relation->rd_isnailed = false;
1161 switch (relation->rd_rel->relpersistence)
1162 {
1163 case RELPERSISTENCE_UNLOGGED:
1164 case RELPERSISTENCE_PERMANENT:
1165 relation->rd_backend = INVALID_PROC_NUMBER;
1166 relation->rd_islocaltemp = false;
1167 break;
1168 case RELPERSISTENCE_TEMP:
1169 if (isTempOrTempToastNamespace(relation->rd_rel->relnamespace))
1170 {
1172 relation->rd_islocaltemp = true;
1173 }
1174 else
1175 {
1176 /*
1177 * If it's a temp table, but not one of ours, we have to use
1178 * the slow, grotty method to figure out the owning backend.
1179 *
1180 * Note: it's possible that rd_backend gets set to
1181 * MyProcNumber here, in case we are looking at a pg_class
1182 * entry left over from a crashed backend that coincidentally
1183 * had the same ProcNumber we're using. We should *not*
1184 * consider such a table to be "ours"; this is why we need the
1185 * separate rd_islocaltemp flag. The pg_class entry will get
1186 * flushed if/when we clean out the corresponding temp table
1187 * namespace in preparation for using it.
1188 */
1189 relation->rd_backend =
1190 GetTempNamespaceProcNumber(relation->rd_rel->relnamespace);
1192 relation->rd_islocaltemp = false;
1193 }
1194 break;
1195 default:
1196 elog(ERROR, "invalid relpersistence: %c",
1197 relation->rd_rel->relpersistence);
1198 break;
1199 }
1200
1201 /*
1202 * initialize the tuple descriptor (relation->rd_att).
1203 */
1204 RelationBuildTupleDesc(relation);
1205
1206 /* foreign key data is not loaded till asked for */
1207 relation->rd_fkeylist = NIL;
1208 relation->rd_fkeyvalid = false;
1209
1210 /* partitioning data is not loaded till asked for */
1211 relation->rd_partkey = NULL;
1212 relation->rd_partkeycxt = NULL;
1213 relation->rd_partdesc = NULL;
1214 relation->rd_partdesc_nodetached = NULL;
1216 relation->rd_pdcxt = NULL;
1217 relation->rd_pddcxt = NULL;
1218 relation->rd_partcheck = NIL;
1219 relation->rd_partcheckvalid = false;
1220 relation->rd_partcheckcxt = NULL;
1221
1222 /*
1223 * initialize access method information
1224 */
1225 if (relation->rd_rel->relkind == RELKIND_INDEX ||
1226 relation->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
1228 else if (RELKIND_HAS_TABLE_AM(relation->rd_rel->relkind) ||
1229 relation->rd_rel->relkind == RELKIND_SEQUENCE)
1231 else if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
1232 {
1233 /*
1234 * Do nothing: access methods are a setting that partitions can
1235 * inherit.
1236 */
1237 }
1238 else
1239 Assert(relation->rd_rel->relam == InvalidOid);
1240
1241 /* extract reloptions if any */
1242 RelationParseRelOptions(relation, pg_class_tuple);
1243
1244 /*
1245 * Fetch rules and triggers that affect this relation.
1246 *
1247 * Note that RelationBuildRuleLock() relies on this being done after
1248 * extracting the relation's reloptions.
1249 */
1250 if (relation->rd_rel->relhasrules)
1251 RelationBuildRuleLock(relation);
1252 else
1253 {
1254 relation->rd_rules = NULL;
1255 relation->rd_rulescxt = NULL;
1256 }
1257
1258 if (relation->rd_rel->relhastriggers)
1259 RelationBuildTriggers(relation);
1260 else
1261 relation->trigdesc = NULL;
1262
1263 if (relation->rd_rel->relrowsecurity)
1264 RelationBuildRowSecurity(relation);
1265 else
1266 relation->rd_rsdesc = NULL;
1267
1268 /*
1269 * initialize the relation lock manager information
1270 */
1271 RelationInitLockInfo(relation); /* see lmgr.c */
1272
1273 /*
1274 * initialize physical addressing information for the relation
1275 */
1276 RelationInitPhysicalAddr(relation);
1277
1278 /* make sure relation is marked as having no open file yet */
1279 relation->rd_smgr = NULL;
1280
1281 /*
1282 * now we can free the memory allocated for pg_class_tuple
1283 */
1284 heap_freetuple(pg_class_tuple);
1285
1286 /*
1287 * If an invalidation arrived mid-build, start over. Between here and the
1288 * end of this function, don't add code that does or reasonably could read
1289 * system catalogs. That range must be free from invalidation processing
1290 * for the !insertIt case. For the insertIt case, RelationCacheInsert()
1291 * will enroll this relation in ordinary relcache invalidation processing,
1292 */
1293 if (in_progress_list[in_progress_offset].invalidated)
1294 {
1295 RelationDestroyRelation(relation, false);
1296 goto retry;
1297 }
1298 Assert(in_progress_offset + 1 == in_progress_list_len);
1300
1301 /*
1302 * Insert newly created relation into relcache hash table, if requested.
1303 *
1304 * There is one scenario in which we might find a hashtable entry already
1305 * present, even though our caller failed to find it: if the relation is a
1306 * system catalog or index that's used during relcache load, we might have
1307 * recursively created the same relcache entry during the preceding steps.
1308 * So allow RelationCacheInsert to delete any already-present relcache
1309 * entry for the same OID. The already-present entry should have refcount
1310 * zero (else somebody forgot to close it); in the event that it doesn't,
1311 * we'll elog a WARNING and leak the already-present entry.
1312 */
1313 if (insertIt)
1314 RelationCacheInsert(relation, true);
1315
1316 /* It's fully valid */
1317 relation->rd_isvalid = true;
1318
1319#ifdef MAYBE_RECOVER_RELATION_BUILD_MEMORY
1320 if (tmpcxt)
1321 {
1322 /* Return to caller's context, and blow away the temporary context */
1323 MemoryContextSwitchTo(oldcxt);
1324 MemoryContextDelete(tmpcxt);
1325 }
1326#endif
1327
1328 return relation;
1329}
1330
1331/*
1332 * Initialize the physical addressing info (RelFileLocator) for a relcache entry
1333 *
1334 * Note: at the physical level, relations in the pg_global tablespace must
1335 * be treated as shared, even if relisshared isn't set. Hence we do not
1336 * look at relisshared here.
1337 */
1338static void
1340{
1341 RelFileNumber oldnumber = relation->rd_locator.relNumber;
1342
1343 /* these relations kinds never have storage */
1344 if (!RELKIND_HAS_STORAGE(relation->rd_rel->relkind))
1345 return;
1346
1347 if (relation->rd_rel->reltablespace)
1348 relation->rd_locator.spcOid = relation->rd_rel->reltablespace;
1349 else
1351 if (relation->rd_locator.spcOid == GLOBALTABLESPACE_OID)
1352 relation->rd_locator.dbOid = InvalidOid;
1353 else
1354 relation->rd_locator.dbOid = MyDatabaseId;
1355
1356 if (relation->rd_rel->relfilenode)
1357 {
1358 /*
1359 * Even if we are using a decoding snapshot that doesn't represent the
1360 * current state of the catalog we need to make sure the filenode
1361 * points to the current file since the older file will be gone (or
1362 * truncated). The new file will still contain older rows so lookups
1363 * in them will work correctly. This wouldn't work correctly if
1364 * rewrites were allowed to change the schema in an incompatible way,
1365 * but those are prevented both on catalog tables and on user tables
1366 * declared as additional catalog tables.
1367 */
1370 && IsTransactionState())
1371 {
1372 HeapTuple phys_tuple;
1373 Form_pg_class physrel;
1374
1375 phys_tuple = ScanPgRelation(RelationGetRelid(relation),
1376 RelationGetRelid(relation) != ClassOidIndexId,
1377 true);
1378 if (!HeapTupleIsValid(phys_tuple))
1379 elog(ERROR, "could not find pg_class entry for %u",
1380 RelationGetRelid(relation));
1381 physrel = (Form_pg_class) GETSTRUCT(phys_tuple);
1382
1383 relation->rd_rel->reltablespace = physrel->reltablespace;
1384 relation->rd_rel->relfilenode = physrel->relfilenode;
1385 heap_freetuple(phys_tuple);
1386 }
1387
1388 relation->rd_locator.relNumber = relation->rd_rel->relfilenode;
1389 }
1390 else
1391 {
1392 /* Consult the relation mapper */
1393 relation->rd_locator.relNumber =
1395 relation->rd_rel->relisshared);
1397 elog(ERROR, "could not find relation mapping for relation \"%s\", OID %u",
1398 RelationGetRelationName(relation), relation->rd_id);
1399 }
1400
1401 /*
1402 * For RelationNeedsWAL() to answer correctly on parallel workers, restore
1403 * rd_firstRelfilelocatorSubid. No subtransactions start or end while in
1404 * parallel mode, so the specific SubTransactionId does not matter.
1405 */
1406 if (IsParallelWorker() && oldnumber != relation->rd_locator.relNumber)
1407 {
1410 else
1412 }
1413}
1414
1415/*
1416 * Fill in the IndexAmRoutine for an index relation.
1417 *
1418 * relation's rd_amhandler and rd_indexcxt must be valid already.
1419 */
1420static void
1422{
1423 MemoryContext oldctx;
1424
1425 /*
1426 * We formerly specified that the amhandler should return a palloc'd
1427 * struct. That's now deprecated in favor of returning a pointer to a
1428 * static struct, but to avoid completely breaking old external AMs, run
1429 * the amhandler in the relation's rd_indexcxt.
1430 */
1431 oldctx = MemoryContextSwitchTo(relation->rd_indexcxt);
1432 relation->rd_indam = GetIndexAmRoutine(relation->rd_amhandler);
1433 MemoryContextSwitchTo(oldctx);
1434}
1435
1436/*
1437 * Initialize index-access-method support data for an index relation
1438 */
1439void
1441{
1442 HeapTuple tuple;
1443 Form_pg_am aform;
1444 Datum indcollDatum;
1445 Datum indclassDatum;
1446 Datum indoptionDatum;
1447 bool isnull;
1448 oidvector *indcoll;
1449 oidvector *indclass;
1450 int2vector *indoption;
1451 MemoryContext indexcxt;
1452 MemoryContext oldcontext;
1453 int indnatts;
1454 int indnkeyatts;
1455 uint16 amsupport;
1456
1457 /*
1458 * Make a copy of the pg_index entry for the index. Since pg_index
1459 * contains variable-length and possibly-null fields, we have to do this
1460 * honestly rather than just treating it as a Form_pg_index struct.
1461 */
1462 tuple = SearchSysCache1(INDEXRELID,
1464 if (!HeapTupleIsValid(tuple))
1465 elog(ERROR, "cache lookup failed for index %u",
1466 RelationGetRelid(relation));
1468 relation->rd_indextuple = heap_copytuple(tuple);
1469 relation->rd_index = (Form_pg_index) GETSTRUCT(relation->rd_indextuple);
1470 MemoryContextSwitchTo(oldcontext);
1471 ReleaseSysCache(tuple);
1472
1473 /*
1474 * Look up the index's access method, save the OID of its handler function
1475 */
1476 Assert(relation->rd_rel->relam != InvalidOid);
1477 tuple = SearchSysCache1(AMOID, ObjectIdGetDatum(relation->rd_rel->relam));
1478 if (!HeapTupleIsValid(tuple))
1479 elog(ERROR, "cache lookup failed for access method %u",
1480 relation->rd_rel->relam);
1481 aform = (Form_pg_am) GETSTRUCT(tuple);
1482 relation->rd_amhandler = aform->amhandler;
1483 ReleaseSysCache(tuple);
1484
1485 indnatts = RelationGetNumberOfAttributes(relation);
1486 if (indnatts != IndexRelationGetNumberOfAttributes(relation))
1487 elog(ERROR, "relnatts disagrees with indnatts for index %u",
1488 RelationGetRelid(relation));
1489 indnkeyatts = IndexRelationGetNumberOfKeyAttributes(relation);
1490
1491 /*
1492 * Make the private context to hold index access info. The reason we need
1493 * a context, and not just a couple of pallocs, is so that we won't leak
1494 * any subsidiary info attached to fmgr lookup records.
1495 */
1497 "index info",
1499 relation->rd_indexcxt = indexcxt;
1501 RelationGetRelationName(relation));
1502
1503 /*
1504 * Now we can fetch the index AM's API struct
1505 */
1506 InitIndexAmRoutine(relation);
1507
1508 /*
1509 * Allocate arrays to hold data. Opclasses are not used for included
1510 * columns, so allocate them for indnkeyatts only.
1511 */
1512 relation->rd_opfamily = (Oid *)
1513 MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(Oid));
1514 relation->rd_opcintype = (Oid *)
1515 MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(Oid));
1516
1517 amsupport = relation->rd_indam->amsupport;
1518 if (amsupport > 0)
1519 {
1520 int nsupport = indnatts * amsupport;
1521
1522 relation->rd_support = (RegProcedure *)
1523 MemoryContextAllocZero(indexcxt, nsupport * sizeof(RegProcedure));
1524 relation->rd_supportinfo = (FmgrInfo *)
1525 MemoryContextAllocZero(indexcxt, nsupport * sizeof(FmgrInfo));
1526 }
1527 else
1528 {
1529 relation->rd_support = NULL;
1530 relation->rd_supportinfo = NULL;
1531 }
1532
1533 relation->rd_indcollation = (Oid *)
1534 MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(Oid));
1535
1536 relation->rd_indoption = (int16 *)
1537 MemoryContextAllocZero(indexcxt, indnkeyatts * sizeof(int16));
1538
1539 /*
1540 * indcollation cannot be referenced directly through the C struct,
1541 * because it comes after the variable-width indkey field. Must extract
1542 * the datum the hard way...
1543 */
1544 indcollDatum = fastgetattr(relation->rd_indextuple,
1545 Anum_pg_index_indcollation,
1547 &isnull);
1548 Assert(!isnull);
1549 indcoll = (oidvector *) DatumGetPointer(indcollDatum);
1550 memcpy(relation->rd_indcollation, indcoll->values, indnkeyatts * sizeof(Oid));
1551
1552 /*
1553 * indclass cannot be referenced directly through the C struct, because it
1554 * comes after the variable-width indkey field. Must extract the datum
1555 * the hard way...
1556 */
1557 indclassDatum = fastgetattr(relation->rd_indextuple,
1558 Anum_pg_index_indclass,
1560 &isnull);
1561 Assert(!isnull);
1562 indclass = (oidvector *) DatumGetPointer(indclassDatum);
1563
1564 /*
1565 * Fill the support procedure OID array, as well as the info about
1566 * opfamilies and opclass input types. (aminfo and supportinfo are left
1567 * as zeroes, and are filled on-the-fly when used)
1568 */
1569 IndexSupportInitialize(indclass, relation->rd_support,
1570 relation->rd_opfamily, relation->rd_opcintype,
1571 amsupport, indnkeyatts);
1572
1573 /*
1574 * Similarly extract indoption and copy it to the cache entry
1575 */
1576 indoptionDatum = fastgetattr(relation->rd_indextuple,
1577 Anum_pg_index_indoption,
1579 &isnull);
1580 Assert(!isnull);
1581 indoption = (int2vector *) DatumGetPointer(indoptionDatum);
1582 memcpy(relation->rd_indoption, indoption->values, indnkeyatts * sizeof(int16));
1583
1584 (void) RelationGetIndexAttOptions(relation, false);
1585
1586 /*
1587 * expressions, predicate, exclusion caches will be filled later
1588 */
1589 relation->rd_indexprs = NIL;
1590 relation->rd_indpred = NIL;
1591 relation->rd_exclops = NULL;
1592 relation->rd_exclprocs = NULL;
1593 relation->rd_exclstrats = NULL;
1594 relation->rd_amcache = NULL;
1595}
1596
1597/*
1598 * IndexSupportInitialize
1599 * Initializes an index's cached opclass information,
1600 * given the index's pg_index.indclass entry.
1601 *
1602 * Data is returned into *indexSupport, *opFamily, and *opcInType,
1603 * which are arrays allocated by the caller.
1604 *
1605 * The caller also passes maxSupportNumber and maxAttributeNumber, since these
1606 * indicate the size of the arrays it has allocated --- but in practice these
1607 * numbers must always match those obtainable from the system catalog entries
1608 * for the index and access method.
1609 */
1610static void
1612 RegProcedure *indexSupport,
1613 Oid *opFamily,
1614 Oid *opcInType,
1615 StrategyNumber maxSupportNumber,
1616 AttrNumber maxAttributeNumber)
1617{
1618 int attIndex;
1619
1620 for (attIndex = 0; attIndex < maxAttributeNumber; attIndex++)
1621 {
1622 OpClassCacheEnt *opcentry;
1623
1624 if (!OidIsValid(indclass->values[attIndex]))
1625 elog(ERROR, "bogus pg_index tuple");
1626
1627 /* look up the info for this opclass, using a cache */
1628 opcentry = LookupOpclassInfo(indclass->values[attIndex],
1629 maxSupportNumber);
1630
1631 /* copy cached data into relcache entry */
1632 opFamily[attIndex] = opcentry->opcfamily;
1633 opcInType[attIndex] = opcentry->opcintype;
1634 if (maxSupportNumber > 0)
1635 memcpy(&indexSupport[attIndex * maxSupportNumber],
1636 opcentry->supportProcs,
1637 maxSupportNumber * sizeof(RegProcedure));
1638 }
1639}
1640
1641/*
1642 * LookupOpclassInfo
1643 *
1644 * This routine maintains a per-opclass cache of the information needed
1645 * by IndexSupportInitialize(). This is more efficient than relying on
1646 * the catalog cache, because we can load all the info about a particular
1647 * opclass in a single indexscan of pg_amproc.
1648 *
1649 * The information from pg_am about expected range of support function
1650 * numbers is passed in, rather than being looked up, mainly because the
1651 * caller will have it already.
1652 *
1653 * Note there is no provision for flushing the cache. This is OK at the
1654 * moment because there is no way to ALTER any interesting properties of an
1655 * existing opclass --- all you can do is drop it, which will result in
1656 * a useless but harmless dead entry in the cache. To support altering
1657 * opclass membership (not the same as opfamily membership!), we'd need to
1658 * be able to flush this cache as well as the contents of relcache entries
1659 * for indexes.
1660 */
1661static OpClassCacheEnt *
1662LookupOpclassInfo(Oid operatorClassOid,
1663 StrategyNumber numSupport)
1664{
1665 OpClassCacheEnt *opcentry;
1666 bool found;
1667 Relation rel;
1668 SysScanDesc scan;
1669 ScanKeyData skey[3];
1670 HeapTuple htup;
1671 bool indexOK;
1672
1673 if (OpClassCache == NULL)
1674 {
1675 /* First time through: initialize the opclass cache */
1676 HASHCTL ctl;
1677
1678 /* Also make sure CacheMemoryContext exists */
1679 if (!CacheMemoryContext)
1681
1682 ctl.keysize = sizeof(Oid);
1683 ctl.entrysize = sizeof(OpClassCacheEnt);
1684 OpClassCache = hash_create("Operator class cache", 64,
1686 }
1687
1689 &operatorClassOid,
1690 HASH_ENTER, &found);
1691
1692 if (!found)
1693 {
1694 /* Initialize new entry */
1695 opcentry->valid = false; /* until known OK */
1696 opcentry->numSupport = numSupport;
1697 opcentry->supportProcs = NULL; /* filled below */
1698 }
1699 else
1700 {
1701 Assert(numSupport == opcentry->numSupport);
1702 }
1703
1704 /*
1705 * When aggressively testing cache-flush hazards, we disable the operator
1706 * class cache and force reloading of the info on each call. This models
1707 * no real-world behavior, since the cache entries are never invalidated
1708 * otherwise. However it can be helpful for detecting bugs in the cache
1709 * loading logic itself, such as reliance on a non-nailed index. Given
1710 * the limited use-case and the fact that this adds a great deal of
1711 * expense, we enable it only for high values of debug_discard_caches.
1712 */
1713#ifdef DISCARD_CACHES_ENABLED
1714 if (debug_discard_caches > 2)
1715 opcentry->valid = false;
1716#endif
1717
1718 if (opcentry->valid)
1719 return opcentry;
1720
1721 /*
1722 * Need to fill in new entry. First allocate space, unless we already did
1723 * so in some previous attempt.
1724 */
1725 if (opcentry->supportProcs == NULL && numSupport > 0)
1726 opcentry->supportProcs = (RegProcedure *)
1728 numSupport * sizeof(RegProcedure));
1729
1730 /*
1731 * To avoid infinite recursion during startup, force heap scans if we're
1732 * looking up info for the opclasses used by the indexes we would like to
1733 * reference here.
1734 */
1735 indexOK = criticalRelcachesBuilt ||
1736 (operatorClassOid != OID_BTREE_OPS_OID &&
1737 operatorClassOid != INT2_BTREE_OPS_OID);
1738
1739 /*
1740 * We have to fetch the pg_opclass row to determine its opfamily and
1741 * opcintype, which are needed to look up related operators and functions.
1742 * It'd be convenient to use the syscache here, but that probably doesn't
1743 * work while bootstrapping.
1744 */
1745 ScanKeyInit(&skey[0],
1746 Anum_pg_opclass_oid,
1747 BTEqualStrategyNumber, F_OIDEQ,
1748 ObjectIdGetDatum(operatorClassOid));
1749 rel = table_open(OperatorClassRelationId, AccessShareLock);
1750 scan = systable_beginscan(rel, OpclassOidIndexId, indexOK,
1751 NULL, 1, skey);
1752
1753 if (HeapTupleIsValid(htup = systable_getnext(scan)))
1754 {
1755 Form_pg_opclass opclassform = (Form_pg_opclass) GETSTRUCT(htup);
1756
1757 opcentry->opcfamily = opclassform->opcfamily;
1758 opcentry->opcintype = opclassform->opcintype;
1759 }
1760 else
1761 elog(ERROR, "could not find tuple for opclass %u", operatorClassOid);
1762
1763 systable_endscan(scan);
1765
1766 /*
1767 * Scan pg_amproc to obtain support procs for the opclass. We only fetch
1768 * the default ones (those with lefttype = righttype = opcintype).
1769 */
1770 if (numSupport > 0)
1771 {
1772 ScanKeyInit(&skey[0],
1773 Anum_pg_amproc_amprocfamily,
1774 BTEqualStrategyNumber, F_OIDEQ,
1775 ObjectIdGetDatum(opcentry->opcfamily));
1776 ScanKeyInit(&skey[1],
1777 Anum_pg_amproc_amproclefttype,
1778 BTEqualStrategyNumber, F_OIDEQ,
1779 ObjectIdGetDatum(opcentry->opcintype));
1780 ScanKeyInit(&skey[2],
1781 Anum_pg_amproc_amprocrighttype,
1782 BTEqualStrategyNumber, F_OIDEQ,
1783 ObjectIdGetDatum(opcentry->opcintype));
1784 rel = table_open(AccessMethodProcedureRelationId, AccessShareLock);
1785 scan = systable_beginscan(rel, AccessMethodProcedureIndexId, indexOK,
1786 NULL, 3, skey);
1787
1788 while (HeapTupleIsValid(htup = systable_getnext(scan)))
1789 {
1790 Form_pg_amproc amprocform = (Form_pg_amproc) GETSTRUCT(htup);
1791
1792 if (amprocform->amprocnum <= 0 ||
1793 (StrategyNumber) amprocform->amprocnum > numSupport)
1794 elog(ERROR, "invalid amproc number %d for opclass %u",
1795 amprocform->amprocnum, operatorClassOid);
1796
1797 opcentry->supportProcs[amprocform->amprocnum - 1] =
1798 amprocform->amproc;
1799 }
1800
1801 systable_endscan(scan);
1803 }
1804
1805 opcentry->valid = true;
1806 return opcentry;
1807}
1808
1809/*
1810 * Fill in the TableAmRoutine for a relation
1811 *
1812 * relation's rd_amhandler must be valid already.
1813 */
1814static void
1816{
1817 relation->rd_tableam = GetTableAmRoutine(relation->rd_amhandler);
1818}
1819
1820/*
1821 * Initialize table access method support for a table like relation
1822 */
1823void
1825{
1826 HeapTuple tuple;
1827 Form_pg_am aform;
1828
1829 if (relation->rd_rel->relkind == RELKIND_SEQUENCE)
1830 {
1831 /*
1832 * Sequences are currently accessed like heap tables, but it doesn't
1833 * seem prudent to show that in the catalog. So just overwrite it
1834 * here.
1835 */
1836 Assert(relation->rd_rel->relam == InvalidOid);
1837 relation->rd_amhandler = F_HEAP_TABLEAM_HANDLER;
1838 }
1839 else if (IsCatalogRelation(relation))
1840 {
1841 /*
1842 * Avoid doing a syscache lookup for catalog tables.
1843 */
1844 Assert(relation->rd_rel->relam == HEAP_TABLE_AM_OID);
1845 relation->rd_amhandler = F_HEAP_TABLEAM_HANDLER;
1846 }
1847 else
1848 {
1849 /*
1850 * Look up the table access method, save the OID of its handler
1851 * function.
1852 */
1853 Assert(relation->rd_rel->relam != InvalidOid);
1854 tuple = SearchSysCache1(AMOID,
1855 ObjectIdGetDatum(relation->rd_rel->relam));
1856 if (!HeapTupleIsValid(tuple))
1857 elog(ERROR, "cache lookup failed for access method %u",
1858 relation->rd_rel->relam);
1859 aform = (Form_pg_am) GETSTRUCT(tuple);
1860 relation->rd_amhandler = aform->amhandler;
1861 ReleaseSysCache(tuple);
1862 }
1863
1864 /*
1865 * Now we can fetch the table AM's API struct
1866 */
1867 InitTableAmRoutine(relation);
1868}
1869
1870/*
1871 * formrdesc
1872 *
1873 * This is a special cut-down version of RelationBuildDesc(),
1874 * used while initializing the relcache.
1875 * The relation descriptor is built just from the supplied parameters,
1876 * without actually looking at any system table entries. We cheat
1877 * quite a lot since we only need to work for a few basic system
1878 * catalogs.
1879 *
1880 * The catalogs this is used for can't have constraints (except attnotnull),
1881 * default values, rules, or triggers, since we don't cope with any of that.
1882 * (Well, actually, this only matters for properties that need to be valid
1883 * during bootstrap or before RelationCacheInitializePhase3 runs, and none of
1884 * these properties matter then...)
1885 *
1886 * NOTE: we assume we are already switched into CacheMemoryContext.
1887 */
1888static void
1889formrdesc(const char *relationName, Oid relationReltype,
1890 bool isshared,
1891 int natts, const FormData_pg_attribute *attrs)
1892{
1893 Relation relation;
1894 int i;
1895 bool has_not_null;
1896
1897 /*
1898 * allocate new relation desc, clear all fields of reldesc
1899 */
1900 relation = palloc0_object(RelationData);
1901
1902 /* make sure relation is marked as having no open file yet */
1903 relation->rd_smgr = NULL;
1904
1905 /*
1906 * initialize reference count: 1 because it is nailed in cache
1907 */
1908 relation->rd_refcnt = 1;
1909
1910 /*
1911 * all entries built with this routine are nailed-in-cache; none are for
1912 * new or temp relations.
1913 */
1914 relation->rd_isnailed = true;
1919 relation->rd_backend = INVALID_PROC_NUMBER;
1920 relation->rd_islocaltemp = false;
1921
1922 /*
1923 * initialize relation tuple form
1924 *
1925 * The data we insert here is pretty incomplete/bogus, but it'll serve to
1926 * get us launched. RelationCacheInitializePhase3() will read the real
1927 * data from pg_class and replace what we've done here. Note in
1928 * particular that relowner is left as zero; this cues
1929 * RelationCacheInitializePhase3 that the real data isn't there yet.
1930 */
1932
1933 namestrcpy(&relation->rd_rel->relname, relationName);
1934 relation->rd_rel->relnamespace = PG_CATALOG_NAMESPACE;
1935 relation->rd_rel->reltype = relationReltype;
1936
1937 /*
1938 * It's important to distinguish between shared and non-shared relations,
1939 * even at bootstrap time, to make sure we know where they are stored.
1940 */
1941 relation->rd_rel->relisshared = isshared;
1942 if (isshared)
1943 relation->rd_rel->reltablespace = GLOBALTABLESPACE_OID;
1944
1945 /* formrdesc is used only for permanent relations */
1946 relation->rd_rel->relpersistence = RELPERSISTENCE_PERMANENT;
1947
1948 /* ... and they're always populated, too */
1949 relation->rd_rel->relispopulated = true;
1950
1951 relation->rd_rel->relreplident = REPLICA_IDENTITY_NOTHING;
1952 relation->rd_rel->relpages = 0;
1953 relation->rd_rel->reltuples = -1;
1954 relation->rd_rel->relallvisible = 0;
1955 relation->rd_rel->relallfrozen = 0;
1956 relation->rd_rel->relkind = RELKIND_RELATION;
1957 relation->rd_rel->relnatts = (int16) natts;
1958
1959 /*
1960 * initialize attribute tuple form
1961 *
1962 * Unlike the case with the relation tuple, this data had better be right
1963 * because it will never be replaced. The data comes from
1964 * src/include/catalog/ headers via genbki.pl.
