LCOV - code coverage report
Current view: top level - src/backend/optimizer/util - pathnode.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 1460 1631 89.5 %
Date: 2025-07-08 19:18:10 Functions: 65 65 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pathnode.c
       4             :  *    Routines to manipulate pathlists and create path nodes
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/optimizer/util/pathnode.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include <math.h>
      18             : 
      19             : #include "foreign/fdwapi.h"
      20             : #include "miscadmin.h"
      21             : #include "nodes/extensible.h"
      22             : #include "optimizer/appendinfo.h"
      23             : #include "optimizer/clauses.h"
      24             : #include "optimizer/cost.h"
      25             : #include "optimizer/optimizer.h"
      26             : #include "optimizer/pathnode.h"
      27             : #include "optimizer/paths.h"
      28             : #include "optimizer/planmain.h"
      29             : #include "optimizer/tlist.h"
      30             : #include "parser/parsetree.h"
      31             : #include "utils/memutils.h"
      32             : #include "utils/selfuncs.h"
      33             : 
      34             : typedef enum
      35             : {
      36             :     COSTS_EQUAL,                /* path costs are fuzzily equal */
      37             :     COSTS_BETTER1,              /* first path is cheaper than second */
      38             :     COSTS_BETTER2,              /* second path is cheaper than first */
      39             :     COSTS_DIFFERENT,            /* neither path dominates the other on cost */
      40             : } PathCostComparison;
      41             : 
      42             : /*
      43             :  * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
      44             :  * XXX is it worth making this user-controllable?  It provides a tradeoff
      45             :  * between planner runtime and the accuracy of path cost comparisons.
      46             :  */
      47             : #define STD_FUZZ_FACTOR 1.01
      48             : 
      49             : static List *translate_sub_tlist(List *tlist, int relid);
      50             : static int  append_total_cost_compare(const ListCell *a, const ListCell *b);
      51             : static int  append_startup_cost_compare(const ListCell *a, const ListCell *b);
      52             : static List *reparameterize_pathlist_by_child(PlannerInfo *root,
      53             :                                               List *pathlist,
      54             :                                               RelOptInfo *child_rel);
      55             : static bool pathlist_is_reparameterizable_by_child(List *pathlist,
      56             :                                                    RelOptInfo *child_rel);
      57             : 
      58             : 
      59             : /*****************************************************************************
      60             :  *      MISC. PATH UTILITIES
      61             :  *****************************************************************************/
      62             : 
      63             : /*
      64             :  * compare_path_costs
      65             :  *    Return -1, 0, or +1 according as path1 is cheaper, the same cost,
      66             :  *    or more expensive than path2 for the specified criterion.
      67             :  */
      68             : int
      69     1047384 : compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
      70             : {
      71             :     /* Number of disabled nodes, if different, trumps all else. */
      72     1047384 :     if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
      73             :     {
      74        2604 :         if (path1->disabled_nodes < path2->disabled_nodes)
      75        2604 :             return -1;
      76             :         else
      77           0 :             return +1;
      78             :     }
      79             : 
      80     1044780 :     if (criterion == STARTUP_COST)
      81             :     {
      82      529998 :         if (path1->startup_cost < path2->startup_cost)
      83      319760 :             return -1;
      84      210238 :         if (path1->startup_cost > path2->startup_cost)
      85      104648 :             return +1;
      86             : 
      87             :         /*
      88             :          * If paths have the same startup cost (not at all unlikely), order
      89             :          * them by total cost.
      90             :          */
      91      105590 :         if (path1->total_cost < path2->total_cost)
      92       55432 :             return -1;
      93       50158 :         if (path1->total_cost > path2->total_cost)
      94        4490 :             return +1;
      95             :     }
      96             :     else
      97             :     {
      98      514782 :         if (path1->total_cost < path2->total_cost)
      99      485184 :             return -1;
     100       29598 :         if (path1->total_cost > path2->total_cost)
     101        3888 :             return +1;
     102             : 
     103             :         /*
     104             :          * If paths have the same total cost, order them by startup cost.
     105             :          */
     106       25710 :         if (path1->startup_cost < path2->startup_cost)
     107        3204 :             return -1;
     108       22506 :         if (path1->startup_cost > path2->startup_cost)
     109          12 :             return +1;
     110             :     }
     111       68162 :     return 0;
     112             : }
     113             : 
     114             : /*
     115             :  * compare_fractional_path_costs
     116             :  *    Return -1, 0, or +1 according as path1 is cheaper, the same cost,
     117             :  *    or more expensive than path2 for fetching the specified fraction
     118             :  *    of the total tuples.
     119             :  *
     120             :  * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
     121             :  * path with the cheaper total_cost.