1965 */
1966 relation->rd_att = CreateTemplateTupleDesc(natts);
1967 relation->rd_att->tdrefcount = 1; /* mark as refcounted */
1968
1969 relation->rd_att->tdtypeid = relationReltype;
1970 relation->rd_att->tdtypmod = -1; /* just to be sure */
1971
1972 /*
1973 * initialize tuple desc info
1974 */
1975 has_not_null = false;
1976 for (i = 0; i < natts; i++)
1977 {
1978 memcpy(TupleDescAttr(relation->rd_att, i),
1979 &attrs[i],
1981 has_not_null |= attrs[i].attnotnull;
1982
1984 }
1985
1986 /* initialize first attribute's attcacheoff, cf RelationBuildTupleDesc */
1987 TupleDescCompactAttr(relation->rd_att, 0)->attcacheoff = 0;
1988
1989 /* mark not-null status */
1990 if (has_not_null)
1991 {
1993
1994 constr->has_not_null = true;
1995 relation->rd_att->constr = constr;
1996 }
1997
1998 /*
1999 * initialize relation id from info in att array (my, this is ugly)
2000 */
2001 RelationGetRelid(relation) = TupleDescAttr(relation->rd_att, 0)->attrelid;
2002
2003 /*
2004 * All relations made with formrdesc are mapped. This is necessarily so
2005 * because there is no other way to know what filenumber they currently
2006 * have. In bootstrap mode, add them to the initial relation mapper data,
2007 * specifying that the initial filenumber is the same as the OID.
2008 */
2009 relation->rd_rel->relfilenode = InvalidRelFileNumber;
2012 RelationGetRelid(relation),
2013 isshared, true);
2014
2015 /*
2016 * initialize the relation lock manager information
2017 */
2018 RelationInitLockInfo(relation); /* see lmgr.c */
2019
2020 /*
2021 * initialize physical addressing information for the relation
2022 */
2023 RelationInitPhysicalAddr(relation);
2024
2025 /*
2026 * initialize the table am handler
2027 */
2028 relation->rd_rel->relam = HEAP_TABLE_AM_OID;
2029 relation->rd_tableam = GetHeapamTableAmRoutine();
2030
2031 /*
2032 * initialize the rel-has-index flag, using hardwired knowledge
2033 */
2035 {
2036 /* In bootstrap mode, we have no indexes */
2037 relation->rd_rel->relhasindex = false;
2038 }
2039 else
2040 {
2041 /* Otherwise, all the rels formrdesc is used for have indexes */
2042 relation->rd_rel->relhasindex = true;
2043 }
2044
2045 /*
2046 * add new reldesc to relcache
2047 */
2048 RelationCacheInsert(relation, false);
2049
2050 /* It's fully valid */
2051 relation->rd_isvalid = true;
2052}
2053
2054#ifdef USE_ASSERT_CHECKING
2055/*
2056 * AssertCouldGetRelation
2057 *
2058 * Check safety of calling RelationIdGetRelation().
2059 *
2060 * In code that reads catalogs in the event of a cache miss, call this
2061 * before checking the cache.
2062 */
2063void
2065{
2067 AssertBufferLocksPermitCatalogRead();
2068}
2069#endif
2070
2071
2072/* ----------------------------------------------------------------
2073 * Relation Descriptor Lookup Interface
2074 * ----------------------------------------------------------------
2075 */
2076
2077/*
2078 * RelationIdGetRelation
2079 *
2080 * Lookup a reldesc by OID; make one if not already in cache.
2081 *
2082 * Returns NULL if no pg_class row could be found for the given relid
2083 * (suggesting we are trying to access a just-deleted relation).
2084 * Any other error is reported via elog.
2085 *
2086 * NB: caller should already have at least AccessShareLock on the
2087 * relation ID, else there are nasty race conditions.
2088 *
2089 * NB: relation ref count is incremented, or set to 1 if new entry.
2090 * Caller should eventually decrement count. (Usually,
2091 * that happens by calling RelationClose().)
2092 */
2095{
2096 Relation rd;
2097
2099
2100 /*
2101 * first try to find reldesc in the cache
2102 */
2103 RelationIdCacheLookup(relationId, rd);
2104
2105 if (RelationIsValid(rd))
2106 {
2107 /* return NULL for dropped relations */
2109 {
2110 Assert(!rd->rd_isvalid);
2111 return NULL;
2112 }
2113
2115 /* revalidate cache entry if necessary */
2116 if (!rd->rd_isvalid)
2117 {
2119
2120 /*
2121 * Normally entries need to be valid here, but before the relcache
2122 * has been initialized, not enough infrastructure exists to
2123 * perform pg_class lookups. The structure of such entries doesn't
2124 * change, but we still want to update the rd_rel entry. So
2125 * rd_isvalid = false is left in place for a later lookup.
2126 */
2127 Assert(rd->rd_isvalid ||
2129 }
2130 return rd;
2131 }
2132
2133 /*
2134 * no reldesc in the cache, so have RelationBuildDesc() build one and add
2135 * it.
2136 */
2137 rd = RelationBuildDesc(relationId, true);
2138 if (RelationIsValid(rd))
2140 return rd;
2141}
2142
2143/* ----------------------------------------------------------------
2144 * cache invalidation support routines
2145 * ----------------------------------------------------------------
2146 */
2147
2148/* ResourceOwner callbacks to track relcache references */
2149static void ResOwnerReleaseRelation(Datum res);
2150static char *ResOwnerPrintRelCache(Datum res);
2151
2153{
2154 .name = "relcache reference",
2155 .release_phase = RESOURCE_RELEASE_BEFORE_LOCKS,
2156 .release_priority = RELEASE_PRIO_RELCACHE_REFS,
2157 .ReleaseResource = ResOwnerReleaseRelation,
2158 .DebugPrint = ResOwnerPrintRelCache
2159};
2160
2161/* Convenience wrappers over ResourceOwnerRemember/Forget */
2162static inline void
2164{
2166}
2167static inline void
2169{
2171}
2172
2173/*
2174 * RelationIncrementReferenceCount
2175 * Increments relation reference count.
2176 *
2177 * Note: bootstrap mode has its own weird ideas about relation refcount
2178 * behavior; we ought to fix it someday, but for now, just disable
2179 * reference count ownership tracking in bootstrap mode.
2180 */
2181void
2183{
2185 rel->rd_refcnt += 1;
2188}
2189
2190/*
2191 * RelationDecrementReferenceCount
2192 * Decrements relation reference count.
2193 */
2194void
2196{
2197 Assert(rel->rd_refcnt > 0);
2198 rel->rd_refcnt -= 1;
2201}
2202
2203/*
2204 * RelationClose - close an open relation
2205 *
2206 * Actually, we just decrement the refcount.
2207 *
2208 * NOTE: if compiled with -DRELCACHE_FORCE_RELEASE then relcache entries
2209 * will be freed as soon as their refcount goes to zero. In combination
2210 * with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
2211 * to catch references to already-released relcache entries. It slows
2212 * things down quite a bit, however.
2213 */
2214void
2216{
2217 /* Note: no locking manipulations needed */
2219
2220 RelationCloseCleanup(relation);
2221}
2222
2223static void
2225{
2226 /*
2227 * If the relation is no longer open in this session, we can clean up any
2228 * stale partition descriptors it has. This is unlikely, so check to see
2229 * if there are child contexts before expending a call to mcxt.c.
2230 */
2231 if (RelationHasReferenceCountZero(relation))
2232 {
2233 if (relation->rd_pdcxt != NULL &&
2234 relation->rd_pdcxt->firstchild != NULL)
2236
2237 if (relation->rd_pddcxt != NULL &&
2238 relation->rd_pddcxt->firstchild != NULL)
2240 }
2241
2242#ifdef RELCACHE_FORCE_RELEASE
2243 if (RelationHasReferenceCountZero(relation) &&
2246 RelationClearRelation(relation);
2247#endif
2248}
2249
2250/*
2251 * RelationReloadIndexInfo - reload minimal information for an open index
2252 *
2253 * This function is used only for indexes. A relcache inval on an index
2254 * can mean that its pg_class or pg_index row changed. There are only
2255 * very limited changes that are allowed to an existing index's schema,
2256 * so we can update the relcache entry without a complete rebuild; which
2257 * is fortunate because we can't rebuild an index entry that is "nailed"
2258 * and/or in active use. We support full replacement of the pg_class row,
2259 * as well as updates of a few simple fields of the pg_index row.
2260 *
2261 * We assume that at the time we are called, we have at least AccessShareLock
2262 * on the target index.
2263 *
2264 * If the target index is an index on pg_class or pg_index, we'd better have
2265 * previously gotten at least AccessShareLock on its underlying catalog,
2266 * else we are at risk of deadlock against someone trying to exclusive-lock
2267 * the heap and index in that order. This is ensured in current usage by
2268 * only applying this to indexes being opened or having positive refcount.
2269 */
2270static void
2272{
2273 bool indexOK;
2274 HeapTuple pg_class_tuple;
2275 Form_pg_class relp;
2276
2277 /* Should be called only for invalidated, live indexes */
2278 Assert((relation->rd_rel->relkind == RELKIND_INDEX ||
2279 relation->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) &&
2280 !relation->rd_isvalid &&
2282
2283 /*
2284 * If it's a shared index, we might be called before backend startup has
2285 * finished selecting a database, in which case we have no way to read
2286 * pg_class yet. However, a shared index can never have any significant
2287 * schema updates, so it's okay to mostly ignore the invalidation signal.
2288 * Its physical relfilenumber might've changed, but that's all. Update
2289 * the physical relfilenumber, mark it valid and return without doing
2290 * anything more.
2291 */
2292 if (relation->rd_rel->relisshared && !criticalRelcachesBuilt)
2293 {
2294 RelationInitPhysicalAddr(relation);
2295 relation->rd_isvalid = true;
2296 return;
2297 }
2298
2299 /*
2300 * Read the pg_class row
2301 *
2302 * Don't try to use an indexscan of pg_class_oid_index to reload the info
2303 * for pg_class_oid_index ...
2304 */
2305 indexOK = (RelationGetRelid(relation) != ClassOidIndexId);
2306 pg_class_tuple = ScanPgRelation(RelationGetRelid(relation), indexOK, false);
2307 if (!HeapTupleIsValid(pg_class_tuple))
2308 elog(ERROR, "could not find pg_class tuple for index %u",
2309 RelationGetRelid(relation));
2310 relp = (Form_pg_class) GETSTRUCT(pg_class_tuple);
2311 memcpy(relation->rd_rel, relp, CLASS_TUPLE_SIZE);
2312 /* Reload reloptions in case they changed */
2313 if (relation->rd_options)
2314 pfree(relation->rd_options);
2315 RelationParseRelOptions(relation, pg_class_tuple);
2316 /* done with pg_class tuple */
2317 heap_freetuple(pg_class_tuple);
2318 /* We must recalculate physical address in case it changed */
2319 RelationInitPhysicalAddr(relation);
2320
2321 /*
2322 * For a non-system index, there are fields of the pg_index row that are
2323 * allowed to change, so re-read that row and update the relcache entry.
2324 * Most of the info derived from pg_index (such as support function lookup
2325 * info) cannot change, and indeed the whole point of this routine is to
2326 * update the relcache entry without clobbering that data; so wholesale
2327 * replacement is not appropriate.
2328 */
2329 if (!IsSystemRelation(relation))
2330 {
2331 HeapTuple tuple;
2333
2334 tuple = SearchSysCache1(INDEXRELID,
2336 if (!HeapTupleIsValid(tuple))
2337 elog(ERROR, "cache lookup failed for index %u",
2338 RelationGetRelid(relation));
2339 index = (Form_pg_index) GETSTRUCT(tuple);
2340
2341 /*
2342 * Basically, let's just copy all the bool fields. There are one or
2343 * two of these that can't actually change in the current code, but
2344 * it's not worth it to track exactly which ones they are. None of
2345 * the array fields are allowed to change, though.
2346 */
2347 relation->rd_index->indisunique = index->indisunique;
2348 relation->rd_index->indnullsnotdistinct = index->indnullsnotdistinct;
2349 relation->rd_index->indisprimary = index->indisprimary;
2350 relation->rd_index->indisexclusion = index->indisexclusion;
2351 relation->rd_index->indimmediate = index->indimmediate;
2352 relation->rd_index->indisclustered = index->indisclustered;
2353 relation->rd_index->indisvalid = index->indisvalid;
2354 relation->rd_index->indcheckxmin = index->indcheckxmin;
2355 relation->rd_index->indisready = index->indisready;
2356 relation->rd_index->indislive = index->indislive;
2357 relation->rd_index->indisreplident = index->indisreplident;
2358
2359 /* Copy xmin too, as that is needed to make sense of indcheckxmin */
2362
2363 ReleaseSysCache(tuple);
2364 }
2365
2366 /* Okay, now it's valid again */
2367 relation->rd_isvalid = true;
2368}
2369
2370/*
2371 * RelationReloadNailed - reload minimal information for nailed relations.
2372 *
2373 * The structure of a nailed relation can never change (which is good, because
2374 * we rely on knowing their structure to be able to read catalog content). But
2375 * some parts, e.g. pg_class.relfrozenxid, are still important to have
2376 * accurate content for. Therefore those need to be reloaded after the arrival
2377 * of invalidations.
2378 */
2379static void
2381{
2382 /* Should be called only for invalidated, nailed relations */
2383 Assert(!relation->rd_isvalid);
2384 Assert(relation->rd_isnailed);
2385 /* nailed indexes are handled by RelationReloadIndexInfo() */
2386 Assert(relation->rd_rel->relkind == RELKIND_RELATION);
2388
2389 /*
2390 * Redo RelationInitPhysicalAddr in case it is a mapped relation whose
2391 * mapping changed.
2392 */
2393 RelationInitPhysicalAddr(relation);
2394
2395 /*
2396 * Reload a non-index entry. We can't easily do so if relcaches aren't
2397 * yet built, but that's fine because at that stage the attributes that
2398 * need to be current (like relfrozenxid) aren't yet accessed. To ensure
2399 * the entry will later be revalidated, we leave it in invalid state, but
2400 * allow use (cf. RelationIdGetRelation()).
2401 */
2403 {
2404 HeapTuple pg_class_tuple;
2405 Form_pg_class relp;
2406
2407 /*
2408 * NB: Mark the entry as valid before starting to scan, to avoid
2409 * self-recursion when re-building pg_class.
2410 */
2411 relation->rd_isvalid = true;
2412
2413 pg_class_tuple = ScanPgRelation(RelationGetRelid(relation),
2414 true, false);
2415 relp = (Form_pg_class) GETSTRUCT(pg_class_tuple);
2416 memcpy(relation->rd_rel, relp, CLASS_TUPLE_SIZE);
2417 heap_freetuple(pg_class_tuple);
2418
2419 /*
2420 * Again mark as valid, to protect against concurrently arriving
2421 * invalidations.
2422 */
2423 relation->rd_isvalid = true;
2424 }
2425}
2426
2427/*
2428 * RelationDestroyRelation
2429 *
2430 * Physically delete a relation cache entry and all subsidiary data.
2431 * Caller must already have unhooked the entry from the hash table.
2432 */
2433static void
2434RelationDestroyRelation(Relation relation, bool remember_tupdesc)
2435{
2437
2438 /*
2439 * Make sure smgr and lower levels close the relation's files, if they
2440 * weren't closed already. (This was probably done by caller, but let's
2441 * just be real sure.)
2442 */
2443 RelationCloseSmgr(relation);
2444
2445 /* break mutual link with stats entry */
2446 pgstat_unlink_relation(relation);
2447
2448 /*
2449 * Free all the subsidiary data structures of the relcache entry, then the
2450 * entry itself.
2451 */
2452 if (relation->rd_rel)
2453 pfree(relation->rd_rel);
2454 /* can't use DecrTupleDescRefCount here */
2455 Assert(relation->rd_att->tdrefcount > 0);
2456 if (--relation->rd_att->tdrefcount == 0)
2457 {
2458 /*
2459 * If we Rebuilt a relcache entry during a transaction then its
2460 * possible we did that because the TupDesc changed as the result of
2461 * an ALTER TABLE that ran at less than AccessExclusiveLock. It's
2462 * possible someone copied that TupDesc, in which case the copy would
2463 * point to free'd memory. So if we rebuild an entry we keep the
2464 * TupDesc around until end of transaction, to be safe.
2465 */
2466 if (remember_tupdesc)
2468 else
2469 FreeTupleDesc(relation->rd_att);
2470 }
2471 FreeTriggerDesc(relation->trigdesc);
2472 list_free_deep(relation->rd_fkeylist);
2473 list_free(relation->rd_indexlist);
2474 list_free(relation->rd_statlist);
2475 bms_free(relation->rd_keyattr);
2476 bms_free(relation->rd_pkattr);
2477 bms_free(relation->rd_idattr);
2478 bms_free(relation->rd_hotblockingattr);
2479 bms_free(relation->rd_summarizedattr);
2480 if (relation->rd_pubdesc)
2481 pfree(relation->rd_pubdesc);
2482 if (relation->rd_options)
2483 pfree(relation->rd_options);
2484 if (relation->rd_indextuple)
2485 pfree(relation->rd_indextuple);
2486 if (relation->rd_amcache)
2487 pfree(relation->rd_amcache);
2488 if (relation->rd_fdwroutine)
2489 pfree(relation->rd_fdwroutine);
2490 if (relation->rd_indexcxt)
2492 if (relation->rd_rulescxt)
2494 if (relation->rd_rsdesc)
2496 if (relation->rd_partkeycxt)
2498 if (relation->rd_pdcxt)
2499 MemoryContextDelete(relation->rd_pdcxt);
2500 if (relation->rd_pddcxt)
2501 MemoryContextDelete(relation->rd_pddcxt);
2502 if (relation->rd_partcheckcxt)
2504 pfree(relation);
2505}
2506
2507/*
2508 * RelationInvalidateRelation - mark a relation cache entry as invalid
2509 *
2510 * An entry that's marked as invalid will be reloaded on next access.
2511 */
2512static void
2514{
2515 /*
2516 * Make sure smgr and lower levels close the relation's files, if they
2517 * weren't closed already. If the relation is not getting deleted, the
2518 * next smgr access should reopen the files automatically. This ensures
2519 * that the low-level file access state is updated after, say, a vacuum
2520 * truncation.
2521 */
2522 RelationCloseSmgr(relation);
2523
2524 /* Free AM cached data, if any */
2525 if (relation->rd_amcache)
2526 pfree(relation->rd_amcache);
2527 relation->rd_amcache = NULL;
2528
2529 relation->rd_isvalid = false;
2530}
2531
2532/*
2533 * RelationClearRelation - physically blow away a relation cache entry
2534 *
2535 * The caller must ensure that the entry is no longer needed, i.e. its
2536 * reference count is zero. Also, the rel or its storage must not be created
2537 * in the current transaction (rd_createSubid and rd_firstRelfilelocatorSubid
2538 * must not be set).
2539 */
2540static void
2542{
2544 Assert(!relation->rd_isnailed);
2545
2546 /*
2547 * Relations created in the same transaction must never be removed, see
2548 * RelationFlushRelation.
2549 */
2553
2554 /* first mark it as invalid */
2556
2557 /* Remove it from the hash table */
2558 RelationCacheDelete(relation);
2559
2560 /* And release storage */
2561 RelationDestroyRelation(relation, false);
2562}
2563
2564/*
2565 * RelationRebuildRelation - rebuild a relation cache entry in place
2566 *
2567 * Reset and rebuild a relation cache entry from scratch (that is, from
2568 * catalog entries). This is used when we are notified of a change to an open
2569 * relation (one with refcount > 0). The entry is reconstructed without
2570 * moving the physical RelationData record, so that the refcount holder's
2571 * pointer is still valid.
2572 *
2573 * NB: when rebuilding, we'd better hold some lock on the relation, else the
2574 * catalog data we need to read could be changing under us. Also, a rel to be
2575 * rebuilt had better have refcnt > 0. This is because a sinval reset could
2576 * happen while we're accessing the catalogs, and the rel would get blown away
2577 * underneath us by RelationCacheInvalidate if it has zero refcnt.
2578 */
2579static void
2581{
2584 /* there is no reason to ever rebuild a dropped relation */
2586
2587 /* Close and mark it as invalid until we've finished the rebuild */
2589
2590 /*
2591 * Indexes only have a limited number of possible schema changes, and we
2592 * don't want to use the full-blown procedure because it's a headache for
2593 * indexes that reload itself depends on.
2594 *
2595 * As an exception, use the full procedure if the index access info hasn't
2596 * been initialized yet. Index creation relies on that: it first builds
2597 * the relcache entry with RelationBuildLocalRelation(), creates the
2598 * pg_index tuple only after that, and then relies on
2599 * CommandCounterIncrement to load the pg_index contents.
2600 */
2601 if ((relation->rd_rel->relkind == RELKIND_INDEX ||
2602 relation->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) &&
2603 relation->rd_indexcxt != NULL)
2604 {
2605 RelationReloadIndexInfo(relation);
2606 return;
2607 }
2608 /* Nailed relations are handled separately. */
2609 else if (relation->rd_isnailed)
2610 {
2611 RelationReloadNailed(relation);
2612 return;
2613 }
2614 else
2615 {
2616 /*
2617 * Our strategy for rebuilding an open relcache entry is to build a
2618 * new entry from scratch, swap its contents with the old entry, and
2619 * finally delete the new entry (along with any infrastructure swapped
2620 * over from the old entry). This is to avoid trouble in case an
2621 * error causes us to lose control partway through. The old entry
2622 * will still be marked !rd_isvalid, so we'll try to rebuild it again
2623 * on next access. Meanwhile it's not any less valid than it was
2624 * before, so any code that might expect to continue accessing it
2625 * isn't hurt by the rebuild failure. (Consider for example a
2626 * subtransaction that ALTERs a table and then gets canceled partway
2627 * through the cache entry rebuild. The outer transaction should
2628 * still see the not-modified cache entry as valid.) The worst
2629 * consequence of an error is leaking the necessarily-unreferenced new
2630 * entry, and this shouldn't happen often enough for that to be a big
2631 * problem.
2632 *
2633 * When rebuilding an open relcache entry, we must preserve ref count,
2634 * rd_*Subid, and rd_toastoid state. Also attempt to preserve the
2635 * pg_class entry (rd_rel), tupledesc, rewrite-rule, partition key,
2636 * and partition descriptor substructures in place, because various
2637 * places assume that these structures won't move while they are
2638 * working with an open relcache entry. (Note: the refcount
2639 * mechanism for tupledescs might someday allow us to remove this hack
2640 * for the tupledesc.)
2641 *
2642 * Note that this process does not touch CurrentResourceOwner; which
2643 * is good because whatever ref counts the entry may have do not
2644 * necessarily belong to that resource owner.
2645 */
2646 Relation newrel;
2647 Oid save_relid = RelationGetRelid(relation);
2648 bool keep_tupdesc;
2649 bool keep_rules;
2650 bool keep_policies;
2651 bool keep_partkey;
2652
2653 /* Build temporary entry, but don't link it into hashtable */
2654 newrel = RelationBuildDesc(save_relid, false);
2655
2656 /*
2657 * Between here and the end of the swap, don't add code that does or
2658 * reasonably could read system catalogs. That range must be free
2659 * from invalidation processing. See RelationBuildDesc() manipulation
2660 * of in_progress_list.
2661 */
2662
2663 if (newrel == NULL)
2664 {
2665 /*
2666 * We can validly get here, if we're using a historic snapshot in
2667 * which a relation, accessed from outside logical decoding, is
2668 * still invisible. In that case it's fine to just mark the
2669 * relation as invalid and return - it'll fully get reloaded by
2670 * the cache reset at the end of logical decoding (or at the next
2671 * access). During normal processing we don't want to ignore this
2672 * case as it shouldn't happen there, as explained below.
2673 */
2675 return;
2676
2677 /*
2678 * This shouldn't happen as dropping a relation is intended to be
2679 * impossible if still referenced (cf. CheckTableNotInUse()). But
2680 * if we get here anyway, we can't just delete the relcache entry,
2681 * as it possibly could get accessed later (as e.g. the error
2682 * might get trapped and handled via a subtransaction rollback).
2683 */
2684 elog(ERROR, "relation %u deleted while still in use", save_relid);
2685 }
2686
2687 /*
2688 * If we were to, again, have cases of the relkind of a relcache entry
2689 * changing, we would need to ensure that pgstats does not get
2690 * confused.
2691 */
2692 Assert(relation->rd_rel->relkind == newrel->rd_rel->relkind);
2693
2694 keep_tupdesc = equalTupleDescs(relation->rd_att, newrel->rd_att);
2695 keep_rules = equalRuleLocks(relation->rd_rules, newrel->rd_rules);
2696 keep_policies = equalRSDesc(relation->rd_rsdesc, newrel->rd_rsdesc);
2697 /* partkey is immutable once set up, so we can always keep it */
2698 keep_partkey = (relation->rd_partkey != NULL);
2699
2700 /*
2701 * Perform swapping of the relcache entry contents. Within this
2702 * process the old entry is momentarily invalid, so there *must* be no
2703 * possibility of CHECK_FOR_INTERRUPTS within this sequence. Do it in
2704 * all-in-line code for safety.
2705 *
2706 * Since the vast majority of fields should be swapped, our method is
2707 * to swap the whole structures and then re-swap those few fields we
2708 * didn't want swapped.
2709 */
2710#define SWAPFIELD(fldtype, fldname) \
2711 do { \
2712 fldtype _tmp = newrel->fldname; \
2713 newrel->fldname = relation->fldname; \
2714 relation->fldname = _tmp; \
2715 } while (0)
2716
2717 /* swap all Relation struct fields */
2718 {
2719 RelationData tmpstruct;
2720
2721 memcpy(&tmpstruct, newrel, sizeof(RelationData));
2722 memcpy(newrel, relation, sizeof(RelationData));
2723 memcpy(relation, &tmpstruct, sizeof(RelationData));
2724 }
2725
2726 /* rd_smgr must not be swapped, due to back-links from smgr level */
2727 SWAPFIELD(SMgrRelation, rd_smgr);
2728 /* rd_refcnt must be preserved */
2729 SWAPFIELD(int, rd_refcnt);
2730 /* isnailed shouldn't change */
2731 Assert(newrel->rd_isnailed == relation->rd_isnailed);
2732 /* creation sub-XIDs must be preserved */
2733 SWAPFIELD(SubTransactionId, rd_createSubid);
2734 SWAPFIELD(SubTransactionId, rd_newRelfilelocatorSubid);
2735 SWAPFIELD(SubTransactionId, rd_firstRelfilelocatorSubid);
2736 SWAPFIELD(SubTransactionId, rd_droppedSubid);
2737 /* un-swap rd_rel pointers, swap contents instead */
2738 SWAPFIELD(Form_pg_class, rd_rel);
2739 /* ... but actually, we don't have to update newrel->rd_rel */
2740 memcpy(relation->rd_rel, newrel->rd_rel, CLASS_TUPLE_SIZE);
2741 /* preserve old tupledesc, rules, policies if no logical change */
2742 if (keep_tupdesc)
2743 SWAPFIELD(TupleDesc, rd_att);
2744 if (keep_rules)
2745 {
2746 SWAPFIELD(RuleLock *, rd_rules);
2747 SWAPFIELD(MemoryContext, rd_rulescxt);
2748 }
2749 if (keep_policies)
2750 SWAPFIELD(RowSecurityDesc *, rd_rsdesc);
2751 /* toast OID override must be preserved */
2752 SWAPFIELD(Oid, rd_toastoid);
2753 /* pgstat_info / enabled must be preserved */
2754 SWAPFIELD(struct PgStat_TableStatus *, pgstat_info);
2755 SWAPFIELD(bool, pgstat_enabled);
2756 /* preserve old partition key if we have one */
2757 if (keep_partkey)
2758 {
2759 SWAPFIELD(PartitionKey, rd_partkey);
2760 SWAPFIELD(MemoryContext, rd_partkeycxt);
2761 }
2762 if (newrel->rd_pdcxt != NULL || newrel->rd_pddcxt != NULL)
2763 {
2764 /*
2765 * We are rebuilding a partitioned relation with a non-zero
2766 * reference count, so we must keep the old partition descriptor
2767 * around, in case there's a PartitionDirectory with a pointer to
2768 * it. This means we can't free the old rd_pdcxt yet. (This is
2769 * necessary because RelationGetPartitionDesc hands out direct
2770 * pointers to the relcache's data structure, unlike our usual
2771 * practice which is to hand out copies. We'd have the same
2772 * problem with rd_partkey, except that we always preserve that
2773 * once created.)
2774 *
2775 * To ensure that it's not leaked completely, re-attach it to the
2776 * new reldesc, or make it a child of the new reldesc's rd_pdcxt
2777 * in the unlikely event that there is one already. (Compare hack
2778 * in RelationBuildPartitionDesc.) RelationClose will clean up
2779 * any such contexts once the reference count reaches zero.
2780 *
2781 * In the case where the reference count is zero, this code is not
2782 * reached, which should be OK because in that case there should
2783 * be no PartitionDirectory with a pointer to the old entry.
2784 *
2785 * Note that newrel and relation have already been swapped, so the
2786 * "old" partition descriptor is actually the one hanging off of
2787 * newrel.