     122             :  */
     123             : int
     124        6138 : compare_fractional_path_costs(Path *path1, Path *path2,
     125             :                               double fraction)
     126             : {
     127             :     Cost        cost1,
     128             :                 cost2;
     129             : 
     130             :     /* Number of disabled nodes, if different, trumps all else. */
     131        6138 :     if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
     132             :     {
     133          36 :         if (path1->disabled_nodes < path2->disabled_nodes)
     134          36 :             return -1;
     135             :         else
     136           0 :             return +1;
     137             :     }
     138             : 
     139        6102 :     if (fraction <= 0.0 || fraction >= 1.0)
     140        1786 :         return compare_path_costs(path1, path2, TOTAL_COST);
     141        4316 :     cost1 = path1->startup_cost +
     142        4316 :         fraction * (path1->total_cost - path1->startup_cost);
     143        4316 :     cost2 = path2->startup_cost +
     144        4316 :         fraction * (path2->total_cost - path2->startup_cost);
     145        4316 :     if (cost1 < cost2)
     146        3566 :         return -1;
     147         750 :     if (cost1 > cost2)
     148         750 :         return +1;
     149           0 :     return 0;
     150             : }
     151             : 
     152             : /*
     153             :  * compare_path_costs_fuzzily
     154             :  *    Compare the costs of two paths to see if either can be said to
     155             :  *    dominate the other.
     156             :  *
     157             :  * We use fuzzy comparisons so that add_path() can avoid keeping both of
     158             :  * a pair of paths that really have insignificantly different cost.
     159             :  *
     160             :  * The fuzz_factor argument must be 1.0 plus delta, where delta is the
     161             :  * fraction of the smaller cost that is considered to be a significant
     162             :  * difference.  For example, fuzz_factor = 1.01 makes the fuzziness limit
     163             :  * be 1% of the smaller cost.
     164             :  *
     165             :  * The two paths are said to have "equal" costs if both startup and total
     166             :  * costs are fuzzily the same.  Path1 is said to be better than path2 if
     167             :  * it has fuzzily better startup cost and fuzzily no worse total cost,
     168             :  * or if it has fuzzily better total cost and fuzzily no worse startup cost.
     169             :  * Path2 is better than path1 if the reverse holds.  Finally, if one path
     170             :  * is fuzzily better than the other on startup cost and fuzzily worse on
     171             :  * total cost, we just say that their costs are "different", since neither
     172             :  * dominates the other across the whole performance spectrum.
     173             :  *
     174             :  * This function also enforces a policy rule that paths for which the relevant
     175             :  * one of parent->consider_startup and parent->consider_param_startup is false
     176             :  * cannot survive comparisons solely on the grounds of good startup cost, so
     177             :  * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
     178             :  * (But if total costs are fuzzily equal, we compare startup costs anyway,
     179             :  * in hopes of eliminating one path or the other.)
     180             :  */
     181             : static PathCostComparison
     182     4365692 : compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
     183             : {
     184             : #define CONSIDER_PATH_STARTUP_COST(p)  \
     185             :     ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
     186             : 
     187             :     /* Number of disabled nodes, if different, trumps all else. */
     188     4365692 :     if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
     189             :     {
     190       30386 :         if (path1->disabled_nodes < path2->disabled_nodes)
     191       16620 :             return COSTS_BETTER1;
     192             :         else
     193       13766 :             return COSTS_BETTER2;
     194             :     }
     195             : 
     196             :     /*
     197             :      * Check total cost first since it's more likely to be different; many
     198             :      * paths have zero startup cost.
     199             :      */
     200     4335306 :     if (path1->total_cost > path2->total_cost * fuzz_factor)
     201             :     {
     202             :         /* path1 fuzzily worse on total cost */
     203     2287122 :         if (CONSIDER_PATH_STARTUP_COST(path1) &&
     204      125542 :             path2->startup_cost > path1->startup_cost * fuzz_factor)
     205             :         {
     206             :             /* ... but path2 fuzzily worse on startup, so DIFFERENT */
     207       84600 :             return COSTS_DIFFERENT;
     208             :         }
     209             :         /* else path2 dominates */
     210     2202522 :         return COSTS_BETTER2;
     211             :     }
     212     2048184 :     if (path2->total_cost > path1->total_cost * fuzz_factor)
     213             :     {
     214             :         /* path2 fuzzily worse on total cost */
     215     1050116 :         if (CONSIDER_PATH_STARTUP_COST(path2) &&
     216       54690 :             path1->startup_cost > path2->startup_cost * fuzz_factor)
     217             :         {
     218             :             /* ... but path1 fuzzily worse on startup, so DIFFERENT */
     219       35812 :             return COSTS_DIFFERENT;
     220             :         }
     221             :         /* else path1 dominates */
     222     1014304 :         return COSTS_BETTER1;
     223             :     }
     224             :     /* fuzzily the same on total cost ... */
     225      998068 :     if (path1->startup_cost > path2->startup_cost * fuzz_factor)
     226             :     {
     227             :         /* ... but path1 fuzzily worse on startup, so path2 wins */
     228      389876 :         return COSTS_BETTER2;
     229             :     }
     230      608192 :     if (path2->startup_cost > path1->startup_cost * fuzz_factor)
     231             :     {
     232             :         /* ... but path2 fuzzily worse on startup, so path1 wins */
     233       67280 :         return COSTS_BETTER1;
     234             :     }
     235             :     /* fuzzily the same on both costs */
     236      540912 :     return COSTS_EQUAL;
     237             : 
     238             : #undef CONSIDER_PATH_STARTUP_COST
     239             : }
     240             : 
     241             : /*
     242             :  * set_cheapest
     243             :  *    Find the minimum-cost paths from among a relation's paths,
     244             :  *    and save them in the rel's cheapest-path fields.