2788 */
2789 relation->rd_partdesc = NULL; /* ensure rd_partdesc is invalid */
2790 relation->rd_partdesc_nodetached = NULL;
2792 if (relation->rd_pdcxt != NULL) /* probably never happens */
2793 MemoryContextSetParent(newrel->rd_pdcxt, relation->rd_pdcxt);
2794 else
2795 relation->rd_pdcxt = newrel->rd_pdcxt;
2796 if (relation->rd_pddcxt != NULL)
2797 MemoryContextSetParent(newrel->rd_pddcxt, relation->rd_pddcxt);
2798 else
2799 relation->rd_pddcxt = newrel->rd_pddcxt;
2800 /* drop newrel's pointers so we don't destroy it below */
2801 newrel->rd_partdesc = NULL;
2802 newrel->rd_partdesc_nodetached = NULL;
2804 newrel->rd_pdcxt = NULL;
2805 newrel->rd_pddcxt = NULL;
2806 }
2807
2808#undef SWAPFIELD
2809
2810 /* And now we can throw away the temporary entry */
2811 RelationDestroyRelation(newrel, !keep_tupdesc);
2812 }
2813}
2814
2815/*
2816 * RelationFlushRelation
2817 *
2818 * Rebuild the relation if it is open (refcount > 0), else blow it away.
2819 * This is used when we receive a cache invalidation event for the rel.
2820 */
2821static void
2823{
2824 if (relation->rd_createSubid != InvalidSubTransactionId ||
2826 {
2827 /*
2828 * New relcache entries are always rebuilt, not flushed; else we'd
2829 * forget the "new" status of the relation. Ditto for the
2830 * new-relfilenumber status.
2831 */
2833 {
2834 /*
2835 * The rel could have zero refcnt here, so temporarily increment
2836 * the refcnt to ensure it's safe to rebuild it. We can assume
2837 * that the current transaction has some lock on the rel already.
2838 */
2840 RelationRebuildRelation(relation);
2842 }
2843 else
2845 }
2846 else
2847 {
2848 /*
2849 * Pre-existing rels can be dropped from the relcache if not open.
2850 *
2851 * If the entry is in use, rebuild it if possible. If we're not
2852 * inside a valid transaction, we can't do any catalog access so it's
2853 * not possible to rebuild yet. Just mark it as invalid in that case,
2854 * so that the rebuild will occur when the entry is next opened.
2855 *
2856 * Note: it's possible that we come here during subtransaction abort,
2857 * and the reason for wanting to rebuild is that the rel is open in
2858 * the outer transaction. In that case it might seem unsafe to not
2859 * rebuild immediately, since whatever code has the rel already open
2860 * will keep on using the relcache entry as-is. However, in such a
2861 * case the outer transaction should be holding a lock that's
2862 * sufficient to prevent any significant change in the rel's schema,
2863 * so the existing entry contents should be good enough for its
2864 * purposes; at worst we might be behind on statistics updates or the
2865 * like. (See also CheckTableNotInUse() and its callers.)
2866 */
2867 if (RelationHasReferenceCountZero(relation))
2868 RelationClearRelation(relation);
2869 else if (!IsTransactionState())
2871 else if (relation->rd_isnailed && relation->rd_refcnt == 1)
2872 {
2873 /*
2874 * A nailed relation with refcnt == 1 is unused. We cannot clear
2875 * it, but there's also no need no need to rebuild it immediately.
2876 */
2878 }
2879 else
2880 RelationRebuildRelation(relation);
2881 }
2882}
2883
2884/*
2885 * RelationForgetRelation - caller reports that it dropped the relation
2886 */
2887void
2889{
2890 Relation relation;
2891
2892 RelationIdCacheLookup(rid, relation);
2893
2894 if (!relation)
2895 return; /* not in cache, nothing to do */
2896
2897 if (!RelationHasReferenceCountZero(relation))
2898 elog(ERROR, "relation %u is still open", rid);
2899
2901 if (relation->rd_createSubid != InvalidSubTransactionId ||
2903 {
2904 /*
2905 * In the event of subtransaction rollback, we must not forget
2906 * rd_*Subid. Mark the entry "dropped" and invalidate it, instead of
2907 * destroying it right away. (If we're in a top transaction, we could
2908 * opt to destroy the entry.)
2909 */
2912 }
2913 else
2914 RelationClearRelation(relation);
2915}
2916
2917/*
2918 * RelationCacheInvalidateEntry
2919 *
2920 * This routine is invoked for SI cache flush messages.
2921 *
2922 * Any relcache entry matching the relid must be flushed. (Note: caller has
2923 * already determined that the relid belongs to our database or is a shared
2924 * relation.)
2925 *
2926 * We used to skip local relations, on the grounds that they could
2927 * not be targets of cross-backend SI update messages; but it seems
2928 * safer to process them, so that our *own* SI update messages will
2929 * have the same effects during CommandCounterIncrement for both
2930 * local and nonlocal relations.
2931 */
2932void
2934{
2935 Relation relation;
2936
2937 RelationIdCacheLookup(relationId, relation);
2938
2939 if (relation)
2940 {
2942 RelationFlushRelation(relation);
2943 }
2944 else
2945 {
2946 int i;
2947
2948 for (i = 0; i < in_progress_list_len; i++)
2949 if (in_progress_list[i].reloid == relationId)
2951 }
2952}
2953
2954/*
2955 * RelationCacheInvalidate
2956 * Blow away cached relation descriptors that have zero reference counts,
2957 * and rebuild those with positive reference counts. Also reset the smgr
2958 * relation cache and re-read relation mapping data.
2959 *
2960 * Apart from debug_discard_caches, this is currently used only to recover
2961 * from SI message buffer overflow, so we do not touch relations having
2962 * new-in-transaction relfilenumbers; they cannot be targets of cross-backend
2963 * SI updates (and our own updates now go through a separate linked list
2964 * that isn't limited by the SI message buffer size).
2965 *
2966 * We do this in two phases: the first pass deletes deletable items, and
2967 * the second one rebuilds the rebuildable items. This is essential for
2968 * safety, because hash_seq_search only copes with concurrent deletion of
2969 * the element it is currently visiting. If a second SI overflow were to
2970 * occur while we are walking the table, resulting in recursive entry to
2971 * this routine, we could crash because the inner invocation blows away
2972 * the entry next to be visited by the outer scan. But this way is OK,
2973 * because (a) during the first pass we won't process any more SI messages,
2974 * so hash_seq_search will complete safely; (b) during the second pass we
2975 * only hold onto pointers to nondeletable entries.
2976 *
2977 * The two-phase approach also makes it easy to update relfilenumbers for
2978 * mapped relations before we do anything else, and to ensure that the
2979 * second pass processes nailed-in-cache items before other nondeletable
2980 * items. This should ensure that system catalogs are up to date before
2981 * we attempt to use them to reload information about other open relations.
2982 *
2983 * After those two phases of work having immediate effects, we normally
2984 * signal any RelationBuildDesc() on the stack to start over. However, we
2985 * don't do this if called as part of debug_discard_caches. Otherwise,
2986 * RelationBuildDesc() would become an infinite loop.
2987 */
2988void
2989RelationCacheInvalidate(bool debug_discard)
2990{
2991 HASH_SEQ_STATUS status;
2992 RelIdCacheEnt *idhentry;
2993 Relation relation;
2994 List *rebuildFirstList = NIL;
2995 List *rebuildList = NIL;
2996 ListCell *l;
2997 int i;
2998
2999 /*
3000 * Reload relation mapping data before starting to reconstruct cache.
3001 */
3003
3004 /* Phase 1 */
3006
3007 while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL)
3008 {
3009 relation = idhentry->reldesc;
3010
3011 /*
3012 * Ignore new relations; no other backend will manipulate them before
3013 * we commit. Likewise, before replacing a relation's relfilelocator,
3014 * we shall have acquired AccessExclusiveLock and drained any
3015 * applicable pending invalidations.
3016 */
3017 if (relation->rd_createSubid != InvalidSubTransactionId ||
3019 continue;
3020
3022
3023 if (RelationHasReferenceCountZero(relation))
3024 {
3025 /* Delete this entry immediately */
3026 RelationClearRelation(relation);
3027 }
3028 else
3029 {
3030 /*
3031 * If it's a mapped relation, immediately update its rd_locator in
3032 * case its relfilenumber changed. We must do this during phase 1
3033 * in case the relation is consulted during rebuild of other
3034 * relcache entries in phase 2. It's safe since consulting the
3035 * map doesn't involve any access to relcache entries.
3036 */
3037 if (RelationIsMapped(relation))
3038 {
3039 RelationCloseSmgr(relation);
3040 RelationInitPhysicalAddr(relation);
3041 }
3042
3043 /*
3044 * Add this entry to list of stuff to rebuild in second pass.
3045 * pg_class goes to the front of rebuildFirstList while
3046 * pg_class_oid_index goes to the back of rebuildFirstList, so
3047 * they are done first and second respectively. Other nailed
3048 * relations go to the front of rebuildList, so they'll be done
3049 * next in no particular order; and everything else goes to the
3050 * back of rebuildList.
3051 */
3052 if (RelationGetRelid(relation) == RelationRelationId)
3053 rebuildFirstList = lcons(relation, rebuildFirstList);
3054 else if (RelationGetRelid(relation) == ClassOidIndexId)
3055 rebuildFirstList = lappend(rebuildFirstList, relation);
3056 else if (relation->rd_isnailed)
3057 rebuildList = lcons(relation, rebuildList);
3058 else
3059 rebuildList = lappend(rebuildList, relation);
3060 }
3061 }
3062
3063 /*
3064 * We cannot destroy the SMgrRelations as there might still be references
3065 * to them, but close the underlying file descriptors.
3066 */
3068
3069 /*
3070 * Phase 2: rebuild (or invalidate) the items found to need rebuild in
3071 * phase 1
3072 */
3073 foreach(l, rebuildFirstList)
3074 {
3075 relation = (Relation) lfirst(l);
3076 if (!IsTransactionState() || (relation->rd_isnailed && relation->rd_refcnt == 1))
3078 else
3079 RelationRebuildRelation(relation);
3080 }
3081 list_free(rebuildFirstList);
3082 foreach(l, rebuildList)
3083 {
3084 relation = (Relation) lfirst(l);
3085 if (!IsTransactionState() || (relation->rd_isnailed && relation->rd_refcnt == 1))
3087 else
3088 RelationRebuildRelation(relation);
3089 }
3090 list_free(rebuildList);
3091
3092 if (!debug_discard)
3093 /* Any RelationBuildDesc() on the stack must start over. */
3094 for (i = 0; i < in_progress_list_len; i++)
3095 in_progress_list[i].invalidated = true;
3096}
3097
3098static void
3100{
3101 if (EOXactTupleDescArray == NULL)
3102 {
3103 MemoryContext oldcxt;
3104
3106
3107 EOXactTupleDescArray = (TupleDesc *) palloc(16 * sizeof(TupleDesc));
3110 MemoryContextSwitchTo(oldcxt);
3111 }
3113 {
3114 int32 newlen = EOXactTupleDescArrayLen * 2;
3115
3117
3119 newlen * sizeof(TupleDesc));
3120 EOXactTupleDescArrayLen = newlen;
3121 }
3122
3124}
3125
3126#ifdef USE_ASSERT_CHECKING
3127static void
3128AssertPendingSyncConsistency(Relation relation)
3129{
3130 bool relcache_verdict =
3131 RelationIsPermanent(relation) &&
3132 ((relation->rd_createSubid != InvalidSubTransactionId &&
3133 RELKIND_HAS_STORAGE(relation->rd_rel->relkind)) ||
3135
3136 Assert(relcache_verdict == RelFileLocatorSkippingWAL(relation->rd_locator));
3137
3139 Assert(!relation->rd_isvalid &&
3142}
3143
3144/*
3145 * AssertPendingSyncs_RelationCache
3146 *
3147 * Assert that relcache.c and storage.c agree on whether to skip WAL.
3148 */
3149void
3151{
3152 HASH_SEQ_STATUS status;
3153 LOCALLOCK *locallock;
3154 Relation *rels;
3155 int maxrels;
3156 int nrels;
3157 RelIdCacheEnt *idhentry;
3158 int i;
3159
3160 /*
3161 * Open every relation that this transaction has locked. If, for some
3162 * relation, storage.c is skipping WAL and relcache.c is not skipping WAL,
3163 * a CommandCounterIncrement() typically yields a local invalidation
3164 * message that destroys the relcache entry. By recreating such entries
3165 * here, we detect the problem.
3166 */
3168 maxrels = 1;
3169 rels = palloc(maxrels * sizeof(*rels));
3170 nrels = 0;
3171 hash_seq_init(&status, GetLockMethodLocalHash());
3172 while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
3173 {
3174 Oid relid;
3175 Relation r;
3176
3177 if (locallock->nLocks <= 0)
3178 continue;
3179 if ((LockTagType) locallock->tag.lock.locktag_type !=
3181 continue;
3182 relid = locallock->tag.lock.locktag_field2;
3183 r = RelationIdGetRelation(relid);
3184 if (!RelationIsValid(r))
3185 continue;
3186 if (nrels >= maxrels)
3187 {
3188 maxrels *= 2;
3189 rels = repalloc(rels, maxrels * sizeof(*rels));
3190 }
3191 rels[nrels++] = r;
3192 }
3193
3195 while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL)
3196 AssertPendingSyncConsistency(idhentry->reldesc);
3197
3198 for (i = 0; i < nrels; i++)
3199 RelationClose(rels[i]);
3201}
3202#endif
3203
3204/*
3205 * AtEOXact_RelationCache
3206 *
3207 * Clean up the relcache at main-transaction commit or abort.
3208 *
3209 * Note: this must be called *before* processing invalidation messages.
3210 * In the case of abort, we don't want to try to rebuild any invalidated
3211 * cache entries (since we can't safely do database accesses). Therefore
3212 * we must reset refcnts before handling pending invalidations.
3213 *
3214 * As of PostgreSQL 8.1, relcache refcnts should get released by the
3215 * ResourceOwner mechanism. This routine just does a debugging
3216 * cross-check that no pins remain. However, we also need to do special
3217 * cleanup when the current transaction created any relations or made use
3218 * of forced index lists.
3219 */
3220void
3222{
3223 HASH_SEQ_STATUS status;
3224 RelIdCacheEnt *idhentry;
3225 int i;
3226
3227 /*
3228 * Forget in_progress_list. This is relevant when we're aborting due to
3229 * an error during RelationBuildDesc().
3230 */
3231 Assert(in_progress_list_len == 0 || !isCommit);
3233
3234 /*
3235 * Unless the eoxact_list[] overflowed, we only need to examine the rels
3236 * listed in it. Otherwise fall back on a hash_seq_search scan.
3237 *
3238 * For simplicity, eoxact_list[] entries are not deleted till end of
3239 * top-level transaction, even though we could remove them at
3240 * subtransaction end in some cases, or remove relations from the list if
3241 * they are cleared for other reasons. Therefore we should expect the
3242 * case that list entries are not found in the hashtable; if not, there's
3243 * nothing to do for them.
3244 */
3246 {
3248 while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL)
3249 {
3250 AtEOXact_cleanup(idhentry->reldesc, isCommit);
3251 }
3252 }
3253 else
3254 {
3255 for (i = 0; i < eoxact_list_len; i++)
3256 {
3258 &eoxact_list[i],
3259 HASH_FIND,
3260 NULL);
3261 if (idhentry != NULL)
3262 AtEOXact_cleanup(idhentry->reldesc, isCommit);
3263 }
3264 }
3265
3267 {
3269 for (i = 0; i < NextEOXactTupleDescNum; i++)
3272 EOXactTupleDescArray = NULL;
3273 }
3274
3275 /* Now we're out of the transaction and can clear the lists */
3276 eoxact_list_len = 0;
3277 eoxact_list_overflowed = false;
3280}
3281
3282/*
3283 * AtEOXact_cleanup
3284 *
3285 * Clean up a single rel at main-transaction commit or abort
3286 *
3287 * NB: this processing must be idempotent, because EOXactListAdd() doesn't
3288 * bother to prevent duplicate entries in eoxact_list[].
3289 */
3290static void
3291AtEOXact_cleanup(Relation relation, bool isCommit)
3292{
3293 bool clear_relcache = false;
3294
3295 /*
3296 * The relcache entry's ref count should be back to its normal
3297 * not-in-a-transaction state: 0 unless it's nailed in cache.
3298 *
3299 * In bootstrap mode, this is NOT true, so don't check it --- the
3300 * bootstrap code expects relations to stay open across start/commit
3301 * transaction calls. (That seems bogus, but it's not worth fixing.)
3302 *
3303 * Note: ideally this check would be applied to every relcache entry, not
3304 * just those that have eoxact work to do. But it's not worth forcing a
3305 * scan of the whole relcache just for this. (Moreover, doing so would
3306 * mean that assert-enabled testing never tests the hash_search code path
3307 * above, which seems a bad idea.)
3308 */
3309#ifdef USE_ASSERT_CHECKING
3311 {
3312 int expected_refcnt;
3313
3314 expected_refcnt = relation->rd_isnailed ? 1 : 0;
3315 Assert(relation->rd_refcnt == expected_refcnt);
3316 }
3317#endif
3318
3319 /*
3320 * Is the relation live after this transaction ends?
3321 *
3322 * During commit, clear the relcache entry if it is preserved after
3323 * relation drop, in order not to orphan the entry. During rollback,
3324 * clear the relcache entry if the relation is created in the current
3325 * transaction since it isn't interesting any longer once we are out of
3326 * the transaction.
3327 */
3328 clear_relcache =
3329 (isCommit ?
3332
3333 /*
3334 * Since we are now out of the transaction, reset the subids to zero. That
3335 * also lets RelationClearRelation() drop the relcache entry.
3336 */
3341
3342 if (clear_relcache)
3343 {
3344 if (RelationHasReferenceCountZero(relation))
3345 {
3346 RelationClearRelation(relation);
3347 return;
3348 }
3349 else
3350 {
3351 /*
3352 * Hmm, somewhere there's a (leaked?) reference to the relation.
3353 * We daren't remove the entry for fear of dereferencing a
3354 * dangling pointer later. Bleat, and mark it as not belonging to
3355 * the current transaction. Hopefully it'll get cleaned up
3356 * eventually. This must be just a WARNING to avoid
3357 * error-during-error-recovery loops.
3358 */
3359 elog(WARNING, "cannot remove relcache entry for \"%s\" because it has nonzero refcount",
3360 RelationGetRelationName(relation));
3361 }
3362 }
3363}
3364
3365/*
3366 * AtEOSubXact_RelationCache
3367 *
3368 * Clean up the relcache at sub-transaction commit or abort.
3369 *
3370 * Note: this must be called *before* processing invalidation messages.
3371 */
3372void
3374 SubTransactionId parentSubid)
3375{
3376 HASH_SEQ_STATUS status;
3377 RelIdCacheEnt *idhentry;
3378 int i;
3379
3380 /*
3381 * Forget in_progress_list. This is relevant when we're aborting due to
3382 * an error during RelationBuildDesc(). We don't commit subtransactions
3383 * during RelationBuildDesc().
3384 */
3385 Assert(in_progress_list_len == 0 || !isCommit);
3387
3388 /*
3389 * Unless the eoxact_list[] overflowed, we only need to examine the rels
3390 * listed in it. Otherwise fall back on a hash_seq_search scan. Same
3391 * logic as in AtEOXact_RelationCache.
3392 */
3394 {
3396 while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL)
3397 {
3398 AtEOSubXact_cleanup(idhentry->reldesc, isCommit,
3399 mySubid, parentSubid);
3400 }
3401 }
3402 else
3403 {
3404 for (i = 0; i < eoxact_list_len; i++)
3405 {
3407 &eoxact_list[i],
3408 HASH_FIND,
3409 NULL);
3410 if (idhentry != NULL)
3411 AtEOSubXact_cleanup(idhentry->reldesc, isCommit,
3412 mySubid, parentSubid);
3413 }
3414 }
3415
3416 /* Don't reset the list; we still need more cleanup later */
3417}
3418
3419/*
3420 * AtEOSubXact_cleanup
3421 *
3422 * Clean up a single rel at subtransaction commit or abort
3423 *
3424 * NB: this processing must be idempotent, because EOXactListAdd() doesn't
3425 * bother to prevent duplicate entries in eoxact_list[].
3426 */
3427static void
3428AtEOSubXact_cleanup(Relation relation, bool isCommit,
3429 SubTransactionId mySubid, SubTransactionId parentSubid)
3430{
3431 /*
3432 * Is it a relation created in the current subtransaction?
3433 *
3434 * During subcommit, mark it as belonging to the parent, instead, as long
3435 * as it has not been dropped. Otherwise simply delete the relcache entry.
3436 * --- it isn't interesting any longer.
3437 */
3438 if (relation->rd_createSubid == mySubid)
3439 {
3440 /*
3441 * Valid rd_droppedSubid means the corresponding relation is dropped
3442 * but the relcache entry is preserved for at-commit pending sync. We
3443 * need to drop it explicitly here not to make the entry orphan.
3444 */
3445 Assert(relation->rd_droppedSubid == mySubid ||
3447 if (isCommit && relation->rd_droppedSubid == InvalidSubTransactionId)
3448 relation->rd_createSubid = parentSubid;
3449 else if (RelationHasReferenceCountZero(relation))
3450 {
3451 /* allow the entry to be removed */
3456 RelationClearRelation(relation);
3457 return;
3458 }
3459 else
3460 {
3461 /*
3462 * Hmm, somewhere there's a (leaked?) reference to the relation.
3463 * We daren't remove the entry for fear of dereferencing a
3464 * dangling pointer later. Bleat, and transfer it to the parent
3465 * subtransaction so we can try again later. This must be just a
3466 * WARNING to avoid error-during-error-recovery loops.
3467 */
3468 relation->rd_createSubid = parentSubid;
3469 elog(WARNING, "cannot remove relcache entry for \"%s\" because it has nonzero refcount",
3470 RelationGetRelationName(relation));
3471 }
3472 }
3473
3474 /*
3475 * Likewise, update or drop any new-relfilenumber-in-subtransaction record
3476 * or drop record.
3477 */
3478 if (relation->rd_newRelfilelocatorSubid == mySubid)
3479 {
3480 if (isCommit)
3481 relation->rd_newRelfilelocatorSubid = parentSubid;
3482 else
3484 }
3485
3486 if (relation->rd_firstRelfilelocatorSubid == mySubid)
3487 {
3488 if (isCommit)
3489 relation->rd_firstRelfilelocatorSubid = parentSubid;
3490 else
3492 }
3493
3494 if (relation->rd_droppedSubid == mySubid)
3495 {
3496 if (isCommit)
3497 relation->rd_droppedSubid = parentSubid;
3498 else
3500 }
3501}
3502
3503
3504/*
3505 * RelationBuildLocalRelation
3506 * Build a relcache entry for an about-to-be-created relation,
3507 * and enter it into the relcache.
3508 */
3511 Oid relnamespace,
3512 TupleDesc tupDesc,
3513 Oid relid,
3514 Oid accessmtd,
3515 RelFileNumber relfilenumber,
3516 Oid reltablespace,
3517 bool shared_relation,
3518 bool mapped_relation,
3519 char relpersistence,
3520 char relkind)
3521{
3522 Relation rel;
3523 MemoryContext oldcxt;
3524 int natts = tupDesc->natts;
3525 int i;
3526 bool has_not_null;
3527 bool nailit;
3528
3529 Assert(natts >= 0);
3530
3531 /*
3532 * check for creation of a rel that must be nailed in cache.
3533 *
3534 * XXX this list had better match the relations specially handled in
3535 * RelationCacheInitializePhase2/3.
3536 */
3537 switch (relid)
3538 {
3539 case DatabaseRelationId:
3540 case AuthIdRelationId:
3541 case AuthMemRelationId:
3542 case RelationRelationId:
3543 case AttributeRelationId:
3544 case ProcedureRelationId:
3545 case TypeRelationId:
3546 nailit = true;
3547 break;
3548 default:
3549 nailit = false;
3550 break;
3551 }
3552
3553 /*
3554 * check that hardwired list of shared rels matches what's in the
3555 * bootstrap .bki file. If you get a failure here during initdb, you
3556 * probably need to fix IsSharedRelation() to match whatever you've done
3557 * to the set of shared relations.
3558 */
3559 if (shared_relation != IsSharedRelation(relid))
3560 elog(ERROR, "shared_relation flag for \"%s\" does not match IsSharedRelation(%u)",
3561 relname, relid);
3562
3563 /* Shared relations had better be mapped, too */
3564 Assert(mapped_relation || !shared_relation);
3565
3566 /*
3567 * switch to the cache context to create the relcache entry.
3568 */
3569 if (!CacheMemoryContext)
3571
3573
3574 /*
3575 * allocate a new relation descriptor and fill in basic state fields.
3576 */
3578
3579 /* make sure relation is marked as having no open file yet */
3580 rel->rd_smgr = NULL;
3581
3582 /* mark it nailed if appropriate */
3583 rel->rd_isnailed = nailit;
3584
3585 rel->rd_refcnt = nailit ? 1 : 0;
3586
3587 /* it's being created in this transaction */
3592
3593 /*
3594 * create a new tuple descriptor from the one passed in. We do this
3595 * partly to copy it into the cache context, and partly because the new
3596 * relation can't have any defaults or constraints yet; they have to be
3597 * added in later steps, because they require additions to multiple system
3598 * catalogs. We can copy attnotnull constraints here, however.
3599 */
3600 rel->rd_att = CreateTupleDescCopy(tupDesc);
3601 rel->rd_att->tdrefcount = 1; /* mark as refcounted */
3602 has_not_null = false;
3603 for (i = 0; i < natts; i++)
3604 {
3605 Form_pg_attribute satt = TupleDescAttr(tupDesc, i);
3607
3608 datt->attidentity = satt->attidentity;
3609 datt->attgenerated = satt->attgenerated;
3610 datt->attnotnull = satt->attnotnull;
3611 has_not_null |= satt->attnotnull;
3613
3614 if (satt->attnotnull)
3615 {
3616 CompactAttribute *scatt = TupleDescCompactAttr(tupDesc, i);
3618
3619 dcatt->attnullability = scatt->attnullability;
3620 }
3621 }
3622
3623 if (has_not_null)
3624 {
3626
3627 constr->has_not_null = true;
3628 rel->rd_att->constr = constr;
3629 }
3630
3631 /*
3632 * initialize relation tuple form (caller may add/override data later)
3633 */
3635
3636 namestrcpy(&rel->rd_rel->relname, relname);
3637 rel->rd_rel->relnamespace = relnamespace;
3638
3639 rel->rd_rel->relkind = relkind;
3640 rel->rd_rel->relnatts = natts;
3641 rel->rd_rel->reltype = InvalidOid;
3642 /* needed when bootstrapping: */
3643 rel->rd_rel->relowner = BOOTSTRAP_SUPERUSERID;
3644
3645 /* set up persistence and relcache fields dependent on it */
3646 rel->rd_rel->relpersistence = relpersistence;
3647 switch (relpersistence)
3648 {
3649 case RELPERSISTENCE_UNLOGGED:
3650 case RELPERSISTENCE_PERMANENT:
3652 rel->rd_islocaltemp = false;
3653 break;
3654 case RELPERSISTENCE_TEMP:
3655 Assert(isTempOrTempToastNamespace(relnamespace));
3657 rel->rd_islocaltemp = true;
3658 break;
3659 default:
3660 elog(ERROR, "invalid relpersistence: %c", relpersistence);
3661 break;
3662 }
3663
3664 /* if it's a materialized view, it's not populated initially */
3665 if (relkind == RELKIND_MATVIEW)
3666 rel->rd_rel->relispopulated = false;
3667 else
3668 rel->rd_rel->relispopulated = true;
3669
3670 /* set replica identity -- system catalogs and non-tables don't have one */
3671 if (!IsCatalogNamespace(relnamespace) &&
3672 (relkind == RELKIND_RELATION ||
3673 relkind == RELKIND_MATVIEW ||
3674 relkind == RELKIND_PARTITIONED_TABLE))
3675 rel->rd_rel->relreplident = REPLICA_IDENTITY_DEFAULT;
3676 else
3677 rel->rd_rel->relreplident = REPLICA_IDENTITY_NOTHING;
3678
3679 /*
3680 * Insert relation physical and logical identifiers (OIDs) into the right
3681 * places. For a mapped relation, we set relfilenumber to zero and rely
3682 * on RelationInitPhysicalAddr to consult the map.
3683 */
3684 rel->rd_rel->relisshared = shared_relation;
3685
3686 RelationGetRelid(rel) = relid;
3687
3688 for (i = 0; i < natts; i++)
3689 TupleDescAttr(rel->rd_att, i)->attrelid = relid;
3690
3691 rel->rd_rel->reltablespace = reltablespace;
3692
3693 if (mapped_relation)
3694 {
3695 rel->rd_rel->relfilenode = InvalidRelFileNumber;
3696 /* Add it to the active mapping information */
3697 RelationMapUpdateMap(relid, relfilenumber, shared_relation, true);
3698 }
3699 else
3700 rel->rd_rel->relfilenode = relfilenumber;
3701
3702 RelationInitLockInfo(rel); /* see lmgr.c */
3703
3705
3706 rel->rd_rel->relam = accessmtd;
3707
3708 /*
3709 * RelationInitTableAccessMethod will do syscache lookups, so we mustn't
3710 * run it in CacheMemoryContext. Fortunately, the remaining steps don't
3711 * require a long-lived current context.
3712 */
3713 MemoryContextSwitchTo(oldcxt);
3714
3715 if (RELKIND_HAS_TABLE_AM(relkind) || relkind == RELKIND_SEQUENCE)
3717
3718 /*
3719 * Leave index access method uninitialized, because the pg_index row has
3720 * not been inserted at this stage of index creation yet. The cache
3721 * invalidation after pg_index row has been inserted will initialize it.
3722 */
3723
3724 /*
3725 * Okay to insert into the relcache hash table.