     245             :  *
     246             :  * cheapest_total_path is normally the cheapest-total-cost unparameterized
     247             :  * path; but if there are no unparameterized paths, we assign it to be the
     248             :  * best (cheapest least-parameterized) parameterized path.  However, only
     249             :  * unparameterized paths are considered candidates for cheapest_startup_path,
     250             :  * so that will be NULL if there are no unparameterized paths.
     251             :  *
     252             :  * The cheapest_parameterized_paths list collects all parameterized paths
     253             :  * that have survived the add_path() tournament for this relation.  (Since
     254             :  * add_path ignores pathkeys for a parameterized path, these will be paths
     255             :  * that have best cost or best row count for their parameterization.  We
     256             :  * may also have both a parallel-safe and a non-parallel-safe path in some
     257             :  * cases for the same parameterization in some cases, but this should be
     258             :  * relatively rare since, most typically, all paths for the same relation
     259             :  * will be parallel-safe or none of them will.)
     260             :  *
     261             :  * cheapest_parameterized_paths always includes the cheapest-total
     262             :  * unparameterized path, too, if there is one; the users of that list find
     263             :  * it more convenient if that's included.
     264             :  *
     265             :  * This is normally called only after we've finished constructing the path
     266             :  * list for the rel node.
     267             :  */
     268             : void
     269     2058540 : set_cheapest(RelOptInfo *parent_rel)
     270             : {
     271             :     Path       *cheapest_startup_path;
     272             :     Path       *cheapest_total_path;
     273             :     Path       *best_param_path;
     274             :     List       *parameterized_paths;
     275             :     ListCell   *p;
     276             : 
     277             :     Assert(IsA(parent_rel, RelOptInfo));
     278             : 
     279     2058540 :     if (parent_rel->pathlist == NIL)
     280           0 :         elog(ERROR, "could not devise a query plan for the given query");
     281             : 
     282     2058540 :     cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
     283     2058540 :     parameterized_paths = NIL;
     284             : 
     285     4657030 :     foreach(p, parent_rel->pathlist)
     286             :     {
     287     2598490 :         Path       *path = (Path *) lfirst(p);
     288             :         int         cmp;
     289             : 
     290     2598490 :         if (path->param_info)
     291             :         {
     292             :             /* Parameterized path, so add it to parameterized_paths */
     293      134938 :             parameterized_paths = lappend(parameterized_paths, path);
     294             : 
     295             :             /*
     296             :              * If we have an unparameterized cheapest-total, we no longer care
     297             :              * about finding the best parameterized path, so move on.
     298             :              */
     299      134938 :             if (cheapest_total_path)
     300       26042 :                 continue;
     301             : 
     302             :             /*
     303             :              * Otherwise, track the best parameterized path, which is the one
     304             :              * with least total cost among those of the minimum
     305             :              * parameterization.
     306             :              */
     307      108896 :             if (best_param_path == NULL)
     308       99514 :                 best_param_path = path;
     309             :             else
     310             :             {
     311        9382 :                 switch (bms_subset_compare(PATH_REQ_OUTER(path),
     312        9382 :                                            PATH_REQ_OUTER(best_param_path)))
     313             :                 {
     314          54 :                     case BMS_EQUAL:
     315             :                         /* keep the cheaper one */
     316          54 :                         if (compare_path_costs(path, best_param_path,
     317             :                                                TOTAL_COST) < 0)
     318           0 :                             best_param_path = path;
     319          54 :                         break;
     320         352 :                     case BMS_SUBSET1:
     321             :                         /* new path is less-parameterized */
     322         352 :                         best_param_path = path;
     323         352 :                         break;
     324           0 :                     case BMS_SUBSET2:
     325             :                         /* old path is less-parameterized, keep it */
     326           0 :                         break;
     327        8976 :                     case BMS_DIFFERENT:
     328             : 
     329             :                         /*
     330             :                          * This means that neither path has the least possible
     331             :                          * parameterization for the rel.  We'll sit on the old
     332             :                          * path until something better comes along.