3726 *
3727 * Ordinarily, there should certainly not be an existing hash entry for
3728 * the same OID; but during bootstrap, when we create a "real" relcache
3729 * entry for one of the bootstrap relations, we'll be overwriting the
3730 * phony one created with formrdesc. So allow that to happen for nailed
3731 * rels.
3732 */
3733 RelationCacheInsert(rel, nailit);
3734
3735 /*
3736 * Flag relation as needing eoxact cleanup (to clear rd_createSubid). We
3737 * can't do this before storing relid in it.
3738 */
3739 EOXactListAdd(rel);
3740
3741 /* It's fully valid */
3742 rel->rd_isvalid = true;
3743
3744 /*
3745 * Caller expects us to pin the returned entry.
3746 */
3748
3749 return rel;
3750}
3751
3752
3753/*
3754 * RelationSetNewRelfilenumber
3755 *
3756 * Assign a new relfilenumber (physical file name), and possibly a new
3757 * persistence setting, to the relation.
3758 *
3759 * This allows a full rewrite of the relation to be done with transactional
3760 * safety (since the filenumber assignment can be rolled back). Note however
3761 * that there is no simple way to access the relation's old data for the
3762 * remainder of the current transaction. This limits the usefulness to cases
3763 * such as TRUNCATE or rebuilding an index from scratch.
3764 *
3765 * Caller must already hold exclusive lock on the relation.
3766 */
3767void
3768RelationSetNewRelfilenumber(Relation relation, char persistence)
3769{
3770 RelFileNumber newrelfilenumber;
3771 Relation pg_class;
3772 ItemPointerData otid;
3773 HeapTuple tuple;
3774 Form_pg_class classform;
3777 RelFileLocator newrlocator;
3778
3779 if (!IsBinaryUpgrade)
3780 {
3781 /* Allocate a new relfilenumber */
3782 newrelfilenumber = GetNewRelFileNumber(relation->rd_rel->reltablespace,
3783 NULL, persistence);
3784 }
3785 else if (relation->rd_rel->relkind == RELKIND_INDEX)
3786 {
3788 ereport(ERROR,
3789 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3790 errmsg("index relfilenumber value not set when in binary upgrade mode")));
3791
3794 }
3795 else if (relation->rd_rel->relkind == RELKIND_RELATION)
3796 {
3798 ereport(ERROR,
3799 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3800 errmsg("heap relfilenumber value not set when in binary upgrade mode")));
3801
3804 }
3805 else
3806 ereport(ERROR,
3807 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3808 errmsg("unexpected request for new relfilenumber in binary upgrade mode")));
3809
3810 /*
3811 * Get a writable copy of the pg_class tuple for the given relation.
3812 */
3813 pg_class = table_open(RelationRelationId, RowExclusiveLock);
3814
3815 tuple = SearchSysCacheLockedCopy1(RELOID,
3817 if (!HeapTupleIsValid(tuple))
3818 elog(ERROR, "could not find tuple for relation %u",
3819 RelationGetRelid(relation));
3820 otid = tuple->t_self;
3821 classform = (Form_pg_class) GETSTRUCT(tuple);
3822
3823 /*
3824 * Schedule unlinking of the old storage at transaction commit, except
3825 * when performing a binary upgrade, when we must do it immediately.
3826 */
3827 if (IsBinaryUpgrade)
3828 {
3829 SMgrRelation srel;
3830
3831 /*
3832 * During a binary upgrade, we use this code path to ensure that
3833 * pg_largeobject and its index have the same relfilenumbers as in the
3834 * old cluster. This is necessary because pg_upgrade treats
3835 * pg_largeobject like a user table, not a system table. It is however
3836 * possible that a table or index may need to end up with the same
3837 * relfilenumber in the new cluster as what it had in the old cluster.
3838 * Hence, we can't wait until commit time to remove the old storage.
3839 *
3840 * In general, this function needs to have transactional semantics,
3841 * and removing the old storage before commit time surely isn't.
3842 * However, it doesn't really matter, because if a binary upgrade
3843 * fails at this stage, the new cluster will need to be recreated
3844 * anyway.
3845 */
3846 srel = smgropen(relation->rd_locator, relation->rd_backend);
3847 smgrdounlinkall(&srel, 1, false);
3848 smgrclose(srel);
3849 }
3850 else
3851 {
3852 /* Not a binary upgrade, so just schedule it to happen later. */
3853 RelationDropStorage(relation);
3854 }
3855
3856 /*
3857 * Create storage for the main fork of the new relfilenumber. If it's a
3858 * table-like object, call into the table AM to do so, which'll also
3859 * create the table's init fork if needed.
3860 *
3861 * NOTE: If relevant for the AM, any conflict in relfilenumber value will
3862 * be caught here, if GetNewRelFileNumber messes up for any reason.
3863 */
3864 newrlocator = relation->rd_locator;
3865 newrlocator.relNumber = newrelfilenumber;
3866
3867 if (RELKIND_HAS_TABLE_AM(relation->rd_rel->relkind))
3868 {
3869 table_relation_set_new_filelocator(relation, &newrlocator,
3870 persistence,
3871 &freezeXid, &minmulti);
3872 }
3873 else if (RELKIND_HAS_STORAGE(relation->rd_rel->relkind))
3874 {
3875 /* handle these directly, at least for now */
3876 SMgrRelation srel;
3877
3878 srel = RelationCreateStorage(newrlocator, persistence, true);
3879 smgrclose(srel);
3880 }
3881 else
3882 {
3883 /* we shouldn't be called for anything else */
3884 elog(ERROR, "relation \"%s\" does not have storage",
3885 RelationGetRelationName(relation));
3886 }
3887
3888 /*
3889 * If we're dealing with a mapped index, pg_class.relfilenode doesn't
3890 * change; instead we have to send the update to the relation mapper.
3891 *
3892 * For mapped indexes, we don't actually change the pg_class entry at all;
3893 * this is essential when reindexing pg_class itself. That leaves us with
3894 * possibly-inaccurate values of relpages etc, but those will be fixed up
3895 * later.
3896 */
3897 if (RelationIsMapped(relation))
3898 {
3899 /* This case is only supported for indexes */
3900 Assert(relation->rd_rel->relkind == RELKIND_INDEX);
3901
3902 /* Since we're not updating pg_class, these had better not change */
3903 Assert(classform->relfrozenxid == freezeXid);
3904 Assert(classform->relminmxid == minmulti);
3905 Assert(classform->relpersistence == persistence);
3906
3907 /*
3908 * In some code paths it's possible that the tuple update we'd
3909 * otherwise do here is the only thing that would assign an XID for
3910 * the current transaction. However, we must have an XID to delete
3911 * files, so make sure one is assigned.
3912 */
3913 (void) GetCurrentTransactionId();
3914
3915 /* Do the deed */
3917 newrelfilenumber,
3918 relation->rd_rel->relisshared,
3919 false);
3920
3921 /* Since we're not updating pg_class, must trigger inval manually */
3922 CacheInvalidateRelcache(relation);
3923 }
3924 else
3925 {
3926 /* Normal case, update the pg_class entry */
3927 classform->relfilenode = newrelfilenumber;
3928
3929 /* relpages etc. never change for sequences */
3930 if (relation->rd_rel->relkind != RELKIND_SEQUENCE)
3931 {
3932 classform->relpages = 0; /* it's empty until further notice */
3933 classform->reltuples = -1;
3934 classform->relallvisible = 0;
3935 classform->relallfrozen = 0;
3936 }
3937 classform->relfrozenxid = freezeXid;
3938 classform->relminmxid = minmulti;
3939 classform->relpersistence = persistence;
3940
3941 CatalogTupleUpdate(pg_class, &otid, tuple);
3942 }
3943
3944 UnlockTuple(pg_class, &otid, InplaceUpdateTupleLock);
3945 heap_freetuple(tuple);
3946
3947 table_close(pg_class, RowExclusiveLock);
3948
3949 /*
3950 * Make the pg_class row change or relation map change visible. This will
3951 * cause the relcache entry to get updated, too.
3952 */
3954
3956}
3957
3958/*
3959 * RelationAssumeNewRelfilelocator
3960 *
3961 * Code that modifies pg_class.reltablespace or pg_class.relfilenode must call
3962 * this. The call shall precede any code that might insert WAL records whose
3963 * replay would modify bytes in the new RelFileLocator, and the call shall follow
3964 * any WAL modifying bytes in the prior RelFileLocator. See struct RelationData.
3965 * Ideally, call this as near as possible to the CommandCounterIncrement()
3966 * that makes the pg_class change visible (before it or after it); that
3967 * minimizes the chance of future development adding a forbidden WAL insertion
3968 * between RelationAssumeNewRelfilelocator() and CommandCounterIncrement().
3969 */
3970void
3972{
3976
3977 /* Flag relation as needing eoxact cleanup (to clear these fields) */
3978 EOXactListAdd(relation);
3979}
3980
3981
3982/*
3983 * RelationCacheInitialize
3984 *
3985 * This initializes the relation descriptor cache. At the time
3986 * that this is invoked, we can't do database access yet (mainly
3987 * because the transaction subsystem is not up); all we are doing
3988 * is making an empty cache hashtable. This must be done before
3989 * starting the initialization transaction, because otherwise
3990 * AtEOXact_RelationCache would crash if that transaction aborts
3991 * before we can get the relcache set up.
3992 */
3993
3994#define INITRELCACHESIZE 400
3995
3996void
3998{
3999 HASHCTL ctl;
4000 int allocsize;
4001
4002 /*
4003 * make sure cache memory context exists
4004 */
4005 if (!CacheMemoryContext)
4007
4008 /*
4009 * create hashtable that indexes the relcache
4010 */
4011 ctl.keysize = sizeof(Oid);
4012 ctl.entrysize = sizeof(RelIdCacheEnt);
4013 RelationIdCache = hash_create("Relcache by OID", INITRELCACHESIZE,
4015
4016 /*
4017 * reserve enough in_progress_list slots for many cases
4018 */
4019 allocsize = 4;
4022 allocsize * sizeof(*in_progress_list));
4023 in_progress_list_maxlen = allocsize;
4024
4025 /*
4026 * relation mapper needs to be initialized too
4027 */
4029}
4030
4031/*
4032 * RelationCacheInitializePhase2
4033 *
4034 * This is called to prepare for access to shared catalogs during startup.
4035 * We must at least set up nailed reldescs for pg_database, pg_authid,
4036 * pg_auth_members, and pg_shseclabel. Ideally we'd like to have reldescs
4037 * for their indexes, too. We attempt to load this information from the
4038 * shared relcache init file. If that's missing or broken, just make
4039 * phony entries for the catalogs themselves.
4040 * RelationCacheInitializePhase3 will clean up as needed.
4041 */
4042void
4044{
4045 MemoryContext oldcxt;
4046
4047 /*
4048 * relation mapper needs initialized too
4049 */
4051
4052 /*
4053 * In bootstrap mode, the shared catalogs aren't there yet anyway, so do
4054 * nothing.
4055 */
4057 return;
4058
4059 /*
4060 * switch to cache memory context
4061 */
4063
4064 /*
4065 * Try to load the shared relcache cache file. If unsuccessful, bootstrap
4066 * the cache with pre-made descriptors for the critical shared catalogs.
4067 */
4068 if (!load_relcache_init_file(true))
4069 {
4070 formrdesc("pg_database", DatabaseRelation_Rowtype_Id, true,
4071 Natts_pg_database, Desc_pg_database);
4072 formrdesc("pg_authid", AuthIdRelation_Rowtype_Id, true,
4073 Natts_pg_authid, Desc_pg_authid);
4074 formrdesc("pg_auth_members", AuthMemRelation_Rowtype_Id, true,
4075 Natts_pg_auth_members, Desc_pg_auth_members);
4076 formrdesc("pg_shseclabel", SharedSecLabelRelation_Rowtype_Id, true,
4077 Natts_pg_shseclabel, Desc_pg_shseclabel);
4078 formrdesc("pg_subscription", SubscriptionRelation_Rowtype_Id, true,
4079 Natts_pg_subscription, Desc_pg_subscription);
4080
4081#define NUM_CRITICAL_SHARED_RELS 5 /* fix if you change list above */
4082 }
4083
4084 MemoryContextSwitchTo(oldcxt);
4085}
4086
4087/*
4088 * RelationCacheInitializePhase3
4089 *
4090 * This is called as soon as the catcache and transaction system
4091 * are functional and we have determined MyDatabaseId. At this point
4092 * we can actually read data from the database's system catalogs.
4093 * We first try to read pre-computed relcache entries from the local
4094 * relcache init file. If that's missing or broken, make phony entries
4095 * for the minimum set of nailed-in-cache relations. Then (unless
4096 * bootstrapping) make sure we have entries for the critical system
4097 * indexes. Once we've done all this, we have enough infrastructure to
4098 * open any system catalog or use any catcache. The last step is to
4099 * rewrite the cache files if needed.
4100 */
4101void
4103{
4104 HASH_SEQ_STATUS status;
4105 RelIdCacheEnt *idhentry;
4106 MemoryContext oldcxt;
4107 bool needNewCacheFile = !criticalSharedRelcachesBuilt;
4108
4109 /*
4110 * relation mapper needs initialized too
4111 */
4113
4114 /*
4115 * switch to cache memory context
4116 */
4118
4119 /*
4120 * Try to load the local relcache cache file. If unsuccessful, bootstrap
4121 * the cache with pre-made descriptors for the critical "nailed-in" system
4122 * catalogs.
4123 */
4126 {
4127 needNewCacheFile = true;
4128
4129 formrdesc("pg_class", RelationRelation_Rowtype_Id, false,
4130 Natts_pg_class, Desc_pg_class);
4131 formrdesc("pg_attribute", AttributeRelation_Rowtype_Id, false,
4132 Natts_pg_attribute, Desc_pg_attribute);
4133 formrdesc("pg_proc", ProcedureRelation_Rowtype_Id, false,
4134 Natts_pg_proc, Desc_pg_proc);
4135 formrdesc("pg_type", TypeRelation_Rowtype_Id, false,
4136 Natts_pg_type, Desc_pg_type);
4137
4138#define NUM_CRITICAL_LOCAL_RELS 4 /* fix if you change list above */
4139 }
4140
4141 MemoryContextSwitchTo(oldcxt);
4142
4143 /* In bootstrap mode, the faked-up formrdesc info is all we'll have */
4145 return;
4146
4147 /*
4148 * If we didn't get the critical system indexes loaded into relcache, do
4149 * so now. These are critical because the catcache and/or opclass cache
4150 * depend on them for fetches done during relcache load. Thus, we have an
4151 * infinite-recursion problem. We can break the recursion by doing
4152 * heapscans instead of indexscans at certain key spots. To avoid hobbling
4153 * performance, we only want to do that until we have the critical indexes
4154 * loaded into relcache. Thus, the flag criticalRelcachesBuilt is used to
4155 * decide whether to do heapscan or indexscan at the key spots, and we set
4156 * it true after we've loaded the critical indexes.
4157 *
4158 * The critical indexes are marked as "nailed in cache", partly to make it
4159 * easy for load_relcache_init_file to count them, but mainly because we
4160 * cannot flush and rebuild them once we've set criticalRelcachesBuilt to
4161 * true. (NOTE: perhaps it would be possible to reload them by
4162 * temporarily setting criticalRelcachesBuilt to false again. For now,
4163 * though, we just nail 'em in.)
4164 *
4165 * RewriteRelRulenameIndexId and TriggerRelidNameIndexId are not critical
4166 * in the same way as the others, because the critical catalogs don't
4167 * (currently) have any rules or triggers, and so these indexes can be
4168 * rebuilt without inducing recursion. However they are used during
4169 * relcache load when a rel does have rules or triggers, so we choose to
4170 * nail them for performance reasons.
4171 */
4173 {
4174 load_critical_index(ClassOidIndexId,
4175 RelationRelationId);
4176 load_critical_index(AttributeRelidNumIndexId,
4177 AttributeRelationId);
4178 load_critical_index(IndexRelidIndexId,
4179 IndexRelationId);
4180 load_critical_index(OpclassOidIndexId,
4181 OperatorClassRelationId);
4182 load_critical_index(AccessMethodProcedureIndexId,
4183 AccessMethodProcedureRelationId);
4184 load_critical_index(RewriteRelRulenameIndexId,
4185 RewriteRelationId);
4186 load_critical_index(TriggerRelidNameIndexId,
4187 TriggerRelationId);
4188
4189#define NUM_CRITICAL_LOCAL_INDEXES 7 /* fix if you change list above */
4190
4192 }
4193
4194 /*
4195 * Process critical shared indexes too.
4196 *
4197 * DatabaseNameIndexId isn't critical for relcache loading, but rather for
4198 * initial lookup of MyDatabaseId, without which we'll never find any
4199 * non-shared catalogs at all. Autovacuum calls InitPostgres with a
4200 * database OID, so it instead depends on DatabaseOidIndexId. We also
4201 * need to nail up some indexes on pg_authid and pg_auth_members for use
4202 * during client authentication. SharedSecLabelObjectIndexId isn't
4203 * critical for the core system, but authentication hooks might be
4204 * interested in it.
4205 */
4207 {
4208 load_critical_index(DatabaseNameIndexId,
4209 DatabaseRelationId);
4210 load_critical_index(DatabaseOidIndexId,
4211 DatabaseRelationId);
4212 load_critical_index(AuthIdRolnameIndexId,
4213 AuthIdRelationId);
4214 load_critical_index(AuthIdOidIndexId,
4215 AuthIdRelationId);
4216 load_critical_index(AuthMemMemRoleIndexId,
4217 AuthMemRelationId);
4218 load_critical_index(SharedSecLabelObjectIndexId,
4219 SharedSecLabelRelationId);
4220
4221#define NUM_CRITICAL_SHARED_INDEXES 6 /* fix if you change list above */
4222
4224 }
4225
4226 /*
4227 * Now, scan all the relcache entries and update anything that might be
4228 * wrong in the results from formrdesc or the relcache cache file. If we
4229 * faked up relcache entries using formrdesc, then read the real pg_class
4230 * rows and replace the fake entries with them. Also, if any of the
4231 * relcache entries have rules, triggers, or security policies, load that
4232 * info the hard way since it isn't recorded in the cache file.
4233 *
4234 * Whenever we access the catalogs to read data, there is a possibility of
4235 * a shared-inval cache flush causing relcache entries to be removed.
4236 * Since hash_seq_search only guarantees to still work after the *current*
4237 * entry is removed, it's unsafe to continue the hashtable scan afterward.
4238 * We handle this by restarting the scan from scratch after each access.
4239 * This is theoretically O(N^2), but the number of entries that actually
4240 * need to be fixed is small enough that it doesn't matter.
4241 */
4243
4244 while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL)
4245 {
4246 Relation relation = idhentry->reldesc;
4247 bool restart = false;
4248
4249 /*
4250 * Make sure *this* entry doesn't get flushed while we work with it.
4251 */
4253
4254 /*
4255 * If it's a faked-up entry, read the real pg_class tuple.
4256 */
4257 if (relation->rd_rel->relowner == InvalidOid)
4258 {
4259 HeapTuple htup;
4260 Form_pg_class relp;
4261
4262 htup = SearchSysCache1(RELOID,
4264 if (!HeapTupleIsValid(htup))
4265 ereport(FATAL,
4266 errcode(ERRCODE_UNDEFINED_OBJECT),
4267 errmsg_internal("cache lookup failed for relation %u",
4268 RelationGetRelid(relation)));
4269 relp = (Form_pg_class) GETSTRUCT(htup);
4270
4271 /*
4272 * Copy tuple to relation->rd_rel. (See notes in
4273 * AllocateRelationDesc())
4274 */
4275 memcpy((char *) relation->rd_rel, (char *) relp, CLASS_TUPLE_SIZE);
4276
4277 /* Update rd_options while we have the tuple */
4278 if (relation->rd_options)
4279 pfree(relation->rd_options);
4280 RelationParseRelOptions(relation, htup);
4281
4282 /*
4283 * Check the values in rd_att were set up correctly. (We cannot
4284 * just copy them over now: formrdesc must have set up the rd_att
4285 * data correctly to start with, because it may already have been
4286 * copied into one or more catcache entries.)
4287 */
4288 Assert(relation->rd_att->tdtypeid == relp->reltype);
4289 Assert(relation->rd_att->tdtypmod == -1);
4290
4291 ReleaseSysCache(htup);
4292
4293 /* relowner had better be OK now, else we'll loop forever */
4294 if (relation->rd_rel->relowner == InvalidOid)
4295 elog(ERROR, "invalid relowner in pg_class entry for \"%s\"",
4296 RelationGetRelationName(relation));
4297
4298 restart = true;
4299 }
4300
4301 /*
4302 * Fix data that isn't saved in relcache cache file.
4303 *
4304 * relhasrules or relhastriggers could possibly be wrong or out of
4305 * date. If we don't actually find any rules or triggers, clear the
4306 * local copy of the flag so that we don't get into an infinite loop
4307 * here. We don't make any attempt to fix the pg_class entry, though.
4308 */
4309 if (relation->rd_rel->relhasrules && relation->rd_rules == NULL)
4310 {
4311 RelationBuildRuleLock(relation);
4312 if (relation->rd_rules == NULL)
4313 relation->rd_rel->relhasrules = false;
4314 restart = true;
4315 }
4316 if (relation->rd_rel->relhastriggers && relation->trigdesc == NULL)
4317 {
4318 RelationBuildTriggers(relation);
4319 if (relation->trigdesc == NULL)
4320 relation->rd_rel->relhastriggers = false;
4321 restart = true;
4322 }
4323
4324 /*
4325 * Re-load the row security policies if the relation has them, since
4326 * they are not preserved in the cache. Note that we can never NOT
4327 * have a policy while relrowsecurity is true,
4328 * RelationBuildRowSecurity will create a single default-deny policy
4329 * if there is no policy defined in pg_policy.
4330 */
4331 if (relation->rd_rel->relrowsecurity && relation->rd_rsdesc == NULL)
4332 {
4333 RelationBuildRowSecurity(relation);
4334
4335 Assert(relation->rd_rsdesc != NULL);
4336 restart = true;
4337 }
4338
4339 /* Reload tableam data if needed */
4340 if (relation->rd_tableam == NULL &&
4341 (RELKIND_HAS_TABLE_AM(relation->rd_rel->relkind) || relation->rd_rel->relkind == RELKIND_SEQUENCE))
4342 {
4344 Assert(relation->rd_tableam != NULL);
4345
4346 restart = true;
4347 }
4348
4349 /* Release hold on the relation */
4351
4352 /* Now, restart the hashtable scan if needed */
4353 if (restart)
4354 {
4355 hash_seq_term(&status);
4357 }
4358 }
4359
4360 /*
4361 * Lastly, write out new relcache cache files if needed. We don't bother
4362 * to distinguish cases where only one of the two needs an update.
4363 */
4364 if (needNewCacheFile)
4365 {
4366 /*
4367 * Force all the catcaches to finish initializing and thereby open the
4368 * catalogs and indexes they use. This will preload the relcache with
4369 * entries for all the most important system catalogs and indexes, so
4370 * that the init files will be most useful for future backends.
4371 */
4373
4374 /* now write the files */
4377 }
4378}
4379
4380/*
4381 * Load one critical system index into the relcache
4382 *
4383 * indexoid is the OID of the target index, heapoid is the OID of the catalog
4384 * it belongs to.
4385 */
4386static void
4387load_critical_index(Oid indexoid, Oid heapoid)
4388{
4389 Relation ird;
4390
4391 /*
4392 * We must lock the underlying catalog before locking the index to avoid
4393 * deadlock, since RelationBuildDesc might well need to read the catalog,
4394 * and if anyone else is exclusive-locking this catalog and index they'll
4395 * be doing it in that order.
4396 */
4399 ird = RelationBuildDesc(indexoid, true);
4400 if (ird == NULL)
4401 ereport(PANIC,
4403 errmsg_internal("could not open critical system index %u", indexoid));
4404 ird->rd_isnailed = true;
4405 ird->rd_refcnt = 1;
4408
4409 (void) RelationGetIndexAttOptions(ird, false);
4410}
4411
4412/*
4413 * GetPgClassDescriptor -- get a predefined tuple descriptor for pg_class
4414 * GetPgIndexDescriptor -- get a predefined tuple descriptor for pg_index
4415 *
4416 * We need this kluge because we have to be able to access non-fixed-width
4417 * fields of pg_class and pg_index before we have the standard catalog caches
4418 * available. We use predefined data that's set up in just the same way as
4419 * the bootstrapped reldescs used by formrdesc(). The resulting tupdesc is
4420 * not 100% kosher: it does not have the correct rowtype OID in tdtypeid, nor
4421 * does it have a TupleConstr field. But it's good enough for the purpose of
4422 * extracting fields.
4423 */
4424static TupleDesc
4426{
4427 TupleDesc result;
4428 MemoryContext oldcxt;
4429 int i;
4430
4432
4433 result = CreateTemplateTupleDesc(natts);
4434 result->tdtypeid = RECORDOID; /* not right, but we don't care */
4435 result->tdtypmod = -1;
4436
4437 for (i = 0; i < natts; i++)
4438 {
4439 memcpy(TupleDescAttr(result, i), &attrs[i], ATTRIBUTE_FIXED_PART_SIZE);
4440
4442 }
4443
4444 /* initialize first attribute's attcacheoff, cf RelationBuildTupleDesc */
4445 TupleDescCompactAttr(result, 0)->attcacheoff = 0;
4446
4447 /* Note: we don't bother to set up a TupleConstr entry */
4448
4449 MemoryContextSwitchTo(oldcxt);
4450
4451 return result;
4452}
4453
4454static TupleDesc
4456{
4457 static TupleDesc pgclassdesc = NULL;
4458
4459 /* Already done? */
4460 if (pgclassdesc == NULL)
4461 pgclassdesc = BuildHardcodedDescriptor(Natts_pg_class,
4463
4464 return pgclassdesc;
4465}
4466
4467static TupleDesc
4469{
4470 static TupleDesc pgindexdesc = NULL;
4471
4472 /* Already done? */
4473 if (pgindexdesc == NULL)
4474 pgindexdesc = BuildHardcodedDescriptor(Natts_pg_index,
4476
4477 return pgindexdesc;
4478}
4479
4480/*
4481 * Load any default attribute value definitions for the relation.
4482 *
4483 * ndef is the number of attributes that were marked atthasdef.
4484 *
4485 * Note: we don't make it a hard error to be missing some pg_attrdef records.
4486 * We can limp along as long as nothing needs to use the default value. Code
4487 * that fails to find an expected AttrDefault record should throw an error.
4488 */
4489static void
4490AttrDefaultFetch(Relation relation, int ndef)
4491{
4492 AttrDefault *attrdef;
4493 Relation adrel;
4494 SysScanDesc adscan;
4495 ScanKeyData skey;
4496 HeapTuple htup;
4497 int found = 0;
4498
4499 /* Allocate array with room for as many entries as expected */
4500 attrdef = (AttrDefault *)
4502 ndef * sizeof(AttrDefault));
4503
4504 /* Search pg_attrdef for relevant entries */
4505 ScanKeyInit(&skey,
4506 Anum_pg_attrdef_adrelid,
4507 BTEqualStrategyNumber, F_OIDEQ,
4509
4510 adrel = table_open(AttrDefaultRelationId, AccessShareLock);
4511 adscan = systable_beginscan(adrel, AttrDefaultIndexId, true,
4512 NULL, 1, &skey);
4513
4514 while (HeapTupleIsValid(htup = systable_getnext(adscan)))
4515 {
4516 Form_pg_attrdef adform = (Form_pg_attrdef) GETSTRUCT(htup);
4517 Datum val;
4518 bool isnull;
4519
4520 /* protect limited size of array */
4521 if (found >= ndef)
4522 {
4523 elog(WARNING, "unexpected pg_attrdef record found for attribute %d of relation \"%s\"",
4524 adform->adnum, RelationGetRelationName(relation));
4525 break;
4526 }
4527
4528 val = fastgetattr(htup,
4529 Anum_pg_attrdef_adbin,
4530 adrel->rd_att, &isnull);
4531 if (isnull)
4532 elog(WARNING, "null adbin for attribute %d of relation \"%s\"",
4533 adform->adnum, RelationGetRelationName(relation));
4534 else
4535 {
4536 /* detoast and convert to cstring in caller's context */
4537 char *s = TextDatumGetCString(val);
4538
4539 attrdef[found].adnum = adform->adnum;
4540 attrdef[found].adbin = MemoryContextStrdup(CacheMemoryContext, s);
4541 pfree(s);
4542 found++;
4543 }
4544 }
4545
4546 systable_endscan(adscan);
4548
4549 if (found != ndef)
4550 elog(WARNING, "%d pg_attrdef record(s) missing for relation \"%s\"",
4551 ndef - found, RelationGetRelationName(relation));
4552
4553 /*
4554 * Sort the AttrDefault entries by adnum, for the convenience of
4555 * equalTupleDescs(). (Usually, they already will be in order, but this
4556 * might not be so if systable_getnext isn't using an index.)
4557 */
4558 if (found > 1)
4559 qsort(attrdef, found, sizeof(AttrDefault), AttrDefaultCmp);
4560
4561 /* Install array only after it's fully valid */
4562 relation->rd_att->constr->defval = attrdef;
4563 relation->rd_att->constr->num_defval = found;
4564}
4565
4566/*
4567 * qsort comparator to sort AttrDefault entries by adnum
4568 */
4569static int
4570AttrDefaultCmp(const void *a, const void *b)
4571{
4572 const AttrDefault *ada = (const AttrDefault *) a;
4573 const AttrDefault *adb = (const AttrDefault *) b;
4574
4575 return pg_cmp_s16(ada->adnum, adb->adnum);
4576}
4577
4578/*
4579 * Load any check constraints for the relation, and update not-null validity
4580 * of invalid constraints.
4581 *
4582 * As with defaults, if we don't find the expected number of them, just warn
4583 * here. The executor should throw an error if an INSERT/UPDATE is attempted.
4584 */
4585static void
4587{
4588 ConstrCheck *check;
4589 int ncheck = relation->rd_rel->relchecks;
4590 Relation conrel;
4591 SysScanDesc conscan;
4592 ScanKeyData skey[1];
4593 HeapTuple htup;
4594 int found = 0;
4595
4596 /* Allocate array with room for as many entries as expected, if needed */
4597 if (ncheck > 0)
4598 check = (ConstrCheck *)
4600 ncheck * sizeof(ConstrCheck));
4601 else
4602 check = NULL;
4603
4604 /* Search pg_constraint for relevant entries */
4605 ScanKeyInit(&skey[0],
4606 Anum_pg_constraint_conrelid,
4607 BTEqualStrategyNumber, F_OIDEQ,
4609
4610 conrel = table_open(ConstraintRelationId, AccessShareLock);
4611 conscan = systable_beginscan(conrel, ConstraintRelidTypidNameIndexId, true,
4612 NULL, 1, skey);
4613
4614 while (HeapTupleIsValid(htup = systable_getnext(conscan)))
4615 {
4617 Datum val;
4618 bool isnull;
4619
4620 /*
4621 * If this is a not-null constraint, then only look at it if it's
4622 * invalid, and if so, mark the TupleDesc entry as known invalid.
4623 * Otherwise move on. We'll mark any remaining columns that are still
4624 * in UNKNOWN state as known valid later. This allows us not to have
4625 * to extract the attnum from this constraint tuple in the vast
4626 * majority of cases.
4627 */
4628 if (conform->contype == CONSTRAINT_NOTNULL)
4629 {
4630 if (!conform->convalidated)
4631 {
4633
4637 relation->rd_att->compact_attrs[attnum - 1].attnullability =
4639 }
4640
4641 continue;
4642 }
4643
4644 /* For what follows, consider check constraints only */
4645 if (conform->contype != CONSTRAINT_CHECK)
4646 continue;
4647
4648 /* protect limited size of array */
4649 if (found >= ncheck)
4650 {
4651 elog(WARNING, "unexpected pg_constraint record found for relation \"%s\"",
4652 RelationGetRelationName(relation));
4653 break;
4654 }
4655
4656 /* Grab and test conbin is actually set */
4657 val = fastgetattr(htup,
4658 Anum_pg_constraint_conbin,
4659 conrel->rd_att, &isnull);
4660 if (isnull)
4661 elog(WARNING, "null conbin for relation \"%s\"",
4662 RelationGetRelationName(relation));
4663 else
4664 {
4665 /* detoast and convert to cstring in caller's context */
4666 char *s = TextDatumGetCString(val);
4667
4668 check[found].ccenforced = conform->conenforced;
4669 check[found].ccvalid = conform->convalidated;
4670 check[found].ccnoinherit = conform->connoinherit;
4672 NameStr(conform->conname));
4673 check[found].ccbin = MemoryContextStrdup(CacheMemoryContext, s);
4674
4675 pfree(s);
4676 found++;
4677 }
4678 }
4679
4680 systable_endscan(conscan);
4682
4683 if (found != ncheck)
4684 elog(WARNING, "%d pg_constraint record(s) missing for relation \"%s\"",
4685 ncheck - found, RelationGetRelationName(relation));
4686
4687 /*
4688 * Sort the records by name. This ensures that CHECKs are applied in a
4689 * deterministic order, and it also makes equalTupleDescs() faster.
4690 */
4691 if (found > 1)
4692 qsort(check, found, sizeof(ConstrCheck), CheckConstraintCmp);
4693
4694 /* Install array only after it's fully valid */
4695 relation->rd_att->constr->check = check;
4696 relation->rd_att->constr->num_check = found;
4697}
4698
4699/*
4700 * qsort comparator to sort ConstrCheck entries by name
4701 */
4702static int
4703CheckConstraintCmp(const void *a, const void *b)
4704{
4705 const ConstrCheck *ca = (const ConstrCheck *) a;
4706 const ConstrCheck *cb = (const ConstrCheck *) b;
4707
4708 return strcmp(ca->ccname, cb->ccname);
4709}
4710
4711/*
4712 * RelationGetFKeyList -- get a list of foreign key info for the relation
4713 *
4714 * Returns a list of ForeignKeyCacheInfo structs, one per FK constraining
4715 * the given relation. This data is a direct copy of relevant fields from
4716 * pg_constraint. The list items are in no particular order.
4717 *
4718 * CAUTION: the returned list is part of the relcache's data, and could
4719 * vanish in a relcache entry reset. Callers must inspect or copy it
4720 * before doing anything that might trigger a cache flush, such as
4721 * system catalog accesses. copyObject() can be used if desired.
4722 * (We define it this way because current callers want to filter and
4723 * modify the list entries anyway, so copying would be a waste of time.)
4724 */
4725List *
4727{
4728 List *result;
4729 Relation conrel;
4730 SysScanDesc conscan;
4731 ScanKeyData skey;
4732 HeapTuple htup;
4733 List *oldlist;
4734 MemoryContext oldcxt;
4735
4736 /* Quick exit if we already computed the list. */
4737 if (relation->rd_fkeyvalid)
4738 return relation->rd_fkeylist;
4739
4740 /*
4741 * We build the list we intend to return (in the caller's context) while
4742 * doing the scan. After successfully completing the scan, we copy that
4743 * list into the relcache entry. This avoids cache-context memory leakage
4744 * if we get some sort of error partway through.
4745 */
4746 result = NIL;
4747
4748 /* Prepare to scan pg_constraint for entries having conrelid = this rel. */
4749 ScanKeyInit(&skey,
4750 Anum_pg_constraint_conrelid,
4751 BTEqualStrategyNumber, F_OIDEQ,
4753
4754 conrel = table_open(ConstraintRelationId, AccessShareLock);
4755 conscan = systable_beginscan(conrel, ConstraintRelidTypidNameIndexId, true,
4756 NULL, 1, &skey);
4757
4758 while (HeapTupleIsValid(htup = systable_getnext(conscan)))
4759 {
4760 Form_pg_constraint constraint = (Form_pg_constraint) GETSTRUCT(htup);
4761 ForeignKeyCacheInfo *info;
4762
4763 /* consider only foreign keys */
4764 if (constraint->contype != CONSTRAINT_FOREIGN)
4765 continue;
4766
4768 info->conoid = constraint->oid;
4769 info->conrelid = constraint->conrelid;
4770 info->confrelid = constraint->confrelid;
4771 info->conenforced = constraint->conenforced;
4772
4773 DeconstructFkConstraintRow(htup, &info->nkeys,
4774 info->conkey,
4775 info->confkey,
4776 info->conpfeqop,
4777 NULL, NULL, NULL, NULL);
4778
4779 /* Add FK's node to the result list */
4780 result = lappend(result, info);
4781 }
4782
4783 systable_endscan(conscan);
4785
4786 /* Now save a copy of the completed list in the relcache entry. */
4788 oldlist = relation->rd_fkeylist;
4789 relation->rd_fkeylist = copyObject(result);
4790 relation->rd_fkeyvalid = true;
4791 MemoryContextSwitchTo(oldcxt);
4792
4793 /* Don't leak the old list, if there is one */
4794 list_free_deep(oldlist);
4795
4796 return result;
4797}
4798
4799/*
4800 * RelationGetIndexList -- get a list of OIDs of indexes on this relation
4801 *
4802 * The index list is created only if someone requests it. We scan pg_index
4803 * to find relevant indexes, and add the list to the relcache entry so that
4804 * we won't have to compute it again. Note that shared cache inval of a
4805 * relcache entry will delete the old list and set rd_indexvalid to false,
4806 * so that we must recompute the index list on next request. This handles
4807 * creation or deletion of an index.
4808 *
4809 * Indexes that are marked not indislive are omitted from the returned list.
4810 * Such indexes are expected to be dropped momentarily, and should not be
4811 * touched at all by any caller of this function.
4812 *
4813 * The returned list is guaranteed to be sorted in order by OID. This is
4814 * needed by the executor, since for index types that we obtain exclusive
4815 * locks on when updating the index, all backends must lock the indexes in
4816 * the same order or we will get deadlocks (see ExecOpenIndices()). Any
4817 * consistent ordering would do, but ordering by OID is easy.
4818 *
4819 * Since shared cache inval causes the relcache's copy of the list to go away,
4820 * we return a copy of the list palloc'd in the caller's context. The caller
4821 * may list_free() the returned list after scanning it. This is necessary
4822 * since the caller will typically be doing syscache lookups on the relevant
4823 * indexes, and syscache lookup could cause SI messages to be processed!
4824 *
4825 * In exactly the same way, we update rd_pkindex, which is the OID of the
4826 * relation's primary key index if any, else InvalidOid; and rd_replidindex,
4827 * which is the pg_class OID of an index to be used as the relation's
4828 * replication identity index, or InvalidOid if there is no such index.
4829 */
4830List *
4832{
4833 Relation indrel;
4834 SysScanDesc indscan;
4835 ScanKeyData skey;
4836 HeapTuple htup;
4837 List *result;
4838 List *oldlist;
4839 char replident = relation->rd_rel->relreplident;
4840 Oid pkeyIndex = InvalidOid;
4841 Oid candidateIndex = InvalidOid;
4842 bool pkdeferrable = false;
4843 MemoryContext oldcxt;
4844
4845 /* Quick exit if we already computed the list. */
4846 if (relation->rd_indexvalid)
4847 return list_copy(relation->rd_indexlist);
4848
4849 /*
4850 * We build the list we intend to return (in the caller's context) while
4851 * doing the scan. After successfully completing the scan, we copy that
4852 * list into the relcache entry. This avoids cache-context memory leakage
4853 * if we get some sort of error partway through.
4854 */
4855 result = NIL;
4856
4857 /* Prepare to scan pg_index for entries having indrelid = this rel. */
4858 ScanKeyInit(&skey,
4859 Anum_pg_index_indrelid,
4860 BTEqualStrategyNumber, F_OIDEQ,
4862
4863 indrel = table_open(IndexRelationId, AccessShareLock);
4864 indscan = systable_beginscan(indrel, IndexIndrelidIndexId, true,
4865 NULL, 1, &skey);
4866
4867 while (HeapTupleIsValid(htup = systable_getnext(indscan)))
4868 {
4870
4871 /*
4872 * Ignore any indexes that are currently being dropped. This will
4873 * prevent them from being searched, inserted into, or considered in
4874 * HOT-safety decisions. It's unsafe to touch such an index at all
4875 * since its catalog entries could disappear at any instant.
4876 */
4877 if (!index->indislive)
4878 continue;
4879
4880 /* add index's OID to result list */
4881 result = lappend_oid(result, index->indexrelid);
4882
4883 /*
4884 * Non-unique or predicate indexes aren't interesting for either oid
4885 * indexes or replication identity indexes, so don't check them.
4886 * Deferred ones are not useful for replication identity either; but
4887 * we do include them if they are PKs.
4888 */
4889 if (!index->indisunique ||
4890 !heap_attisnull(htup, Anum_pg_index_indpred, NULL))
4891 continue;
4892
4893 /*
4894 * Remember primary key index, if any. For regular tables we do this
4895 * only if the index is valid; but for partitioned tables, then we do
4896 * it even if it's invalid.
4897 *
4898 * The reason for returning invalid primary keys for partitioned
4899 * tables is that we need it to prevent drop of not-null constraints
4900 * that may underlie such a primary key, which is only a problem for
4901 * partitioned tables.
4902 */
4903 if (index->indisprimary &&
4904 (index->indisvalid ||
4905 relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
4906 {
4907 pkeyIndex = index->indexrelid;
4908 pkdeferrable = !index->indimmediate;
4909 }
4910
4911 if (!index->indimmediate)
4912 continue;
4913
4914 if (!index->indisvalid)
4915 continue;
4916
4917 /* remember explicitly chosen replica index */
4918 if (index->indisreplident)
4919 candidateIndex = index->indexrelid;
4920 }
4921
4922 systable_endscan(indscan);
4923
4925
4926 /* Sort the result list into OID order, per API spec. */
4927 list_sort(result, list_oid_cmp);
4928
4929 /* Now save a copy of the completed list in the relcache entry. */
4931 oldlist = relation->rd_indexlist;
4932 relation->rd_indexlist = list_copy(result);
4933 relation->rd_pkindex = pkeyIndex;
4934 relation->rd_ispkdeferrable = pkdeferrable;
4935 if (replident == REPLICA_IDENTITY_DEFAULT && OidIsValid(pkeyIndex) && !pkdeferrable)
4936 relation->rd_replidindex = pkeyIndex;
4937 else if (replident == REPLICA_IDENTITY_INDEX && OidIsValid(candidateIndex))
4938 relation->rd_replidindex = candidateIndex;
4939 else
4940 relation->rd_replidindex = InvalidOid;
4941 relation->rd_indexvalid = true;
4942 MemoryContextSwitchTo(oldcxt);
4943
4944 /* Don't leak the old list, if there is one */
4945 list_free(oldlist);
4946
4947 return result;
4948}
4949
4950/*
4951 * RelationGetStatExtList
4952 * get a list of OIDs of statistics objects on this relation
4953 *
4954 * The statistics list is created only if someone requests it, in a way
4955 * similar to RelationGetIndexList(). We scan pg_statistic_ext to find
4956 * relevant statistics, and add the list to the relcache entry so that we
4957 * won't have to compute it again. Note that shared cache inval of a
4958 * relcache entry will delete the old list and set rd_statvalid to 0,
4959 * so that we must recompute the statistics list on next request. This
4960 * handles creation or deletion of a statistics object.
4961 *
4962 * The returned list is guaranteed to be sorted in order by OID, although
4963 * this is not currently needed.
4964 *
4965 * Since shared cache inval causes the relcache's copy of the list to go away,
4966 * we return a copy of the list palloc'd in the caller's context. The caller
4967 * may list_free() the returned list after scanning it. This is necessary
4968 * since the caller will typically be doing syscache lookups on the relevant
4969 * statistics, and syscache lookup could cause SI messages to be processed!
4970 */
4971List *
4973{
4974 Relation indrel;
4975 SysScanDesc indscan;
4976 ScanKeyData skey;
4977 HeapTuple htup;
4978 List *result;
4979 List *oldlist;
4980 MemoryContext oldcxt;
4981
4982 /* Quick exit if we already computed the list. */
4983 if (relation->rd_statvalid != 0)
4984 return list_copy(relation->rd_statlist);
4985
4986 /*
4987 * We build the list we intend to return (in the caller's context) while
4988 * doing the scan. After successfully completing the scan, we copy that
4989 * list into the relcache entry. This avoids cache-context memory leakage
4990 * if we get some sort of error partway through.
4991 */
4992 result = NIL;
4993
4994 /*
4995 * Prepare to scan pg_statistic_ext for entries having stxrelid = this
4996 * rel.
4997 */
4998 ScanKeyInit(&skey,
4999 Anum_pg_statistic_ext_stxrelid,
5000 BTEqualStrategyNumber, F_OIDEQ,
5002
5003 indrel = table_open(StatisticExtRelationId, AccessShareLock);
5004 indscan = systable_beginscan(indrel, StatisticExtRelidIndexId, true,
5005 NULL, 1, &skey);
5006
5007 while (HeapTupleIsValid(htup = systable_getnext(indscan)))
5008 {
5009 Oid oid = ((Form_pg_statistic_ext) GETSTRUCT(htup))->oid;
5010
5011 result = lappend_oid(result, oid);
5012 }
5013
5014 systable_endscan(indscan);
5015
5017
5018 /* Sort the result list into OID order, per API spec. */
5019 list_sort(result, list_oid_cmp);
5020
5021 /* Now save a copy of the completed list in the relcache entry. */
5023 oldlist = relation->rd_statlist;
5024 relation->rd_statlist = list_copy(result);
5025
5026 relation->rd_statvalid = true;
5027 MemoryContextSwitchTo(oldcxt);
5028
5029 /* Don't leak the old list, if there is one */
5030 list_free(oldlist);
5031
5032 return result;
5033}
5034
5035/*
5036 * RelationGetPrimaryKeyIndex -- get OID of the relation's primary key index
5037 *
5038 * Returns InvalidOid if there is no such index, or if the primary key is
5039 * DEFERRABLE and the caller isn't OK with that.
5040 */
5041Oid
5042RelationGetPrimaryKeyIndex(Relation relation, bool deferrable_ok)
5043{
5044 List *ilist;
5045
5046 if (!relation->rd_indexvalid)
5047 {
5048 /* RelationGetIndexList does the heavy lifting. */
5049 ilist = RelationGetIndexList(relation);
5050 list_free(ilist);
5051 Assert(relation->rd_indexvalid);
5052 }
5053
5054 if (deferrable_ok)
5055 return relation->rd_pkindex;
5056 else if (relation->rd_ispkdeferrable)
5057 return InvalidOid;
5058 return relation->rd_pkindex;
5059}
5060
5061/*
5062 * RelationGetReplicaIndex -- get OID of the relation's replica identity index
5063 *
5064 * Returns InvalidOid if there is no such index.
5065 */
5066Oid
5068{
5069 List *ilist;
5070
5071 if (!relation->rd_indexvalid)
5072 {
5073 /* RelationGetIndexList does the heavy lifting. */
5074 ilist = RelationGetIndexList(relation);
5075 list_free(ilist);
5076 Assert(relation->rd_indexvalid);
5077 }
5078
5079 return relation->rd_replidindex;
5080}
5081
5082/*
5083 * RelationGetIndexExpressions -- get the index expressions for an index
5084 *
5085 * We cache the result of transforming pg_index.indexprs into a node tree.
5086 * If the rel is not an index or has no expressional columns, we return NIL.
5087 * Otherwise, the returned tree is copied into the caller's memory context.
5088 * (We don't want to return a pointer to the relcache copy, since it could
5089 * disappear due to relcache invalidation.)
5090 */
5091List *
5093{
5094 List *result;
5095 Datum exprsDatum;
5096 bool isnull;
5097 char *exprsString;
5098 MemoryContext oldcxt;
5099
5100 /* Quick exit if we already computed the result. */
5101 if (relation->rd_indexprs)
5102 return copyObject(relation->rd_indexprs);
5103
5104 /* Quick exit if there is nothing to do. */
5105 if (relation->rd_indextuple == NULL ||
5106 heap_attisnull(relation->rd_indextuple, Anum_pg_index_indexprs, NULL))
5107 return NIL;
5108
5109 /*
5110 * We build the tree we intend to return in the caller's context. After
5111 * successfully completing the work, we copy it into the relcache entry.
5112 * This avoids problems if we get some sort of error partway through.
5113 */
5114 exprsDatum = heap_getattr(relation->rd_indextuple,
5115 Anum_pg_index_indexprs,
5117 &isnull);
5118 Assert(!isnull);
5119 exprsString = TextDatumGetCString(exprsDatum);
5120 result = (List *) stringToNode(exprsString);
5121 pfree(exprsString);
5122
5123 /*
5124 * Run the expressions through eval_const_expressions. This is not just an
5125 * optimization, but is necessary, because the planner will be comparing
5126 * them to similarly-processed qual clauses, and may fail to detect valid
5127 * matches without this. We must not use canonicalize_qual, however,
5128 * since these aren't qual expressions.
5129 */
5130 result = (List *) eval_const_expressions(NULL, (Node *) result);
5131
5132 /* May as well fix opfuncids too */
5133 fix_opfuncids((Node *) result);
5134
5135 /* Now save a copy of the completed tree in the relcache entry. */
5136 oldcxt = MemoryContextSwitchTo(relation->rd_indexcxt);
5137 relation->rd_indexprs = copyObject(result);
5138 MemoryContextSwitchTo(oldcxt);
5139
5140 return result;
5141}
5142
5143/*
5144 * RelationGetDummyIndexExpressions -- get dummy expressions for an index
5145 *
5146 * Return a list of dummy expressions (just Const nodes) with the same
5147 * types/typmods/collations as the index's real expressions. This is
5148 * useful in situations where we don't want to run any user-defined code.
5149 */
5150List *
5152{
5153 List *result;
5154 Datum exprsDatum;
5155 bool isnull;
5156 char *exprsString;
5157 List *rawExprs;
5158 ListCell *lc;
5159
5160 /* Quick exit if there is nothing to do. */
5161 if (relation->rd_indextuple == NULL ||
5162 heap_attisnull(relation->rd_indextuple, Anum_pg_index_indexprs, NULL))
5163 return NIL;
5164
5165 /* Extract raw node tree(s) from index tuple. */
5166 exprsDatum = heap_getattr(relation->rd_indextuple,
5167 Anum_pg_index_indexprs,
5169 &isnull);
5170 Assert(!isnull);
5171 exprsString = TextDatumGetCString(exprsDatum);
5172 rawExprs = (List *) stringToNode(exprsString);
5173 pfree(exprsString);
5174
5175 /* Construct null Consts; the typlen and typbyval are arbitrary. */
5176 result = NIL;
5177 foreach(lc, rawExprs)
5178 {
5179 Node *rawExpr = (Node *) lfirst(lc);
5180
5181 result = lappend(result,
5182 makeConst(exprType(rawExpr),
5183 exprTypmod(rawExpr),
5184 exprCollation(rawExpr),
5185 1,
5186 (Datum) 0,
5187 true,
5188 true));
5189 }
5190
5191 return result;
5192}
5193
5194/*
5195 * RelationGetIndexPredicate -- get the index predicate for an index
5196 *
5197 * We cache the result of transforming pg_index.indpred into an implicit-AND
5198 * node tree (suitable for use in planning).
5199 * If the rel is not an index or has no predicate, we return NIL.
5200 * Otherwise, the returned tree is copied into the caller's memory context.
5201 * (We don't want to return a pointer to the relcache copy, since it could
5202 * disappear due to relcache invalidation.)
5203 */
5204List *
5206{
5207 List *result;
5208 Datum predDatum;
5209 bool isnull;
5210 char *predString;
5211 MemoryContext oldcxt;
5212
5213 /* Quick exit if we already computed the result. */
5214 if (relation->rd_indpred)
5215 return copyObject(relation->rd_indpred);
5216
5217 /* Quick exit if there is nothing to do. */
5218 if (relation->rd_indextuple == NULL ||
5219 heap_attisnull(relation->rd_indextuple, Anum_pg_index_indpred, NULL))
5220 return NIL;
5221
5222 /*
5223 * We build the tree we intend to return in the caller's context. After
5224 * successfully completing the work, we copy it into the relcache entry.
5225 * This avoids problems if we get some sort of error partway through.
5226 */
5227 predDatum = heap_getattr(relation->rd_indextuple,
5228 Anum_pg_index_indpred,
5230 &isnull);
5231 Assert(!isnull);
5232 predString = TextDatumGetCString(predDatum);
5233 result = (List *) stringToNode(predString);
5234 pfree(predString);
5235
5236 /*
5237 * Run the expression through const-simplification and canonicalization.
5238 * This is not just an optimization, but is necessary, because the planner
5239 * will be comparing it to similarly-processed qual clauses, and may fail
5240 * to detect valid matches without this. This must match the processing
5241 * done to qual clauses in preprocess_expression()! (We can skip the
5242 * stuff involving subqueries, however, since we don't allow any in index
5243 * predicates.)
5244 */
5245 result = (List *) eval_const_expressions(NULL, (Node *) result);
5246
5247 result = (List *) canonicalize_qual((Expr *) result, false);
5248
5249 /* Also convert to implicit-AND format */
5250 result = make_ands_implicit((Expr *) result);
5251
5252 /* May as well fix opfuncids too */
5253 fix_opfuncids((Node *) result);
5254
5255 /* Now save a copy of the completed tree in the relcache entry. */
5256 oldcxt = MemoryContextSwitchTo(relation->rd_indexcxt);
5257 relation->rd_indpred = copyObject(result);
5258 MemoryContextSwitchTo(oldcxt);
5259
5260 return result;
5261}
5262
5263/*
5264 * RelationGetIndexAttrBitmap -- get a bitmap of index attribute numbers
5265 *
5266 * The result has a bit set for each attribute used anywhere in the index
5267 * definitions of all the indexes on this relation. (This includes not only
5268 * simple index keys, but attributes used in expressions and partial-index
5269 * predicates.)
5270 *
5271 * Depending on attrKind, a bitmap covering attnums for certain columns is
5272 * returned:
5273 * INDEX_ATTR_BITMAP_KEY Columns in non-partial unique indexes not
5274 * in expressions (i.e., usable for FKs)
5275 * INDEX_ATTR_BITMAP_PRIMARY_KEY Columns in the table's primary key
5276 * (beware: even if PK is deferrable!)
5277 * INDEX_ATTR_BITMAP_IDENTITY_KEY Columns in the table's replica identity
5278 * index (empty if FULL)
5279 * INDEX_ATTR_BITMAP_HOT_BLOCKING Columns that block updates from being HOT
5280 * INDEX_ATTR_BITMAP_SUMMARIZED Columns included in summarizing indexes
5281 *
5282 * Attribute numbers are offset by FirstLowInvalidHeapAttributeNumber so that
5283 * we can include system attributes (e.g., OID) in the bitmap representation.
5284 *
5285 * Deferred indexes are considered for the primary key, but not for replica
5286 * identity.
5287 *
5288 * Caller had better hold at least RowExclusiveLock on the target relation
5289 * to ensure it is safe (deadlock-free) for us to take locks on the relation's
5290 * indexes. Note that since the introduction of CREATE INDEX CONCURRENTLY,
5291 * that lock level doesn't guarantee a stable set of indexes, so we have to
5292 * be prepared to retry here in case of a change in the set of indexes.
5293 *
5294 * The returned result is palloc'd in the caller's memory context and should
5295 * be bms_free'd when not needed anymore.
5296 */
5297Bitmapset *
5299{
5300 Bitmapset *uindexattrs; /* columns in unique indexes */
5301 Bitmapset *pkindexattrs; /* columns in the primary index */
5302 Bitmapset *idindexattrs; /* columns in the replica identity */
5303 Bitmapset *hotblockingattrs; /* columns with HOT blocking indexes */
5304 Bitmapset *summarizedattrs; /* columns with summarizing indexes */
5305 List *indexoidlist;
5306 List *newindexoidlist;
5307 Oid relpkindex;
5308 Oid relreplindex;
5309 ListCell *l;
5310 MemoryContext oldcxt;
5311
5312 /* Quick exit if we already computed the result. */
5313 if (relation->rd_attrsvalid)
5314 {
5315 switch (attrKind)
5316 {
5318 return bms_copy(relation->rd_keyattr);
5320 return bms_copy(relation->rd_pkattr);
5322 return bms_copy(relation->rd_idattr);
5324 return bms_copy(relation->rd_hotblockingattr);
5326 return bms_copy(relation->rd_summarizedattr);
5327 default:
5328 elog(ERROR, "unknown attrKind %u", attrKind);
5329 }
5330 }
5331
5332 /* Fast path if definitely no indexes */
5333 if (!RelationGetForm(relation)->relhasindex)
5334 return NULL;
5335
5336 /*
5337 * Get cached list of index OIDs. If we have to start over, we do so here.
5338 */
5339restart:
5340 indexoidlist = RelationGetIndexList(relation);
5341
5342 /* Fall out if no indexes (but relhasindex was set) */
5343 if (indexoidlist == NIL)
5344 return NULL;
5345
5346 /*
5347 * Copy the rd_pkindex and rd_replidindex values computed by
5348 * RelationGetIndexList before proceeding. This is needed because a
5349 * relcache flush could occur inside index_open below, resetting the
5350 * fields managed by RelationGetIndexList. We need to do the work with
5351 * stable values of these fields.
5352 */
5353 relpkindex = relation->rd_pkindex;
5354 relreplindex = relation->rd_replidindex;
5355
5356 /*
5357 * For each index, add referenced attributes to indexattrs.
5358 *
5359 * Note: we consider all indexes returned by RelationGetIndexList, even if
5360 * they are not indisready or indisvalid. This is important because an
5361 * index for which CREATE INDEX CONCURRENTLY has just started must be
5362 * included in HOT-safety decisions (see README.HOT). If a DROP INDEX
5363 * CONCURRENTLY is far enough along that we should ignore the index, it
5364 * won't be returned at all by RelationGetIndexList.
5365 */
5366 uindexattrs = NULL;
5367 pkindexattrs = NULL;
5368 idindexattrs = NULL;
5369 hotblockingattrs = NULL;
5370 summarizedattrs = NULL;
5371 foreach(l, indexoidlist)
5372 {
5373 Oid indexOid = lfirst_oid(l);
5374 Relation indexDesc;
5375 Datum datum;
5376 bool isnull;
5377 Node *indexExpressions;
5378 Node *indexPredicate;
5379 int i;
5380 bool isKey; /* candidate key */
5381 bool isPK; /* primary key */
5382 bool isIDKey; /* replica identity index */
5383 Bitmapset **attrs;
5384
5385 indexDesc = index_open(indexOid, AccessShareLock);
5386
5387 /*
5388 * Extract index expressions and index predicate. Note: Don't use
5389 * RelationGetIndexExpressions()/RelationGetIndexPredicate(), because
5390 * those might run constant expressions evaluation, which needs a
5391 * snapshot, which we might not have here. (Also, it's probably more
5392 * sound to collect the bitmaps before any transformations that might
5393 * eliminate columns, but the practical impact of this is limited.)
5394 */
5395
5396 datum = heap_getattr(indexDesc->rd_indextuple, Anum_pg_index_indexprs,
5397 GetPgIndexDescriptor(), &isnull);
5398 if (!isnull)
5399 indexExpressions = stringToNode(TextDatumGetCString(datum));
5400 else
5401 indexExpressions = NULL;
5402
5403 datum = heap_getattr(indexDesc->rd_indextuple, Anum_pg_index_indpred,
5404 GetPgIndexDescriptor(), &isnull);
5405 if (!isnull)
5406 indexPredicate = stringToNode(TextDatumGetCString(datum));
5407 else
5408 indexPredicate = NULL;
5409
5410 /* Can this index be referenced by a foreign key? */
5411 isKey = indexDesc->rd_index->indisunique &&
5412 indexExpressions == NULL &&
5413 indexPredicate == NULL;
5414
5415 /* Is this a primary key? */
5416 isPK = (indexOid == relpkindex);
5417
5418 /* Is this index the configured (or default) replica identity? */
5419 isIDKey = (indexOid == relreplindex);
5420
5421 /*
5422 * If the index is summarizing, it doesn't block HOT updates, but we
5423 * may still need to update it (if the attributes were modified). So
5424 * decide which bitmap we'll update in the following loop.
5425 */
5426 if (indexDesc->rd_indam->amsummarizing)
5427 attrs = &summarizedattrs;
5428 else
5429 attrs = &hotblockingattrs;
5430
5431 /* Collect simple attribute references */
5432 for (i = 0; i < indexDesc->rd_index->indnatts; i++)
5433 {
5434 int attrnum = indexDesc->rd_index->indkey.values[i];
5435
5436 /*
5437 * Since we have covering indexes with non-key columns, we must
5438 * handle them accurately here. non-key columns must be added into
5439 * hotblockingattrs or summarizedattrs, since they are in index,
5440 * and update shouldn't miss them.
5441 *
5442 * Summarizing indexes do not block HOT, but do need to be updated
5443 * when the column value changes, thus require a separate
5444 * attribute bitmapset.
5445 *
5446 * Obviously, non-key columns couldn't be referenced by foreign
5447 * key or identity key. Hence we do not include them into
5448 * uindexattrs, pkindexattrs and idindexattrs bitmaps.
5449 */
5450 if (attrnum != 0)
5451 {
5452 *attrs = bms_add_member(*attrs,
5454
5455 if (isKey && i < indexDesc->rd_index->indnkeyatts)
5456 uindexattrs = bms_add_member(uindexattrs,
5458
5459 if (isPK && i < indexDesc->rd_index->indnkeyatts)
5460 pkindexattrs = bms_add_member(pkindexattrs,
5462
5463 if (isIDKey && i < indexDesc->rd_index->indnkeyatts)
5464 idindexattrs = bms_add_member(idindexattrs,
5466 }
5467 }
5468
5469 /* Collect all attributes used in expressions, too */
5470 pull_varattnos(indexExpressions, 1, attrs);
5471
5472 /* Collect all attributes in the index predicate, too */
5473 pull_varattnos(indexPredicate, 1, attrs);
5474
5475 index_close(indexDesc, AccessShareLock);
5476 }
5477
5478 /*
5479 * During one of the index_opens in the above loop, we might have received
5480 * a relcache flush event on this relcache entry, which might have been
5481 * signaling a change in the rel's index list. If so, we'd better start
5482 * over to ensure we deliver up-to-date attribute bitmaps.
5483 */
5484 newindexoidlist = RelationGetIndexList(relation);
5485 if (equal(indexoidlist, newindexoidlist) &&
5486 relpkindex == relation->rd_pkindex &&
5487 relreplindex == relation->rd_replidindex)
5488 {
5489 /* Still the same index set, so proceed */
5490 list_free(newindexoidlist);
5491 list_free(indexoidlist);
5492 }
5493 else
5494 {
5495 /* Gotta do it over ... might as well not leak memory */
5496 list_free(newindexoidlist);
5497 list_free(indexoidlist);
5498 bms_free(uindexattrs);
5499 bms_free(pkindexattrs);
5500 bms_free(idindexattrs);
5501 bms_free(hotblockingattrs);
5502 bms_free(summarizedattrs);
5503
5504 goto restart;
5505 }
5506
5507 /* Don't leak the old values of these bitmaps, if any */
5508 relation->rd_attrsvalid = false;
5509 bms_free(relation->rd_keyattr);
5510 relation->rd_keyattr = NULL;
5511 bms_free(relation->rd_pkattr);
5512 relation->rd_pkattr = NULL;
5513 bms_free(relation->rd_idattr);
5514 relation->rd_idattr = NULL;
5515 bms_free(relation->rd_hotblockingattr);
5516 relation->rd_hotblockingattr = NULL;
5517 bms_free(relation->rd_summarizedattr);
5518 relation->rd_summarizedattr = NULL;
5519
5520 /*
5521 * Now save copies of the bitmaps in the relcache entry. We intentionally
5522 * set rd_attrsvalid last, because that's the one that signals validity of
5523 * the values; if we run out of memory before making that copy, we won't
5524 * leave the relcache entry looking like the other ones are valid but
5525 * empty.
5526 */
5528 relation->rd_keyattr = bms_copy(uindexattrs);
5529 relation->rd_pkattr = bms_copy(pkindexattrs);
5530 relation->rd_idattr = bms_copy(idindexattrs);
5531 relation->rd_hotblockingattr = bms_copy(hotblockingattrs);
5532 relation->rd_summarizedattr = bms_copy(summarizedattrs);
5533 relation->rd_attrsvalid = true;
5534 MemoryContextSwitchTo(oldcxt);
5535
5536 /* We return our original working copy for caller to play with */
5537 switch (attrKind)
5538 {
5540 return uindexattrs;
5542 return pkindexattrs;
5544 return idindexattrs;
5546 return hotblockingattrs;
5548 return summarizedattrs;
5549 default:
5550 elog(ERROR, "unknown attrKind %u", attrKind);
5551 return NULL;
5552 }
5553}
5554
5555/*
5556 * RelationGetIdentityKeyBitmap -- get a bitmap of replica identity attribute
5557 * numbers
5558 *
5559 * A bitmap of index attribute numbers for the configured replica identity
5560 * index is returned.
5561 *
5562 * See also comments of RelationGetIndexAttrBitmap().
5563 *
5564 * This is a special purpose function used during logical replication. Here,
5565 * unlike RelationGetIndexAttrBitmap(), we don't acquire a lock on the required
5566 * index as we build the cache entry using a historic snapshot and all the
5567 * later changes are absorbed while decoding WAL. Due to this reason, we don't
5568 * need to retry here in case of a change in the set of indexes.
5569 */
5570Bitmapset *
5572{
5573 Bitmapset *idindexattrs = NULL; /* columns in the replica identity */
5574 Relation indexDesc;
5575 int i;
5576 Oid replidindex;
5577 MemoryContext oldcxt;
5578
5579 /* Quick exit if we already computed the result */
5580 if (relation->rd_idattr != NULL)
5581 return bms_copy(relation->rd_idattr);
5582
5583 /* Fast path if definitely no indexes */
5584 if (!RelationGetForm(relation)->relhasindex)
5585 return NULL;
5586
5587 /* Historic snapshot must be set. */
5589
5590 replidindex = RelationGetReplicaIndex(relation);
5591
5592 /* Fall out if there is no replica identity index */
5593 if (!OidIsValid(replidindex))
5594 return NULL;
5595
5596 /* Look up the description for the replica identity index */
5597 indexDesc = RelationIdGetRelation(replidindex);
5598
5599 if (!RelationIsValid(indexDesc))
5600 elog(ERROR, "could not open relation with OID %u",
5601 relation->rd_replidindex);
5602
5603 /* Add referenced attributes to idindexattrs */
5604 for (i = 0; i < indexDesc->rd_index->indnatts; i++)
5605 {
5606 int attrnum = indexDesc->rd_index->indkey.values[i];
5607
5608 /*
5609 * We don't include non-key columns into idindexattrs bitmaps. See
5610 * RelationGetIndexAttrBitmap.
5611 */
5612 if (attrnum != 0)
5613 {
5614 if (i < indexDesc->rd_index->indnkeyatts)
5615 idindexattrs = bms_add_member(idindexattrs,
5617 }
5618 }
5619
5620 RelationClose(indexDesc);
5621
5622 /* Don't leak the old values of these bitmaps, if any */
5623 bms_free(relation->rd_idattr);
5624 relation->rd_idattr = NULL;
5625
5626 /* Now save copy of the bitmap in the relcache entry */
5628 relation->rd_idattr = bms_copy(idindexattrs);
5629 MemoryContextSwitchTo(oldcxt);
5630
5631 /* We return our original working copy for caller to play with */
5632 return idindexattrs;
5633}
5634
5635/*
5636 * RelationGetExclusionInfo -- get info about index's exclusion constraint
5637 *
5638 * This should be called only for an index that is known to have an associated
5639 * exclusion constraint or primary key/unique constraint using WITHOUT
5640 * OVERLAPS.
5641 *
5642 * It returns arrays (palloc'd in caller's context) of the exclusion operator
5643 * OIDs, their underlying functions' OIDs, and their strategy numbers in the
5644 * index's opclasses. We cache all this information since it requires a fair
5645 * amount of work to get.
5646 */
5647void
5649 Oid **operators,
5650 Oid **procs,
5651 uint16 **strategies)
5652{
5653 int indnkeyatts;
5654 Oid *ops;
5655 Oid *funcs;
5656 uint16 *strats;
5657 Relation conrel;
5658 SysScanDesc conscan;
5659 ScanKeyData skey[1];
5660 HeapTuple htup;
5661 bool found;
5662 MemoryContext oldcxt;
5663 int i;
5664
5665 indnkeyatts = IndexRelationGetNumberOfKeyAttributes(indexRelation);
5666
5667 /* Allocate result space in caller context */
5668 *operators = ops = palloc_array(Oid, indnkeyatts);
5669 *procs = funcs = palloc_array(Oid, indnkeyatts);
5670 *strategies = strats = palloc_array(uint16, indnkeyatts);
5671
5672 /* Quick exit if we have the data cached already */
5673 if (indexRelation->rd_exclstrats != NULL)
5674 {
5675 memcpy(ops, indexRelation->rd_exclops, sizeof(Oid) * indnkeyatts);
5676 memcpy(funcs, indexRelation->rd_exclprocs, sizeof(Oid) * indnkeyatts);
5677 memcpy(strats, indexRelation->rd_exclstrats, sizeof(uint16) * indnkeyatts);
5678 return;
5679 }
5680
5681 /*
5682 * Search pg_constraint for the constraint associated with the index. To
5683 * make this not too painfully slow, we use the index on conrelid; that
5684 * will hold the parent relation's OID not the index's own OID.
5685 *
5686 * Note: if we wanted to rely on the constraint name matching the index's
5687 * name, we could just do a direct lookup using pg_constraint's unique
5688 * index. For the moment it doesn't seem worth requiring that.
5689 */
5690 ScanKeyInit(&skey[0],
5691 Anum_pg_constraint_conrelid,
5692 BTEqualStrategyNumber, F_OIDEQ,
5693 ObjectIdGetDatum(indexRelation->rd_index->indrelid));
5694
5695 conrel = table_open(ConstraintRelationId, AccessShareLock);
5696 conscan = systable_beginscan(conrel, ConstraintRelidTypidNameIndexId, true,
5697 NULL, 1, skey);
5698 found = false;
5699
5700 while (HeapTupleIsValid(htup = systable_getnext(conscan)))
5701 {
5703 Datum val;
5704 bool isnull;
5705 ArrayType *arr;
5706 int nelem;
5707
5708 /* We want the exclusion constraint owning the index */
5709 if ((conform->contype != CONSTRAINT_EXCLUSION &&
5710 !(conform->conperiod && (conform->contype == CONSTRAINT_PRIMARY
5711 || conform->contype == CONSTRAINT_UNIQUE))) ||
5712 conform->conindid != RelationGetRelid(indexRelation))
5713 continue;
5714
5715 /* There should be only one */
5716 if (found)
5717 elog(ERROR, "unexpected exclusion constraint record found for rel %s",
5718 RelationGetRelationName(indexRelation));
5719 found = true;
5720
5721 /* Extract the operator OIDS from conexclop */
5722 val = fastgetattr(htup,
5723 Anum_pg_constraint_conexclop,
5724 conrel->rd_att, &isnull);
5725 if (isnull)
5726 elog(ERROR, "null conexclop for rel %s",
5727 RelationGetRelationName(indexRelation));
5728
5729 arr = DatumGetArrayTypeP(val); /* ensure not toasted */
5730 nelem = ARR_DIMS(arr)[0];
5731 if (ARR_NDIM(arr) != 1 ||
5732 nelem != indnkeyatts ||
5733 ARR_HASNULL(arr) ||
5734 ARR_ELEMTYPE(arr) != OIDOID)
5735 elog(ERROR, "conexclop is not a 1-D Oid array");
5736
5737 memcpy(ops, ARR_DATA_PTR(arr), sizeof(Oid) * indnkeyatts);
5738 }
5739
5740 systable_endscan(conscan);
5742
5743 if (!found)
5744 elog(ERROR, "exclusion constraint record missing for rel %s",
5745 RelationGetRelationName(indexRelation));
5746
5747 /* We need the func OIDs and strategy numbers too */
5748 for (i = 0; i < indnkeyatts; i++)
5749 {
5750 funcs[i] = get_opcode(ops[i]);
5751 strats[i] = get_op_opfamily_strategy(ops[i],
5752 indexRelation->rd_opfamily[i]);
5753 /* shouldn't fail, since it was checked at index creation */
5754 if (strats[i] == InvalidStrategy)
5755 elog(ERROR, "could not find strategy for operator %u in family %u",
5756 ops[i], indexRelation->rd_opfamily[i]);
5757 }
5758
5759 /* Save a copy of the results in the relcache entry. */
5760 oldcxt = MemoryContextSwitchTo(indexRelation->rd_indexcxt);
5761 indexRelation->rd_exclops = palloc_array(Oid, indnkeyatts);
5762 indexRelation->rd_exclprocs = palloc_array(Oid, indnkeyatts);
5763 indexRelation->rd_exclstrats = palloc_array(uint16, indnkeyatts);
5764 memcpy(indexRelation->rd_exclops, ops, sizeof(Oid) * indnkeyatts);
5765 memcpy(indexRelation->rd_exclprocs, funcs, sizeof(Oid) * indnkeyatts);
5766 memcpy(indexRelation->rd_exclstrats, strats, sizeof(uint16) * indnkeyatts);
5767 MemoryContextSwitchTo(oldcxt);
5768}
5769
5770/*
5771 * Get the publication information for the given relation.
5772 *
5773 * Traverse all the publications which the relation is in to get the
5774 * publication actions and validate:
5775 * 1. The row filter expressions for such publications if any. We consider the
5776 * row filter expression as invalid if it references any column which is not
5777 * part of REPLICA IDENTITY.
5778 * 2. The column list for such publication if any. We consider the column list
5779 * invalid if REPLICA IDENTITY contains any column that is not part of it.
5780 * 3. The generated columns of the relation for such publications. We consider
5781 * any reference of an unpublished generated column in REPLICA IDENTITY as
5782 * invalid.
5783 *
5784 * To avoid fetching the publication information repeatedly, we cache the
5785 * publication actions, row filter validation information, column list
5786 * validation information, and generated column validation information.
5787 */
5788void
5790{
5791 List *puboids;
5792 ListCell *lc;
5793 MemoryContext oldcxt;
5794 Oid schemaid;
5795 List *ancestors = NIL;
5796 Oid relid = RelationGetRelid(relation);
5797
5798 /*
5799 * If not publishable, it publishes no actions. (pgoutput_change() will
5800 * ignore it.)
5801 */
5802 if (!is_publishable_relation(relation))
5803 {
5804 memset(pubdesc, 0, sizeof(PublicationDesc));
5805 pubdesc->rf_valid_for_update = true;
5806 pubdesc->rf_valid_for_delete = true;
5807 pubdesc->cols_valid_for_update = true;
5808 pubdesc->cols_valid_for_delete = true;
5809 pubdesc->gencols_valid_for_update = true;
5810 pubdesc->gencols_valid_for_delete = true;
5811 return;
5812 }
5813
5814 if (relation->rd_pubdesc)
5815 {
5816 memcpy(pubdesc, relation->rd_pubdesc, sizeof(PublicationDesc));
5817 return;
5818 }
5819
5820 memset(pubdesc, 0, sizeof(PublicationDesc));
5821 pubdesc->rf_valid_for_update = true;
5822 pubdesc->rf_valid_for_delete = true;
5823 pubdesc->cols_valid_for_update = true;
5824 pubdesc->cols_valid_for_delete = true;
5825 pubdesc->gencols_valid_for_update = true;
5826 pubdesc->gencols_valid_for_delete = true;
5827
5828 /* Fetch the publication membership info. */
5829 puboids = GetRelationPublications(relid);
5830 schemaid = RelationGetNamespace(relation);
5831 puboids = list_concat_unique_oid(puboids, GetSchemaPublications(schemaid));
5832
5833 if (relation->rd_rel->relispartition)
5834 {
5835 /* Add publications that the ancestors are in too. */
5836 ancestors = get_partition_ancestors(relid);
5837
5838 foreach(lc, ancestors)
5839 {
5840 Oid ancestor = lfirst_oid(lc);
5841
5842 puboids = list_concat_unique_oid(puboids,
5843 GetRelationPublications(ancestor));
5844 schemaid = get_rel_namespace(ancestor);
5845 puboids = list_concat_unique_oid(puboids,
5846 GetSchemaPublications(schemaid));
5847 }
5848 }
5850
5851 foreach(lc, puboids)
5852 {
5853 Oid pubid = lfirst_oid(lc);
5854 HeapTuple tup;
5855 Form_pg_publication pubform;
5856 bool invalid_column_list;
5857 bool invalid_gen_col;
5858
5859 tup = SearchSysCache1(PUBLICATIONOID, ObjectIdGetDatum(pubid));
5860
5861 if (!HeapTupleIsValid(tup))
5862 elog(ERROR, "cache lookup failed for publication %u", pubid);
5863
5864 pubform = (Form_pg_publication) GETSTRUCT(tup);
5865
5866 pubdesc->pubactions.pubinsert |= pubform->pubinsert;
5867 pubdesc->pubactions.pubupdate |= pubform->pubupdate;
5868 pubdesc->pubactions.pubdelete |= pubform->pubdelete;
5869 pubdesc->pubactions.pubtruncate |= pubform->pubtruncate;
5870
5871 /*
5872 * Check if all columns referenced in the filter expression are part
5873 * of the REPLICA IDENTITY index or not.
5874 *
5875 * If the publication is FOR ALL TABLES then it means the table has no
5876 * row filters and we can skip the validation.
5877 */
5878 if (!pubform->puballtables &&
5879 (pubform->pubupdate || pubform->pubdelete) &&
5880 pub_rf_contains_invalid_column(pubid, relation, ancestors,
5881 pubform->pubviaroot))
5882 {
5883 if (pubform->pubupdate)
5884 pubdesc->rf_valid_for_update = false;
5885 if (pubform->pubdelete)
5886 pubdesc->rf_valid_for_delete = false;
5887 }
5888
5889 /*
5890 * Check if all columns are part of the REPLICA IDENTITY index or not.
5891 *
5892 * Check if all generated columns included in the REPLICA IDENTITY are
5893 * published.
5894 */
5895 if ((pubform->pubupdate || pubform->pubdelete) &&
5896 pub_contains_invalid_column(pubid, relation, ancestors,
5897 pubform->pubviaroot,
5898 pubform->pubgencols,
5899 &invalid_column_list,
5900 &invalid_gen_col))
5901 {
5902 if (pubform->pubupdate)
5903 {
5904 pubdesc->cols_valid_for_update = !invalid_column_list;
5905 pubdesc->gencols_valid_for_update = !invalid_gen_col;
5906 }
5907
5908 if (pubform->pubdelete)
5909 {
5910 pubdesc->cols_valid_for_delete = !invalid_column_list;
5911 pubdesc->gencols_valid_for_delete = !invalid_gen_col;
5912 }
5913 }
5914
5915 ReleaseSysCache(tup);
5916
5917 /*
5918 * If we know everything is replicated and the row filter is invalid
5919 * for update and delete, there is no point to check for other
5920 * publications.
5921 */
5922 if (pubdesc->pubactions.pubinsert && pubdesc->pubactions.pubupdate &&
5923 pubdesc->pubactions.pubdelete && pubdesc->pubactions.pubtruncate &&
5924 !pubdesc->rf_valid_for_update && !pubdesc->rf_valid_for_delete)
5925 break;
5926
5927 /*
5928 * If we know everything is replicated and the column list is invalid
5929 * for update and delete, there is no point to check for other
5930 * publications.
5931 */
5932 if (pubdesc->pubactions.pubinsert && pubdesc->pubactions.pubupdate &&
5933 pubdesc->pubactions.pubdelete && pubdesc->pubactions.pubtruncate &&
5934 !pubdesc->cols_valid_for_update && !pubdesc->cols_valid_for_delete)
5935 break;
5936
5937 /*
5938 * If we know everything is replicated and replica identity has an
5939 * unpublished generated column, there is no point to check for other
5940 * publications.
5941 */
5942 if (pubdesc->pubactions.pubinsert && pubdesc->pubactions.pubupdate &&
5943 pubdesc->pubactions.pubdelete && pubdesc->pubactions.pubtruncate &&
5944 !pubdesc->gencols_valid_for_update &&
5945 !pubdesc->gencols_valid_for_delete)
5946 break;
5947 }
5948
5949 if (relation->rd_pubdesc)
5950 {
5951 pfree(relation->rd_pubdesc);
5952 relation->rd_pubdesc = NULL;
5953 }
5954
5955 /* Now save copy of the descriptor in the relcache entry. */
5958 memcpy(relation->rd_pubdesc, pubdesc, sizeof(PublicationDesc));
5959 MemoryContextSwitchTo(oldcxt);
5960}
5961
5962static bytea **
5963CopyIndexAttOptions(bytea **srcopts, int natts)
5964{
5965 bytea **opts = palloc_array(bytea *, natts);
5966
5967 for (int i = 0; i < natts; i++)
5968 {
5969 bytea *opt = srcopts[i];
5970
5971 opts[i] = !opt ? NULL : (bytea *)
5972 DatumGetPointer(datumCopy(PointerGetDatum(opt), false, -1));
5973 }
5974
5975 return opts;
5976}
5977
5978/*
5979 * RelationGetIndexAttOptions
5980 * get AM/opclass-specific options for an index parsed into a binary form
5981 */
5982bytea **
5984{
5985 MemoryContext oldcxt;
5986 bytea **opts = relation->rd_opcoptions;
5987 Oid relid = RelationGetRelid(relation);
5988 int natts = RelationGetNumberOfAttributes(relation); /* XXX
5989 * IndexRelationGetNumberOfKeyAttributes */
5990 int i;
5991
5992 /* Try to copy cached options. */
5993 if (opts)
5994 return copy ? CopyIndexAttOptions(opts, natts) : opts;
5995
5996 /* Get and parse opclass options. */
5997 opts = palloc0_array(bytea *, natts);
5998
5999 for (i = 0; i < natts; i++)
6000 {
6001 if (criticalRelcachesBuilt && relid != AttributeRelidNumIndexId)
6002 {
6003 Datum attoptions = get_attoptions(relid, i + 1);
6004
6005 opts[i] = index_opclass_options(relation, i + 1, attoptions, false);
6006
6007 if (attoptions != (Datum) 0)
6008 pfree(DatumGetPointer(attoptions));
6009 }
6010 }
6011
6012 /* Copy parsed options to the cache. */
6013 oldcxt = MemoryContextSwitchTo(relation->rd_indexcxt);
6014 relation->rd_opcoptions = CopyIndexAttOptions(opts, natts);
6015 MemoryContextSwitchTo(oldcxt);
6016
6017 if (copy)
6018 return opts;
6019
6020 for (i = 0; i < natts; i++)
6021 {
6022 if (opts[i])
6023 pfree(opts[i]);
6024 }
6025
6026 pfree(opts);
6027
6028 return relation->rd_opcoptions;
6029}
6030
6031/*
6032 * Routines to support ereport() reports of relation-related errors
6033 *
6034 * These could have been put into elog.c, but it seems like a module layering
6035 * violation to have elog.c calling relcache or syscache stuff --- and we
6036 * definitely don't want elog.h including rel.h. So we put them here.
6037 */
6038
6039/*
6040 * errtable --- stores schema_name and table_name of a table
6041 * within the current errordata.
6042 */
6043int
6045{
6049
6050 return 0; /* return value does not matter */
6051}
6052
6053/*
6054 * errtablecol --- stores schema_name, table_name and column_name
6055 * of a table column within the current errordata.
6056 *
6057 * The column is specified by attribute number --- for most callers, this is
6058 * easier and less error-prone than getting the column name for themselves.
6059 */
6060int
6062{
6063 TupleDesc reldesc = RelationGetDescr(rel);
6064 const char *colname;
6065
6066 /* Use reldesc if it's a user attribute, else consult the catalogs */
6067 if (attnum > 0 && attnum <= reldesc->natts)
6068 colname = NameStr(TupleDescAttr(reldesc, attnum - 1)->attname);
6069 else
6070 colname = get_attname(RelationGetRelid(rel), attnum, false);
6071
6072 return errtablecolname(rel, colname);
6073}
6074
6075/*
6076 * errtablecolname --- stores schema_name, table_name and column_name
6077 * of a table column within the current errordata, where the column name is
6078 * given directly rather than extracted from the relation's catalog data.
6079 *
6080 * Don't use this directly unless errtablecol() is inconvenient for some
6081 * reason. This might possibly be needed during intermediate states in ALTER
6082 * TABLE, for instance.
6083 */
6084int
6085errtablecolname(Relation rel, const char *colname)
6086{
6087 errtable(rel);
6089
6090 return 0; /* return value does not matter */
6091}
6092
6093/*
6094 * errtableconstraint --- stores schema_name, table_name and constraint_name
6095 * of a table-related constraint within the current errordata.
6096 */
6097int
6098errtableconstraint(Relation rel, const char *conname)
6099{
6100 errtable(rel);
6102
6103 return 0; /* return value does not matter */
6104}
6105
6106
6107/*
6108 * load_relcache_init_file, write_relcache_init_file
6109 *
6110 * In late 1992, we started regularly having databases with more than
6111 * a thousand classes in them. With this number of classes, it became
6112 * critical to do indexed lookups on the system catalogs.
6113 *
6114 * Bootstrapping these lookups is very hard. We want to be able to
6115 * use an index on pg_attribute, for example, but in order to do so,
6116 * we must have read pg_attribute for the attributes in the index,
6117 * which implies that we need to use the index.
6118 *
6119 * In order to get around the problem, we do the following:
6120 *
6121 * + When the database system is initialized (at initdb time), we
6122 * don't use indexes. We do sequential scans.
6123 *
6124 * + When the backend is started up in normal mode, we load an image
6125 * of the appropriate relation descriptors, in internal format,
6126 * from an initialization file in the data/base/... directory.
6127 *
6128 * + If the initialization file isn't there, then we create the
6129 * relation descriptors using sequential scans and write 'em to
6130 * the initialization file for use by subsequent backends.
6131 *
6132 * As of Postgres 9.0, there is one local initialization file in each
6133 * database, plus one shared initialization file for shared catalogs.
6134 *
6135 * We could dispense with the initialization files and just build the
6136 * critical reldescs the hard way on every backend startup, but that
6137 * slows down backend startup noticeably.
6138 *
6139 * We can in fact go further, and save more relcache entries than
6140 * just the ones that are absolutely critical; this allows us to speed
6141 * up backend startup by not having to build such entries the hard way.
6142 * Presently, all the catalog and index entries that are referred to
6143 * by catcaches are stored in the initialization files.
6144 *
6145 * The same mechanism that detects when catcache and relcache entries
6146 * need to be invalidated (due to catalog updates) also arranges to
6147 * unlink the initialization files when the contents may be out of date.
6148 * The files will then be rebuilt during the next backend startup.
6149 */
6150
6151/*
6152 * load_relcache_init_file -- attempt to load cache from the shared
6153 * or local cache init file
6154 *
6155 * If successful, return true and set criticalRelcachesBuilt or
6156 * criticalSharedRelcachesBuilt to true.
6157 * If not successful, return false.
6158 *
6159 * NOTE: we assume we are already switched into CacheMemoryContext.
6160 */
6161static bool
6163{
6164 FILE *fp;
6165 char initfilename[MAXPGPATH];
6166 Relation *rels;
6167 int relno,
6168 num_rels,
6169 max_rels,
6170 nailed_rels,
6171 nailed_indexes,
6172 magic;
6173 int i;
6174
6175 if (shared)
6176 snprintf(initfilename, sizeof(initfilename), "global/%s",
6178 else
6179 snprintf(initfilename, sizeof(initfilename), "%s/%s",
6181
6182 fp = AllocateFile(initfilename, PG_BINARY_R);
6183 if (fp == NULL)
6184 return false;
6185
6186 /*
6187 * Read the index relcache entries from the file. Note we will not enter
6188 * any of them into the cache if the read fails partway through; this
6189 * helps to guard against broken init files.
6190 */
6191 max_rels = 100;
6192 rels = (Relation *) palloc(max_rels * sizeof(Relation));
6193 num_rels = 0;
6194 nailed_rels = nailed_indexes = 0;
6195
6196 /* check for correct magic number (compatible version) */
6197 if (fread(&magic, 1, sizeof(magic), fp) != sizeof(magic))
6198 goto read_failed;
6199 if (magic != RELCACHE_INIT_FILEMAGIC)
6200 goto read_failed;
6201
6202 for (relno = 0;; relno++)
6203 {
6204 Size len;
6205 size_t nread;
6206 Relation rel;
6207 Form_pg_class relform;
6208 bool has_not_null;
6209
6210 /* first read the relation descriptor length */
6211 nread = fread(&len, 1, sizeof(len), fp);
6212 if (nread != sizeof(len))
6213 {
6214 if (nread == 0)
6215 break; /* end of file */
6216 goto read_failed;
6217 }
6218
6219 /* safety check for incompatible relcache layout */
6220 if (len != sizeof(RelationData))
6221 goto read_failed;
6222
6223 /* allocate another relcache header */
6224 if (num_rels >= max_rels)
6225 {
6226 max_rels *= 2;
6227 rels = (Relation *) repalloc(rels, max_rels * sizeof(Relation));
6228 }
6229
6230 rel = rels[num_rels++] = (Relation) palloc(len);
6231
6232 /* then, read the Relation structure */
6233 if (fread(rel, 1, len, fp) != len)
6234 goto read_failed;
6235
6236 /* next read the relation tuple form */
6237 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6238 goto read_failed;
6239
6240 relform = (Form_pg_class) palloc(len);
6241 if (fread(relform, 1, len, fp) != len)
6242 goto read_failed;
6243
6244 rel->rd_rel = relform;
6245
6246 /* initialize attribute tuple forms */
6247 rel->rd_att = CreateTemplateTupleDesc(relform->relnatts);
6248 rel->rd_att->tdrefcount = 1; /* mark as refcounted */
6249
6250 rel->rd_att->tdtypeid = relform->reltype ? relform->reltype : RECORDOID;
6251 rel->rd_att->tdtypmod = -1; /* just to be sure */
6252
6253 /* next read all the attribute tuple form data entries */
6254 has_not_null = false;
6255 for (i = 0; i < relform->relnatts; i++)
6256 {
6258
6259 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6260 goto read_failed;
6262 goto read_failed;
6263 if (fread(attr, 1, len, fp) != len)
6264 goto read_failed;
6265
6266 has_not_null |= attr->attnotnull;
6267
6269 }
6270
6271 /* next read the access method specific field */
6272 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6273 goto read_failed;
6274 if (len > 0)
6275 {
6276 rel->rd_options = palloc(len);
6277 if (fread(rel->rd_options, 1, len, fp) != len)
6278 goto read_failed;
6279 if (len != VARSIZE(rel->rd_options))
6280 goto read_failed; /* sanity check */
6281 }
6282 else
6283 {
6284 rel->rd_options = NULL;
6285 }
6286
6287 /* mark not-null status */
6288 if (has_not_null)
6289 {
6291
6292 constr->has_not_null = true;
6293 rel->rd_att->constr = constr;
6294 }
6295
6296 /*
6297 * If it's an index, there's more to do. Note we explicitly ignore
6298 * partitioned indexes here.
6299 */
6300 if (rel->rd_rel->relkind == RELKIND_INDEX)
6301 {
6302 MemoryContext indexcxt;
6303 Oid *opfamily;
6304 Oid *opcintype;
6305 RegProcedure *support;
6306 int nsupport;
6307 int16 *indoption;
6308 Oid *indcollation;
6309
6310 /* Count nailed indexes to ensure we have 'em all */
6311 if (rel->rd_isnailed)
6312 nailed_indexes++;
6313
6314 /* read the pg_index tuple */
6315 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6316 goto read_failed;
6317
6319 if (fread(rel->rd_indextuple, 1, len, fp) != len)
6320 goto read_failed;
6321
6322 /* Fix up internal pointers in the tuple -- see heap_copytuple */
6325
6326 /*
6327 * prepare index info context --- parameters should match
6328 * RelationInitIndexAccessInfo
6329 */
6331 "index info",
6333 rel->rd_indexcxt = indexcxt;
6336
6337 /*
6338 * Now we can fetch the index AM's API struct. (We can't store
6339 * that in the init file, since it contains function pointers that
6340 * might vary across server executions. Fortunately, it should be
6341 * safe to call the amhandler even while bootstrapping indexes.)
6342 */
6343 InitIndexAmRoutine(rel);
6344
6345 /* read the vector of opfamily OIDs */
6346 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6347 goto read_failed;
6348
6349 opfamily = (Oid *) MemoryContextAlloc(indexcxt, len);
6350 if (fread(opfamily, 1, len, fp) != len)
6351 goto read_failed;
6352
6353 rel->rd_opfamily = opfamily;
6354
6355 /* read the vector of opcintype OIDs */
6356 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6357 goto read_failed;
6358
6359 opcintype = (Oid *) MemoryContextAlloc(indexcxt, len);
6360 if (fread(opcintype, 1, len, fp) != len)
6361 goto read_failed;
6362
6363 rel->rd_opcintype = opcintype;
6364
6365 /* read the vector of support procedure OIDs */
6366 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6367 goto read_failed;
6368 support = (RegProcedure *) MemoryContextAlloc(indexcxt, len);
6369 if (fread(support, 1, len, fp) != len)
6370 goto read_failed;
6371
6372 rel->rd_support = support;
6373
6374 /* read the vector of collation OIDs */
6375 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6376 goto read_failed;
6377
6378 indcollation = (Oid *) MemoryContextAlloc(indexcxt, len);
6379 if (fread(indcollation, 1, len, fp) != len)
6380 goto read_failed;
6381
6382 rel->rd_indcollation = indcollation;
6383
6384 /* read the vector of indoption values */
6385 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6386 goto read_failed;
6387
6388 indoption = (int16 *) MemoryContextAlloc(indexcxt, len);
6389 if (fread(indoption, 1, len, fp) != len)
6390 goto read_failed;
6391
6392 rel->rd_indoption = indoption;
6393
6394 /* read the vector of opcoptions values */
6395 rel->rd_opcoptions = (bytea **)
6396 MemoryContextAllocZero(indexcxt, sizeof(*rel->rd_opcoptions) * relform->relnatts);
6397
6398 for (i = 0; i < relform->relnatts; i++)
6399 {
6400 if (fread(&len, 1, sizeof(len), fp) != sizeof(len))
6401 goto read_failed;
6402
6403 if (len > 0)
6404 {
6405 rel->rd_opcoptions[i] = (bytea *) MemoryContextAlloc(indexcxt, len);
6406 if (fread(rel->rd_opcoptions[i], 1, len, fp) != len)
6407 goto read_failed;
6408 }
6409 }
6410
6411 /* set up zeroed fmgr-info vector */
6412 nsupport = relform->relnatts * rel->rd_indam->amsupport;
6413 rel->rd_supportinfo = (FmgrInfo *)
6414 MemoryContextAllocZero(indexcxt, nsupport * sizeof(FmgrInfo));
6415 }
6416 else
6417 {
6418 /* Count nailed rels to ensure we have 'em all */
6419 if (rel->rd_isnailed)
6420 nailed_rels++;
6421
6422 /* Load table AM data */
6423 if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind) || rel->rd_rel->relkind == RELKIND_SEQUENCE)
6425
6426 Assert(rel->rd_index == NULL);
6427 Assert(rel->rd_indextuple == NULL);
6428 Assert(rel->rd_indexcxt == NULL);
6429 Assert(rel->rd_indam == NULL);
6430 Assert(rel->rd_opfamily == NULL);
6431 Assert(rel->rd_opcintype == NULL);
6432 Assert(rel->rd_support == NULL);
6433 Assert(rel->rd_supportinfo == NULL);
6434 Assert(rel->rd_indoption == NULL);
6435 Assert(rel->rd_indcollation == NULL);
6436 Assert(rel->rd_opcoptions == NULL);
6437 }
6438
6439 /*
6440 * Rules and triggers are not saved (mainly because the internal
6441 * format is complex and subject to change). They must be rebuilt if
6442 * needed by RelationCacheInitializePhase3. This is not expected to
6443 * be a big performance hit since few system catalogs have such. Ditto
6444 * for RLS policy data, partition info, index expressions, predicates,
6445 * exclusion info, and FDW info.
6446 */
6447 rel->rd_rules = NULL;
6448 rel->rd_rulescxt = NULL;
6449 rel->trigdesc = NULL;
6450 rel->rd_rsdesc = NULL;
6451 rel->rd_partkey = NULL;
6452 rel->rd_partkeycxt = NULL;
6453 rel->rd_partdesc = NULL;
6454 rel->rd_partdesc_nodetached = NULL;
6456 rel->rd_pdcxt = NULL;
6457 rel->rd_pddcxt = NULL;
6458 rel->rd_partcheck = NIL;
6459 rel->rd_partcheckvalid = false;
6460 rel->rd_partcheckcxt = NULL;
6461 rel->rd_indexprs = NIL;
6462 rel->rd_indpred = NIL;
6463 rel->rd_exclops = NULL;
6464 rel->rd_exclprocs = NULL;
6465 rel->rd_exclstrats = NULL;
6466 rel->rd_fdwroutine = NULL;
6467
6468 /*
6469 * Reset transient-state fields in the relcache entry
6470 */
6471 rel->rd_smgr = NULL;
6472 if (rel->rd_isnailed)
6473 rel->rd_refcnt = 1;
6474 else
6475 rel->rd_refcnt = 0;
6476 rel->rd_indexvalid = false;
6477 rel->rd_indexlist = NIL;
6478 rel->rd_pkindex = InvalidOid;
6480 rel->rd_attrsvalid = false;
6481 rel->rd_keyattr = NULL;
6482 rel->rd_pkattr = NULL;
6483 rel->rd_idattr = NULL;
6484 rel->rd_pubdesc = NULL;
6485 rel->rd_statvalid = false;
6486 rel->rd_statlist = NIL;
6487 rel->rd_fkeyvalid = false;
6488 rel->rd_fkeylist = NIL;
6493 rel->rd_amcache = NULL;
6494 rel->pgstat_info = NULL;
6495
6496 /*
6497 * Recompute lock and physical addressing info. This is needed in
6498 * case the pg_internal.init file was copied from some other database
6499 * by CREATE DATABASE.
6500 */
6503 }
6504
6505 /*
6506 * We reached the end of the init file without apparent problem. Did we
6507 * get the right number of nailed items? This is a useful crosscheck in
6508 * case the set of critical rels or indexes changes. However, that should
6509 * not happen in a normally-running system, so let's bleat if it does.
6510 *
6511 * For the shared init file, we're called before client authentication is
6512 * done, which means that elog(WARNING) will go only to the postmaster
6513 * log, where it's easily missed. To ensure that developers notice bad
6514 * values of NUM_CRITICAL_SHARED_RELS/NUM_CRITICAL_SHARED_INDEXES, we put
6515 * an Assert(false) there.
6516 */
6517 if (shared)
6518 {
6519 if (nailed_rels != NUM_CRITICAL_SHARED_RELS ||
6520 nailed_indexes != NUM_CRITICAL_SHARED_INDEXES)
6521 {
6522 elog(WARNING, "found %d nailed shared rels and %d nailed shared indexes in init file, but expected %d and %d respectively",
6523 nailed_rels, nailed_indexes,
6525 /* Make sure we get developers' attention about this */
6526 Assert(false);
6527 /* In production builds, recover by bootstrapping the relcache */
6528 goto read_failed;
6529 }
6530 }
6531 else
6532 {
6533 if (nailed_rels != NUM_CRITICAL_LOCAL_RELS ||
6534 nailed_indexes != NUM_CRITICAL_LOCAL_INDEXES)
6535 {
6536 elog(WARNING, "found %d nailed rels and %d nailed indexes in init file, but expected %d and %d respectively",
6537 nailed_rels, nailed_indexes,
6539 /* We don't need an Assert() in this case */
6540 goto read_failed;
6541 }
6542 }
6543
6544 /*
6545 * OK, all appears well.
6546 *
6547 * Now insert all the new relcache entries into the cache.
6548 */
6549 for (relno = 0; relno < num_rels; relno++)
6550 {
6551 RelationCacheInsert(rels[relno], false);
6552 }
6553
6554 pfree(rels);
6555 FreeFile(fp);
6556
6557 if (shared)
6559 else
6561 return true;
6562
6563 /*
6564 * init file is broken, so do it the hard way. We don't bother trying to
6565 * free the clutter we just allocated; it's not in the relcache so it
6566 * won't hurt.
6567 */
6568read_failed:
6569 pfree(rels);
6570 FreeFile(fp);
6571
6572 return false;
6573}
6574
6575/*
6576 * Write out a new initialization file with the current contents
6577 * of the relcache (either shared rels or local rels, as indicated).
6578 */
6579static void
6581{
6582 FILE *fp;
6583 char tempfilename[MAXPGPATH];
6584 char finalfilename[MAXPGPATH];
6585 int magic;
6586 HASH_SEQ_STATUS status;
6587 RelIdCacheEnt *idhentry;
6588 int i;
6589
6590 /*
6591 * If we have already received any relcache inval events, there's no
6592 * chance of succeeding so we may as well skip the whole thing.
6593 */
6594 if (relcacheInvalsReceived != 0L)
6595 return;
6596
6597 /*
6598 * We must write a temporary file and rename it into place. Otherwise,
6599 * another backend starting at about the same time might crash trying to
6600 * read the partially-complete file.
6601 */
6602 if (shared)
6603 {
6604 snprintf(tempfilename, sizeof(tempfilename), "global/%s.%d",
6606 snprintf(finalfilename, sizeof(finalfilename), "global/%s",
6608 }
6609 else
6610 {
6611 snprintf(tempfilename, sizeof(tempfilename), "%s/%s.%d",
6613 snprintf(finalfilename, sizeof(finalfilename), "%s/%s",
6615 }
6616
6617 unlink(tempfilename); /* in case it exists w/wrong permissions */
6618
6619 fp = AllocateFile(tempfilename, PG_BINARY_W);
6620 if (fp == NULL)
6621 {
6622 /*
6623 * We used to consider this a fatal error, but we might as well
6624 * continue with backend startup ...
6625 */
6628 errmsg("could not create relation-cache initialization file \"%s\": %m",
6629 tempfilename),
6630 errdetail("Continuing anyway, but there's something wrong.")));
6631 return;
6632 }
6633
6634 /*
6635 * Write a magic number to serve as a file version identifier. We can
6636 * change the magic number whenever the relcache layout changes.
6637 */
6639 if (fwrite(&magic, 1, sizeof(magic), fp) != sizeof(magic))
6640 ereport(FATAL,
6642 errmsg_internal("could not write init file: %m"));
6643
6644 /*
6645 * Write all the appropriate reldescs (in no particular order).
6646 */
6648
6649 while ((idhentry = (RelIdCacheEnt *) hash_seq_search(&status)) != NULL)
6650 {
6651 Relation rel = idhentry->reldesc;
6652 Form_pg_class relform = rel->rd_rel;
6653
6654 /* ignore if not correct group */
6655 if (relform->relisshared != shared)
6656 continue;
6657
6658 /*
6659 * Ignore if not supposed to be in init file. We can allow any shared
6660 * relation that's been loaded so far to be in the shared init file,
6661 * but unshared relations must be ones that should be in the local
6662 * file per RelationIdIsInInitFile. (Note: if you want to change the
6663 * criterion for rels to be kept in the init file, see also inval.c.
6664 * The reason for filtering here is to be sure that we don't put
6665 * anything into the local init file for which a relcache inval would
6666 * not cause invalidation of that init file.)
6667 */
6668 if (!shared && !RelationIdIsInInitFile(RelationGetRelid(rel)))
6669 {
6670 /* Nailed rels had better get stored. */
6671 Assert(!rel->rd_isnailed);
6672 continue;
6673 }
6674
6675 /* first write the relcache entry proper */
6676 write_item(rel, sizeof(RelationData), fp);
6677
6678 /* next write the relation tuple form */
6679 write_item(relform, CLASS_TUPLE_SIZE, fp);
6680
6681 /* next, do all the attribute tuple form data entries */
6682 for (i = 0; i < relform->relnatts; i++)
6683 {
6686 }
6687
6688 /* next, do the access method specific field */
6690 (rel->rd_options ? VARSIZE(rel->rd_options) : 0),
6691 fp);
6692
6693 /*
6694 * If it's an index, there's more to do. Note we explicitly ignore
6695 * partitioned indexes here.
6696 */
6697 if (rel->rd_rel->relkind == RELKIND_INDEX)
6698 {
6699 /* write the pg_index tuple */
6700 /* we assume this was created by heap_copytuple! */
6703 fp);
6704
6705 /* write the vector of opfamily OIDs */
6707 relform->relnatts * sizeof(Oid),
6708 fp);
6709
6710 /* write the vector of opcintype OIDs */
6712 relform->relnatts * sizeof(Oid),
6713 fp);
6714
6715 /* write the vector of support procedure OIDs */
6717 relform->relnatts * (rel->rd_indam->amsupport * sizeof(RegProcedure)),
6718 fp);
6719
6720 /* write the vector of collation OIDs */
6722 relform->relnatts * sizeof(Oid),
6723 fp);
6724
6725 /* write the vector of indoption values */
6727 relform->relnatts * sizeof(int16),
6728 fp);
6729
6730 Assert(rel->rd_opcoptions);
6731
6732 /* write the vector of opcoptions values */
6733 for (i = 0; i < relform->relnatts; i++)
6734 {
6735 bytea *opt = rel->rd_opcoptions[i];
6736
6737 write_item(opt, opt ? VARSIZE(opt) : 0, fp);
6738 }
6739 }
6740 }
6741
6742 if (FreeFile(fp))
6743 ereport(FATAL,
6745 errmsg_internal("could not write init file: %m"));
6746
6747 /*
6748 * Now we have to check whether the data we've so painstakingly
6749 * accumulated is already obsolete due to someone else's just-committed
6750 * catalog changes. If so, we just delete the temp file and leave it to
6751 * the next backend to try again. (Our own relcache entries will be
6752 * updated by SI message processing, but we can't be sure whether what we
6753 * wrote out was up-to-date.)
6754 *
6755 * This mustn't run concurrently with the code that unlinks an init file
6756 * and sends SI messages, so grab a serialization lock for the duration.
6757 */
6758 LWLockAcquire(RelCacheInitLock, LW_EXCLUSIVE);
6759
6760 /* Make sure we have seen all incoming SI messages */
6762
6763 /*
6764 * If we have received any SI relcache invals since backend start, assume
6765 * we may have written out-of-date data.
6766 */
6767 if (relcacheInvalsReceived == 0L)
6768 {
6769 /*
6770 * OK, rename the temp file to its final name, deleting any
6771 * previously-existing init file.
6772 *
6773 * Note: a failure here is possible under Cygwin, if some other
6774 * backend is holding open an unlinked-but-not-yet-gone init file. So
6775 * treat this as a noncritical failure; just remove the useless temp
6776 * file on failure.
6777 */
6778 if (rename(tempfilename, finalfilename) < 0)
6779 unlink(tempfilename);
6780 }
6781 else
6782 {
6783 /* Delete the already-obsolete temp file */
6784 unlink(tempfilename);
6785 }
6786
6787 LWLockRelease(RelCacheInitLock);
6788}
6789
6790/* write a chunk of data preceded by its length */
6791static void
6792write_item(const void *data, Size len, FILE *fp)
6793{
6794 if (fwrite(&len, 1, sizeof(len), fp) != sizeof(len))
6795 ereport(FATAL,
6797 errmsg_internal("could not write init file: %m"));
6798 if (len > 0 && fwrite(data, 1, len, fp) != len)
6799 ereport(FATAL,
6801 errmsg_internal("could not write init file: %m"));
6802}
6803
6804/*
6805 * Determine whether a given relation (identified by OID) is one of the ones
6806 * we should store in a relcache init file.
6807 *
6808 * We must cache all nailed rels, and for efficiency we should cache every rel
6809 * that supports a syscache. The former set is almost but not quite a subset
6810 * of the latter. The special cases are relations where
6811 * RelationCacheInitializePhase2/3 chooses to nail for efficiency reasons, but
6812 * which do not support any syscache.
6813 */
6814bool
6816{
6817 if (relationId == SharedSecLabelRelationId ||
6818 relationId == TriggerRelidNameIndexId ||
6819 relationId == DatabaseNameIndexId ||
6820 relationId == SharedSecLabelObjectIndexId)
6821 {
6822 /*
6823 * If this Assert fails, we don't need the applicable special case
6824 * anymore.
6825 */
6826 Assert(!RelationSupportsSysCache(relationId));
6827 return true;
6828 }
6829 return RelationSupportsSysCache(relationId);
6830}
6831
6832/*
6833 * Invalidate (remove) the init file during commit of a transaction that
6834 * changed one or more of the relation cache entries that are kept in the
6835 * local init file.
6836 *
6837 * To be safe against concurrent inspection or rewriting of the init file,
6838 * we must take RelCacheInitLock, then remove the old init file, then send
6839 * the SI messages that include relcache inval for such relations, and then
6840 * release RelCacheInitLock. This serializes the whole affair against
6841 * write_relcache_init_file, so that we can be sure that any other process
6842 * that's concurrently trying to create a new init file won't move an
6843 * already-stale version into place after we unlink. Also, because we unlink
6844 * before sending the SI messages, a backend that's currently starting cannot
6845 * read the now-obsolete init file and then miss the SI messages that will
6846 * force it to update its relcache entries. (This works because the backend
6847 * startup sequence gets into the sinval array before trying to load the init
6848 * file.)
6849 *
6850 * We take the lock and do the unlink in RelationCacheInitFilePreInvalidate,
6851 * then release the lock in RelationCacheInitFilePostInvalidate. Caller must
6852 * send any pending SI messages between those calls.
6853 */
6854void
6856{
6857 char localinitfname[MAXPGPATH];
6858 char sharedinitfname[MAXPGPATH];
6859
6860 if (DatabasePath)
6861 snprintf(localinitfname, sizeof(localinitfname), "%s/%s",
6863 snprintf(sharedinitfname, sizeof(sharedinitfname), "global/%s",
6865
6866 LWLockAcquire(RelCacheInitLock, LW_EXCLUSIVE);
6867
6868 /*
6869 * The files might not be there if no backend has been started since the
6870 * last removal. But complain about failures other than ENOENT with
6871 * ERROR. Fortunately, it's not too late to abort the transaction if we
6872 * can't get rid of the would-be-obsolete init file.
6873 */
6874 if (DatabasePath)
6875 unlink_initfile(localinitfname, ERROR);
6876 unlink_initfile(sharedinitfname, ERROR);
6877}
6878
6879void
6881{
6882 LWLockRelease(RelCacheInitLock);
6883}
6884
6885/*
6886 * Remove the init files during postmaster startup.
6887 *
6888 * We used to keep the init files across restarts, but that is unsafe in PITR
6889 * scenarios, and even in simple crash-recovery cases there are windows for
6890 * the init files to become out-of-sync with the database. So now we just
6891 * remove them during startup and expect the first backend launch to rebuild
6892 * them. Of course, this has to happen in each database of the cluster.
6893 */
6894void
6896{
6897 const char *tblspcdir = PG_TBLSPC_DIR;
6898 DIR *dir;
6899 struct dirent *de;
6900 char path[MAXPGPATH + sizeof(PG_TBLSPC_DIR) + sizeof(TABLESPACE_VERSION_DIRECTORY)];
6901
6902 snprintf(path, sizeof(path), "global/%s",
6904 unlink_initfile(path, LOG);
6905
6906 /* Scan everything in the default tablespace */
6908
6909 /* Scan the tablespace link directory to find non-default tablespaces */
6910 dir = AllocateDir(tblspcdir);
6911
6912 while ((de = ReadDirExtended(dir, tblspcdir, LOG)) != NULL)
6913 {
6914 if (strspn(de->d_name, "0123456789") == strlen(de->d_name))
6915 {
6916 /* Scan the tablespace dir for per-database dirs */
6917 snprintf(path, sizeof(path), "%s/%s/%s",
6918 tblspcdir, de->d_name, TABLESPACE_VERSION_DIRECTORY);
6920 }
6921 }
6922
6923 FreeDir(dir);
6924}
6925
6926/* Process one per-tablespace directory for RelationCacheInitFileRemove */
6927static void
6929{
6930 DIR *dir;
6931 struct dirent *de;
6932 char initfilename[MAXPGPATH * 2];
6933
6934 /* Scan the tablespace directory to find per-database directories */
6935 dir = AllocateDir(tblspcpath);
6936
6937 while ((de = ReadDirExtended(dir, tblspcpath, LOG)) != NULL)
6938 {
6939 if (strspn(de->d_name, "0123456789") == strlen(de->d_name))
6940 {
6941 /* Try to remove the init file in each database */
6942 snprintf(initfilename, sizeof(initfilename), "%s/%s/%s",
6943 tblspcpath, de->d_name, RELCACHE_INIT_FILENAME);
6944 unlink_initfile(initfilename, LOG);
6945 }
6946 }
6947
6948 FreeDir(dir);
6949}
6950
6951static void
6952unlink_initfile(const char *initfilename, int elevel)
6953{
6954 if (unlink(initfilename) < 0)
6955 {
6956 /* It might not be there, but log any error other than ENOENT */
6957 if (errno != ENOENT)
6958 ereport(elevel,
6960 errmsg("could not remove cache file \"%s\": %m",
6961 initfilename)));
6962 }
6963}
6964
6965/*
6966 * ResourceOwner callbacks
6967 */
6968static char *
6970{
6971 Relation rel = (Relation) DatumGetPointer(res);
6972
6973 return psprintf("relation \"%s\"", RelationGetRelationName(rel));
6974}
6975
6976static void
6978{
6979 Relation rel = (Relation) DatumGetPointer(res);
6980
6981 /*
6982 * This reference has already been removed from the resource owner, so
6983 * just decrement reference count without calling
6984 * ResourceOwnerForgetRelationRef.
6985 */
6986 Assert(rel->rd_refcnt > 0);
6987 rel->rd_refcnt -= 1;
6988
6990}
const IndexAmRoutine * GetIndexAmRoutine(Oid amhandler)
Definition: amapi.c:33
bytea *(* amoptions_function)(Datum reloptions, bool validate)
Definition: amapi.h:165
#define ARR_NDIM(a)
Definition: array.h:290
#define ARR_DATA_PTR(a)
Definition: array.h:322
#define DatumGetArrayTypeP(X)
Definition: array.h:261
#define ARR_ELEMTYPE(a)
Definition: array.h:292
#define ARR_DIMS(a)
Definition: array.h:294
#define ARR_HASNULL(a)
Definition: array.h:291
Datum array_get_element(Datum arraydatum, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull)
Definition: arrayfuncs.c:1821
int16 AttrNumber
Definition: attnum.h:21
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define NameStr(name)
Definition: c.h:765
#define TopSubTransactionId
Definition: c.h:678
#define PG_BINARY_R
Definition: c.h:1252
uint32 SubTransactionId
Definition: c.h:675
#define InvalidSubTransactionId
Definition: c.h:677
TransactionId MultiXactId
Definition: c.h:681
int16_t int16
Definition: c.h:547
regproc RegProcedure
Definition: c.h:669
int32_t int32
Definition: c.h:548
uint16_t uint16
Definition: c.h:551
#define PG_BINARY_W
Definition: c.h:1253
uint32 TransactionId
Definition: c.h:671
#define OidIsValid(objectId)
Definition: c.h:788
size_t Size
Definition: c.h:624
bool IsSystemRelation(Relation relation)
Definition: catalog.c:74
RelFileNumber GetNewRelFileNumber(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:557
bool IsCatalogNamespace(Oid namespaceId)
Definition: catalog.c:243
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:104
bool IsSharedRelation(Oid relationId)
Definition: catalog.c:304
void CreateCacheMemoryContext(void)
Definition: catcache.c:715
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2270
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1415
void hash_seq_term(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1509
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1380
int err_generic_string(int field, const char *str)
Definition: elog.c:1546
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errcode_for_file_access(void)
Definition: elog.c:886
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
int FreeDir(DIR *dir)
Definition: fd.c:3005
int FreeFile(FILE *file)
Definition: fd.c:2823
struct dirent * ReadDirExtended(DIR *dir, const char *dirname, int elevel)
Definition: fd.c:2968
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2887
FILE * AllocateFile(const char *name, const char *mode)
Definition: fd.c:2624
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc_array(type, count)
Definition: fe_memutils.h:76
#define palloc0_array(type, count)
Definition: fe_memutils.h:77
#define palloc0_object(type)
Definition: fe_memutils.h:75
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:603
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:514
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:388
struct RelationData * Relation
Definition: genam.h:30
bool IsBinaryUpgrade
Definition: globals.c:121
int MyProcPid
Definition: globals.c:47
Oid MyDatabaseTableSpace
Definition: globals.c:96
char * DatabasePath
Definition: globals.c:104
Oid MyDatabaseId
Definition: globals.c:94
Assert(PointerIsAligned(start, uint64))
RelFileNumber binary_upgrade_next_heap_pg_class_relfilenumber
Definition: heap.c:83
const TableAmRoutine * GetHeapamTableAmRoutine(void)
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:778
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:456
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
#define HEAPTUPLESIZE
Definition: htup.h:73
HeapTupleData * HeapTuple
Definition: htup.h:71
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:904
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
static void HeapTupleHeaderSetXmin(HeapTupleHeaderData *tup, TransactionId xid)
Definition: htup_details.h:331
static Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:861
#define IsParallelWorker()
Definition: parallel.h:60
RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
Definition: index.c:86
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:1048
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
void CatalogTupleUpdate(Relation heapRel, const ItemPointerData *otid, HeapTuple tup)
Definition: indexing.c:313
long val
Definition: informix.c:689
static int pg_cmp_s16(int16 a, int16 b)
Definition: int.h:701
void AcceptInvalidationMessages(void)
Definition: inval.c:930
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1635
int debug_discard_caches
Definition: inval.c:260
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
List * list_concat_unique_oid(List *list1, const List *list2)
Definition: list.c:1469
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * lcons(void *datum, List *list)
Definition: list.c:495
int list_oid_cmp(const ListCell *p1, const ListCell *p2)
Definition: list.c:1703
void list_free(List *list)
Definition: list.c:1546
void list_free_deep(List *list)
Definition: list.c:1560
void UnlockTuple(Relation relation, const ItemPointerData *tid, LOCKMODE lockmode)
Definition: lmgr.c:601
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:229
void RelationInitLockInfo(Relation relation)
Definition: lmgr.c:70
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:107
LockTagType
Definition: lock.h:138
@ LOCKTAG_RELATION
Definition: lock.h:139
#define AccessShareLock
Definition: lockdefs.h:36
#define InplaceUpdateTupleLock
Definition: lockdefs.h:48
#define RowExclusiveLock
Definition: lockdefs.h:38
Datum get_attoptions(Oid relid, int16 attnum)
Definition: lsyscache.c:1046
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:2102
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1435
int get_op_opfamily_strategy(Oid opno, Oid opfamily)
Definition: lsyscache.c:85
char * get_attname(Oid relid, AttrNumber attnum, bool missing_ok)
Definition: lsyscache.c:903
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3516
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1178
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1898
@ LW_EXCLUSIVE
Definition: lwlock.h:112
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:350
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
char * MemoryContextStrdup(MemoryContext context, const char *string)
Definition: mcxt.c:1768
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1232
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1266
void MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
Definition: mcxt.c:686
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1632
void pfree(void *pointer)
Definition: mcxt.c:1616
void * palloc0(Size size)
Definition: mcxt.c:1417
void MemoryContextDeleteChildren(MemoryContext context)
Definition: mcxt.c:555
void * palloc(Size size)
Definition: mcxt.c:1387
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
MemoryContext CacheMemoryContext
Definition: mcxt.c:169
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:472
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define ALLOCSET_SMALL_SIZES
Definition: memutils.h:170
#define MemoryContextCopyAndSetIdentifier(cxt, id)
Definition: memutils.h:101
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:477
#define InvalidMultiXactId
Definition: multixact.h:25
void namestrcpy(Name name, const char *str)
Definition: name.c:233
bool isTempOrTempToastNamespace(Oid namespaceId)
Definition: namespace.c:3743
ProcNumber GetTempNamespaceProcNumber(Oid namespaceId)
Definition: namespace.c:3836
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1840
#define copyObject(obj)
Definition: nodes.h:232
@ CMD_SELECT
Definition: nodes.h:275
#define makeNode(_type_)
Definition: nodes.h:161
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
List * get_partition_ancestors(Oid relid)
Definition: partition.c:134
FormData_pg_am * Form_pg_am
Definition: pg_am.h:48
static AmcheckOptions opts
Definition: pg_amcheck.c:112
FormData_pg_amproc * Form_pg_amproc
Definition: pg_amproc.h:68
FormData_pg_attrdef * Form_pg_attrdef
Definition: pg_attrdef.h:49
FormData_pg_attribute
Definition: pg_attribute.h:186
NameData attname
Definition: pg_attribute.h:41
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:194
int16 attnum
Definition: pg_attribute.h:74
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
NameData relname
Definition: pg_class.h:38
FormData_pg_class * Form_pg_class
Definition: pg_class.h:156
#define CLASS_TUPLE_SIZE
Definition: pg_class.h:148
#define MAXPGPATH
void DeconstructFkConstraintRow(HeapTuple tuple, int *numfks, AttrNumber *conkey, AttrNumber *confkey, Oid *pf_eq_oprs, Oid *pp_eq_oprs, Oid *ff_eq_oprs, int *num_fk_del_set_cols, AttrNumber *fk_del_set_cols)
AttrNumber extractNotNullColumn(HeapTuple constrTup)
FormData_pg_constraint * Form_pg_constraint
const void size_t len
const void * data
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
List * GetRelationPublications(Oid relid)
List * GetAllTablesPublications(void)
List * GetSchemaPublications(Oid schemaid)
bool is_publishable_relation(Relation rel)
FormData_pg_publication * Form_pg_publication
static char ** options
FormData_pg_rewrite * Form_pg_rewrite
Definition: pg_rewrite.h:52
FormData_pg_statistic_ext * Form_pg_statistic_ext
void pgstat_unlink_relation(Relation rel)
void RelationBuildRowSecurity(Relation relation)
Definition: policy.c:193
#define snprintf
Definition: port.h:260
#define qsort(a, b, c, d)
Definition: port.h:499
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:182
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
#define InvalidOid
Definition: postgres_ext.h:37
#define PG_DIAG_SCHEMA_NAME
Definition: postgres_ext.h:65
#define PG_DIAG_CONSTRAINT_NAME
Definition: postgres_ext.h:69
unsigned int Oid
Definition: postgres_ext.h:32
#define PG_DIAG_TABLE_NAME
Definition: postgres_ext.h:66
#define PG_DIAG_COLUMN_NAME
Definition: postgres_ext.h:67
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
#define ProcNumberForTempRelations()
Definition: procnumber.h:53
char * psprintf(const char *fmt,...)
Definition: psprintf.c:43
bool pub_contains_invalid_column(Oid pubid, Relation relation, List *ancestors, bool pubviaroot, char pubgencols_type, bool *invalid_column_list, bool *invalid_gen_col)
bool pub_rf_contains_invalid_column(Oid pubid, Relation relation, List *ancestors, bool pubviaroot)
tree ctl
Definition: radixtree.h:1838
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:509
#define RelationHasReferenceCountZero(relation)
Definition: rel.h:499
#define RelationGetRelid(relation)
Definition: rel.h:515
#define RelationHasSecurityInvoker(relation)
Definition: rel.h:448
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationIsMapped(relation)
Definition: rel.h:564
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:521
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define RelationIsAccessibleInLogicalDecoding(relation)
Definition: rel.h:694
#define RelationIsValid(relation)
Definition: rel.h:490
#define RelationGetNamespace(relation)
Definition: rel.h:556
#define IndexRelationGetNumberOfAttributes(relation)
Definition: rel.h:527
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:534
#define RelationIsPermanent(relation)
Definition: rel.h:627
static void RelationCloseSmgr(Relation relation)
Definition: rel.h:592
#define RECOVER_RELATION_BUILD_MEMORY
Definition: relcache.c:102
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4831
static int NextEOXactTupleDescNum
Definition: relcache.c:203
static bool load_relcache_init_file(bool shared)
Definition: relcache.c:6162
static void RelationClearRelation(Relation relation)
Definition: relcache.c:2541
void RelationBuildPublicationDesc(Relation relation, PublicationDesc *pubdesc)
Definition: relcache.c:5789
static void RelationParseRelOptions(Relation relation, HeapTuple tuple)
Definition: relcache.c:468
void RelationCacheInvalidate(bool debug_discard)
Definition: relcache.c:2989
#define NUM_CRITICAL_LOCAL_RELS
#define NUM_CRITICAL_SHARED_INDEXES
#define RelationCacheInsert(RELATION, replace_allowed)
Definition: relcache.c:209
void RelationDecrementReferenceCount(Relation rel)
Definition: relcache.c:2195
static Relation RelationBuildDesc(Oid targetRelId, bool insertIt)
Definition: relcache.c:1059
bool criticalRelcachesBuilt
Definition: relcache.c:140
static TupleDesc BuildHardcodedDescriptor(int natts, const FormData_pg_attribute *attrs)
Definition: relcache.c:4425
static const FormData_pg_attribute Desc_pg_shseclabel[Natts_pg_shseclabel]
Definition: relcache.c:119
bool criticalSharedRelcachesBuilt
Definition: relcache.c:146
static Oid eoxact_list[MAX_EOXACT_LIST]
Definition: relcache.c:185
Oid RelationGetPrimaryKeyIndex(Relation relation, bool deferrable_ok)
Definition: relcache.c:5042
static bytea ** CopyIndexAttOptions(bytea **srcopts, int natts)
Definition: relcache.c:5963
static void formrdesc(const char *relationName, Oid relationReltype, bool isshared, int natts, const FormData_pg_attribute *attrs)
Definition: relcache.c:1889
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:5151
static void ResOwnerReleaseRelation(Datum res)
Definition: relcache.c:6977
static Relation AllocateRelationDesc(Form_pg_class relp)
Definition: relcache.c:413
static const FormData_pg_attribute Desc_pg_database[Natts_pg_database]
Definition: relcache.c:115
static void unlink_initfile(const char *initfilename, int elevel)
Definition: relcache.c:6952
int errtableconstraint(Relation rel, const char *conname)
Definition: relcache.c:6098
int errtablecol(Relation rel, int attnum)
Definition: relcache.c:6061
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1440
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5205
static void InitIndexAmRoutine(Relation relation)
Definition: relcache.c:1421
static void write_item(const void *data, Size len, FILE *fp)
Definition: relcache.c:6792
static const FormData_pg_attribute Desc_pg_attribute[Natts_pg_attribute]
Definition: relcache.c:112
static bool equalRuleLocks(RuleLock *rlock1, RuleLock *rlock2)
Definition: relcache.c:927
static int in_progress_list_maxlen
Definition: relcache.c:172
static void CheckNNConstraintFetch(Relation relation)
Definition: relcache.c:4586
#define INITRELCACHESIZE
Definition: relcache.c:3994
static int CheckConstraintCmp(const void *a, const void *b)
Definition: relcache.c:4703
Bitmapset * RelationGetIndexAttrBitmap(Relation relation, IndexAttrBitmapKind attrKind)
Definition: relcache.c:5298
void AtEOSubXact_RelationCache(bool isCommit, SubTransactionId mySubid, SubTransactionId parentSubid)
Definition: relcache.c:3373
static void ResourceOwnerRememberRelationRef(ResourceOwner owner, Relation rel)
Definition: relcache.c:2163
static void RelationRebuildRelation(Relation relation)
Definition: relcache.c:2580
static const FormData_pg_attribute Desc_pg_class[Natts_pg_class]
Definition: relcache.c:111
static void RelationReloadNailed(Relation relation)
Definition: relcache.c:2380
static const FormData_pg_attribute Desc_pg_authid[Natts_pg_authid]
Definition: relcache.c:116
static TupleDesc GetPgClassDescriptor(void)
Definition: relcache.c:4455
static void AttrDefaultFetch(Relation relation, int ndef)
Definition: relcache.c:4490
static HTAB * OpClassCache
Definition: relcache.c:271
static const ResourceOwnerDesc relref_resowner_desc
Definition: relcache.c:2152
static void IndexSupportInitialize(oidvector *indclass, RegProcedure *indexSupport, Oid *opFamily, Oid *opcInType, StrategyNumber maxSupportNumber, AttrNumber maxAttributeNumber)
Definition: relcache.c:1611
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4972
void RelationIncrementReferenceCount(Relation rel)
Definition: relcache.c:2182
#define RelationCacheDelete(RELATION)
Definition: relcache.c:243
void RelationCacheInitFilePostInvalidate(void)
Definition: relcache.c:6880
void RelationCacheInitializePhase3(void)
Definition: relcache.c:4102
#define NUM_CRITICAL_SHARED_RELS
static void RelationDestroyRelation(Relation relation, bool remember_tupdesc)
Definition: relcache.c:2434
#define EOXactListAdd(rel)
Definition: relcache.c:189
#define RelationIdCacheLookup(ID, RELATION)
Definition: relcache.c:231
void RelationInitTableAccessMethod(Relation relation)
Definition: relcache.c:1824
static const FormData_pg_attribute Desc_pg_subscription[Natts_pg_subscription]
Definition: relcache.c:120
static void RelationFlushRelation(Relation relation)
Definition: relcache.c:2822
static void RelationBuildRuleLock(Relation relation)
Definition: relcache.c:752
static void ResourceOwnerForgetRelationRef(ResourceOwner owner, Relation rel)
Definition: relcache.c:2168
static int in_progress_list_len
Definition: relcache.c:171
static const FormData_pg_attribute Desc_pg_proc[Natts_pg_proc]
Definition: relcache.c:113
void RelationSetNewRelfilenumber(Relation relation, char persistence)
Definition: relcache.c:3768
static const FormData_pg_attribute Desc_pg_index[Natts_pg_index]
Definition: relcache.c:118
static int EOXactTupleDescArrayLen
Definition: relcache.c:204
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4726
Oid RelationGetReplicaIndex(Relation relation)
Definition: relcache.c:5067
Relation RelationIdGetRelation(Oid relationId)
Definition: relcache.c:2094
static TupleDesc GetPgIndexDescriptor(void)
Definition: relcache.c:4468
static void RelationCloseCleanup(Relation relation)
Definition: relcache.c:2224
#define NUM_CRITICAL_LOCAL_INDEXES
static const FormData_pg_attribute Desc_pg_auth_members[Natts_pg_auth_members]
Definition: relcache.c:117
static void RelationCacheInitFileRemoveInDir(const char *tblspcpath)
Definition: relcache.c:6928
static char * ResOwnerPrintRelCache(Datum res)
Definition: relcache.c:6969
void AtEOXact_RelationCache(bool isCommit)
Definition: relcache.c:3221
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2888
static void AtEOSubXact_cleanup(Relation relation, bool isCommit, SubTransactionId mySubid, SubTransactionId parentSubid)
Definition: relcache.c:3428
void RelationCacheInitialize(void)
Definition: relcache.c:3997
void RelationCacheInitFilePreInvalidate(void)
Definition: relcache.c:6855
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5092
static void write_relcache_init_file(bool shared)
Definition: relcache.c:6580
Relation RelationBuildLocalRelation(const char *relname, Oid relnamespace, TupleDesc tupDesc, Oid relid, Oid accessmtd, RelFileNumber relfilenumber, Oid reltablespace, bool shared_relation, bool mapped_relation, char relpersistence, char relkind)
Definition: relcache.c:3510
void RelationAssumeNewRelfilelocator(Relation relation)
Definition: relcache.c:3971
static void RememberToFreeTupleDescAtEOX(TupleDesc td)
Definition: relcache.c:3099
static HeapTuple ScanPgRelation(Oid targetRelId, bool indexOK, bool force_non_historic)
Definition: relcache.c:340
static void RelationInitPhysicalAddr(Relation relation)
Definition: relcache.c:1339
static void RelationBuildTupleDesc(Relation relation)
Definition: relcache.c:525
static bool equalRSDesc(RowSecurityDesc *rsdesc1, RowSecurityDesc *rsdesc2)
Definition: relcache.c:1018
void RelationCacheInitFileRemove(void)
Definition: relcache.c:6895
static void AtEOXact_cleanup(Relation relation, bool isCommit)
Definition: relcache.c:3291
int errtablecolname(Relation rel, const char *colname)
Definition: relcache.c:6085
struct relidcacheent RelIdCacheEnt
static const FormData_pg_attribute Desc_pg_type[Natts_pg_type]
Definition: relcache.c:114
void RelationCacheInitializePhase2(void)
Definition: relcache.c:4043
static InProgressEnt * in_progress_list
Definition: relcache.c:170
bool RelationIdIsInInitFile(Oid relationId)
Definition: relcache.c:6815
static void RelationReloadIndexInfo(Relation relation)
Definition: relcache.c:2271
static long relcacheInvalsReceived
Definition: relcache.c:154
static void load_critical_index(Oid indexoid, Oid heapoid)
Definition: relcache.c:4387
static void InitTableAmRoutine(Relation relation)
Definition: relcache.c:1815
int errtable(Relation rel)
Definition: relcache.c:6044
void RelationCacheInvalidateEntry(Oid relationId)
Definition: relcache.c:2933
static bool equalPolicy(RowSecurityPolicy *policy1, RowSecurityPolicy *policy2)
Definition: relcache.c:972
#define MAX_EOXACT_LIST
Definition: relcache.c:184
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5983
Bitmapset * RelationGetIdentityKeyBitmap(Relation relation)
Definition: relcache.c:5571
static int eoxact_list_len
Definition: relcache.c:186
struct opclasscacheent OpClassCacheEnt
static OpClassCacheEnt * LookupOpclassInfo(Oid operatorClassOid, StrategyNumber numSupport)
Definition: relcache.c:1662
static TupleDesc * EOXactTupleDescArray
Definition: relcache.c:202
static bool eoxact_list_overflowed
Definition: relcache.c:187
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5648
static int AttrDefaultCmp(const void *a, const void *b)
Definition: relcache.c:4570
#define SWAPFIELD(fldtype, fldname)
#define RELCACHE_INIT_FILEMAGIC
Definition: relcache.c:93
static HTAB * RelationIdCache
Definition: relcache.c:134
struct inprogressent InProgressEnt
static void RelationInvalidateRelation(Relation relation)
Definition: relcache.c:2513
void RelationClose(Relation relation)
Definition: relcache.c:2215
#define RELCACHE_INIT_FILENAME
Definition: relcache.h:25
IndexAttrBitmapKind
Definition: relcache.h:68
@ INDEX_ATTR_BITMAP_KEY
Definition: relcache.h:69
@ INDEX_ATTR_BITMAP_HOT_BLOCKING
Definition: relcache.h:72
@ INDEX_ATTR_BITMAP_PRIMARY_KEY
Definition: relcache.h:70
@ INDEX_ATTR_BITMAP_SUMMARIZED
Definition: relcache.h:73
@ INDEX_ATTR_BITMAP_IDENTITY_KEY
Definition: relcache.h:71
#define AssertPendingSyncs_RelationCache()
Definition: relcache.h:143
static void AssertCouldGetRelation(void)
Definition: relcache.h:44
void RelationMapInvalidateAll(void)
Definition: relmapper.c:490
void RelationMapInitialize(void)
Definition: relmapper.c:651
void RelationMapInitializePhase2(void)
Definition: relmapper.c:671
RelFileNumber RelationMapOidToFilenumber(Oid relationId, bool shared)
Definition: relmapper.c:165
void RelationMapUpdateMap(Oid relationId, RelFileNumber fileNumber, bool shared, bool immediate)
Definition: relmapper.c:325
void RelationMapInitializePhase3(void)
Definition: relmapper.c:692
bytea * extractRelOptions(HeapTuple tuple, TupleDesc tupdesc, amoptions_function amoptions)
Definition: reloptions.c:1408
Oid RelFileNumber
Definition: relpath.h:25
#define InvalidRelFileNumber
Definition: relpath.h:26
#define PG_TBLSPC_DIR
Definition: relpath.h:41
#define TABLESPACE_VERSION_DIRECTORY
Definition: relpath.h:33
#define RelFileNumberIsValid(relnumber)
Definition: relpath.h:27
ResourceOwner CurrentResourceOwner
Definition: resowner.c:173
void ResourceOwnerForget(ResourceOwner owner, Datum value, const ResourceOwnerDesc *kind)
Definition: resowner.c:561
void ResourceOwnerRemember(ResourceOwner owner, Datum value, const ResourceOwnerDesc *kind)
Definition: resowner.c:521
void ResourceOwnerEnlarge(ResourceOwner owner)
Definition: resowner.c:449
@ RESOURCE_RELEASE_BEFORE_LOCKS
Definition: resowner.h:54
#define RELEASE_PRIO_RELCACHE_REFS
Definition: resowner.h:64
void setRuleCheckAsUser(Node *node, Oid userid)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
SMgrRelation smgropen(RelFileLocator rlocator, ProcNumber backend)
Definition: smgr.c:240
void smgrreleaseall(void)
Definition: smgr.c:412
void smgrclose(SMgrRelation reln)
Definition: smgr.c:374
void smgrdounlinkall(SMgrRelation *rels, int nrels, bool isRedo)
Definition: smgr.c:538
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:272
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:866
void PushActiveSnapshot(Snapshot snapshot)
Definition: snapmgr.c:682
bool HistoricSnapshotActive(void)
Definition: snapmgr.c:1692
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:824
void PopActiveSnapshot(void)
Definition: snapmgr.c:775
Snapshot GetNonHistoricCatalogSnapshot(Oid relid)
Definition: snapmgr.c:407
bool RelFileLocatorSkippingWAL(RelFileLocator rlocator)
Definition: storage.c:573
SMgrRelation RelationCreateStorage(RelFileLocator rlocator, char relpersistence, bool register_delete)
Definition: storage.c:122
void RelationDropStorage(Relation rel)
Definition: storage.c:207
uint16 StrategyNumber
Definition: stratnum.h:22
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define InvalidStrategy
Definition: stratnum.h:24
#define BTEqualStrategyNumber
Definition: stratnum.h:31
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
char attnullability
Definition: tupdesc.h:79
int32 attcacheoff
Definition: tupdesc.h:70
char * ccname
Definition: tupdesc.h:30
bool ccenforced
Definition: tupdesc.h:32
bool ccnoinherit
Definition: tupdesc.h:34
bool ccvalid
Definition: tupdesc.h:33
char * ccbin
Definition: tupdesc.h:31
Definition: dirent.c:26
Definition: fmgr.h:57
bool conenforced
Definition: rel.h:288
Definition: dynahash.c:222
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
amoptions_function amoptions
Definition: amapi.h:304
uint16 amsupport
Definition: amapi.h:242
bool amsummarizing
Definition: amapi.h:282
LOCKTAG lock
Definition: lock.h:412
int64 nLocks
Definition: lock.h:437
LOCALLOCKTAG tag
Definition: lock.h:431
uint8 locktag_type
Definition: lock.h:172
uint32 locktag_field2
Definition: lock.h:169
Definition: pg_list.h:54
MemoryContext firstchild
Definition: memnodes.h:128
Definition: nodes.h:135
PublicationActions pubactions
bool gencols_valid_for_update
bool gencols_valid_for_delete
RelFileNumber relNumber
List * rd_partcheck
Definition: rel.h:147
Bitmapset * rd_keyattr
Definition: rel.h:162
ProcNumber rd_backend
Definition: rel.h:60
bool rd_ispkdeferrable
Definition: rel.h:154
bool rd_partcheckvalid
Definition: rel.h:148
MemoryContext rd_pdcxt
Definition: rel.h:131
const struct IndexAmRoutine * rd_indam
Definition: rel.h:206
MemoryContext rd_partkeycxt
Definition: rel.h:127
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
TransactionId rd_partdesc_nodetached_xmin
Definition: rel.h:144
bool rd_indexvalid
Definition: rel.h:64
List * rd_indpred
Definition: rel.h:213
List * rd_fkeylist
Definition: rel.h:122
Oid * rd_exclprocs
Definition: rel.h:215
SubTransactionId rd_firstRelfilelocatorSubid
Definition: rel.h:106
uint16 * rd_exclstrats
Definition: rel.h:216
List * rd_indexlist
Definition: rel.h:152
struct RowSecurityDesc * rd_rsdesc
Definition: rel.h:119
PartitionDesc rd_partdesc
Definition: rel.h:130
Oid rd_replidindex
Definition: rel.h:155
int rd_refcnt
Definition: rel.h:59
RegProcedure * rd_support
Definition: rel.h:209
PartitionDesc rd_partdesc_nodetached
Definition: rel.h:134
bytea ** rd_opcoptions
Definition: rel.h:218
PublicationDesc * rd_pubdesc
Definition: rel.h:168
struct FdwRoutine * rd_fdwroutine
Definition: rel.h:240
TriggerDesc * trigdesc
Definition: rel.h:117
Bitmapset * rd_idattr
Definition: rel.h:164
bool rd_isvalid
Definition: rel.h:63
bool rd_islocaltemp
Definition: rel.h:61
List * rd_indexprs
Definition: rel.h:212
bool rd_attrsvalid
Definition: rel.h:161
Oid * rd_exclops
Definition: rel.h:214
Oid * rd_opcintype
Definition: rel.h:208
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
MemoryContext rd_partcheckcxt
Definition: rel.h:149
int16 * rd_indoption
Definition: rel.h:211
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
Bitmapset * rd_hotblockingattr
Definition: rel.h:165
void * rd_amcache
Definition: rel.h:229
bool rd_isnailed
Definition: rel.h:62
Oid rd_id
Definition: rel.h:113
Oid rd_pkindex
Definition: rel.h:153
SubTransactionId rd_newRelfilelocatorSubid
Definition: rel.h:104
bool rd_fkeyvalid
Definition: rel.h:123
Oid rd_amhandler
Definition: rel.h:184
SMgrRelation rd_smgr
Definition: rel.h:58
SubTransactionId rd_createSubid
Definition: rel.h:103
bool rd_statvalid
Definition: rel.h:66
MemoryContext rd_indexcxt
Definition: rel.h:204
List * rd_statlist
Definition: rel.h:158
MemoryContext rd_pddcxt
Definition: rel.h:135
RelFileLocator rd_locator
Definition: rel.h:57
RuleLock * rd_rules
Definition: rel.h:115
struct FmgrInfo * rd_supportinfo
Definition: rel.h:210
Oid * rd_opfamily
Definition: rel.h:207
SubTransactionId rd_droppedSubid
Definition: rel.h:109
MemoryContext rd_rulescxt
Definition: rel.h:116
Bitmapset * rd_summarizedattr
Definition: rel.h:166
Bitmapset * rd_pkattr
Definition: rel.h:163
PartitionKey rd_partkey
Definition: rel.h:126
bytea * rd_options
Definition: rel.h:175
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
struct PgStat_TableStatus * pgstat_info
Definition: rel.h:255
const char * name
Definition: resowner.h:93
Oid ruleId
Definition: prs2lock.h:26
CmdType event
Definition: prs2lock.h:27
List * actions
Definition: prs2lock.h:29
bool isInstead
Definition: prs2lock.h:31
Node * qual
Definition: prs2lock.h:28
char enabled
Definition: prs2lock.h:30
MemoryContext rscxt
Definition: rowsecurity.h:33
ArrayType * roles
Definition: rowsecurity.h:24
Expr * with_check_qual
Definition: rowsecurity.h:27
RewriteRule ** rules
Definition: prs2lock.h:43
int numLocks
Definition: prs2lock.h:42
bool has_generated_virtual
Definition: tupdesc.h:47
bool has_not_null
Definition: tupdesc.h:45
AttrDefault * defval
Definition: tupdesc.h:40
bool has_generated_stored
Definition: tupdesc.h:46
struct AttrMissing * missing
Definition: tupdesc.h:42
ConstrCheck * check
Definition: tupdesc.h:41
uint16 num_defval
Definition: tupdesc.h:43
uint16 num_check
Definition: tupdesc.h:44
int tdrefcount
Definition: tupdesc.h:140
CompactAttribute compact_attrs[FLEXIBLE_ARRAY_MEMBER]
Definition: tupdesc.h:143
TupleConstr * constr
Definition: tupdesc.h:141
int32 tdtypmod
Definition: tupdesc.h:139
Oid tdtypeid
Definition: tupdesc.h:138
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
Definition: type.h:96
bool invalidated
Definition: relcache.c:167
Definition: c.h:734
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:741
Definition: c.h:745
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:752
StrategyNumber numSupport
Definition: relcache.c:265
RegProcedure * supportProcs
Definition: relcache.c:268
Relation reldesc
Definition: relcache.c:131
Definition: localtime.c:73
Definition: c.h:706
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCacheLockedCopy1(int cacheId, Datum key1)
Definition: syscache.c:399
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
bool RelationSupportsSysCache(Oid relid)
Definition: syscache.c:762
void InitCatalogCachePhase2(void)
Definition: syscache.c:180
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_set_new_filelocator(Relation rel, const RelFileLocator *newrlocator, char persistence, TransactionId *freezeXid, MultiXactId *minmulti)
Definition: tableam.h:1600
const TableAmRoutine * GetTableAmRoutine(Oid amhandler)
Definition: tableamapi.c:27
#define InvalidTransactionId
Definition: transam.h:31
void FreeTriggerDesc(TriggerDesc *trigdesc)
Definition: trigger.c:2145
void RelationBuildTriggers(Relation relation)
Definition: trigger.c:1861
void FreeTupleDesc(TupleDesc tupdesc)
Definition: tupdesc.c:502
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:182
TupleDesc CreateTupleDescCopy(TupleDesc tupdesc)
Definition: tupdesc.c:252
void populate_compact_attribute(TupleDesc tupdesc, int attnum)
Definition: tupdesc.c:117
bool equalTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tupdesc.c:590
#define ATTNULLABLE_UNKNOWN
Definition: tupdesc.h:85
#define ATTNULLABLE_VALID
Definition: tupdesc.h:86
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:175
#define ATTNULLABLE_INVALID
Definition: tupdesc.h:87
#define ATTNULLABLE_UNRESTRICTED
Definition: tupdesc.h:84
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:296
static Size VARSIZE(const void *PTR)
Definition: varatt.h:298
SubTransactionId GetCurrentSubTransactionId(void)
Definition: xact.c:792
bool IsTransactionState(void)
Definition: xact.c:388
void CommandCounterIncrement(void)
Definition: xact.c:1101
TransactionId GetCurrentTransactionId(void)
Definition: xact.c:455
static struct rule * rules
Definition: zic.c:286