     333             :                          */
     334        8976 :                         break;
     335             :                 }
     336             :             }
     337             :         }
     338             :         else
     339             :         {
     340             :             /* Unparameterized path, so consider it for cheapest slots */
     341     2463552 :             if (cheapest_total_path == NULL)
     342             :             {
     343     2046938 :                 cheapest_startup_path = cheapest_total_path = path;
     344     2046938 :                 continue;
     345             :             }
     346             : 
     347             :             /*
     348             :              * If we find two paths of identical costs, try to keep the
     349             :              * better-sorted one.  The paths might have unrelated sort
     350             :              * orderings, in which case we can only guess which might be
     351             :              * better to keep, but if one is superior then we definitely
     352             :              * should keep that one.
     353             :              */
     354      416614 :             cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
     355      416614 :             if (cmp > 0 ||
     356         420 :                 (cmp == 0 &&
     357         420 :                  compare_pathkeys(cheapest_startup_path->pathkeys,
     358             :                                   path->pathkeys) == PATHKEYS_BETTER2))
     359       80566 :                 cheapest_startup_path = path;
     360             : 
     361      416614 :             cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
     362      416614 :             if (cmp > 0 ||
     363          48 :                 (cmp == 0 &&
     364          48 :                  compare_pathkeys(cheapest_total_path->pathkeys,
     365             :                                   path->pathkeys) == PATHKEYS_BETTER2))
     366           0 :                 cheapest_total_path = path;
     367             :         }
     368             :     }
     369             : 
     370             :     /* Add cheapest unparameterized path, if any, to parameterized_paths */
     371     2058540 :     if (cheapest_total_path)
     372     2046938 :         parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
     373             : 
     374             :     /*
     375             :      * If there is no unparameterized path, use the best parameterized path as
     376             :      * cheapest_total_path (but not as cheapest_startup_path).
     377             :      */
     378     2058540 :     if (cheapest_total_path == NULL)
     379       11602 :         cheapest_total_path = best_param_path;
     380             :     Assert(cheapest_total_path != NULL);
     381             : 
     382     2058540 :     parent_rel->cheapest_startup_path = cheapest_startup_path;
     383     2058540 :     parent_rel->cheapest_total_path = cheapest_total_path;
     384     2058540 :     parent_rel->cheapest_unique_path = NULL; /* computed only if needed */
     385     2058540 :     parent_rel->cheapest_parameterized_paths = parameterized_paths;
     386     2058540 : }
     387             : 
     388             : /*
     389             :  * add_path
     390             :  *    Consider a potential implementation path for the specified parent rel,
     391             :  *    and add it to the rel's pathlist if it is worthy of consideration.
     392             :  *
     393             :  *    A path is worthy if it has a better sort order (better pathkeys) or
     394             :  *    cheaper cost (as defined below), or generates fewer rows, than any
     395             :  *    existing path that has the same or superset parameterization rels.  We
     396             :  *    also consider parallel-safe paths more worthy than others.
     397             :  *
     398             :  *    Cheaper cost can mean either a cheaper total cost or a cheaper startup
     399             :  *    cost; if one path is cheaper in one of these aspects and another is
     400             :  *    cheaper in the other, we keep both. However, when some path type is
     401             :  *    disabled (e.g. due to enable_seqscan=false), the number of times that
     402             :  *    a disabled path type is used is considered to be a higher-order
     403             :  *    component of the cost. Hence, if path A uses no disabled path type,
     404             :  *    and path B uses 1 or more disabled path types, A is cheaper, no matter
     405             :  *    what we estimate for the startup and total costs. The startup and total
     406             :  *    cost essentially act as a tiebreak when comparing paths that use equal
     407             :  *    numbers of disabled path nodes; but in practice this tiebreak is almost
     408             :  *    always used, since normally no path types are disabled.
     409             :  *
     410             :  *    In addition to possibly adding new_path, we also remove from the rel's
     411             :  *    pathlist any old paths that are dominated by new_path --- that is,
     412             :  *    new_path is cheaper, at least as well ordered, generates no more rows,
     413             :  *    requires no outer rels not required by the old path, and is no less
     414             :  *    parallel-safe.
     415             :  *
     416             :  *    In most cases, a path with a superset parameterization will generate
     417             :  *    fewer rows (since it has more join clauses to apply), so that those two
     418             :  *    figures of merit move in opposite directions; this means that a path of
     419             :  *    one parameterization can seldom dominate a path of another.  But such
     420             :  *    cases do arise, so we make the full set of checks anyway.
     421             :  *
     422             :  *    There are two policy decisions embedded in this function, along with
     423             :  *    its sibling add_path_precheck.  First, we treat all parameterized paths
     424             :  *    as having NIL pathkeys, so that they cannot win comparisons on the
     425             :  *    basis of sort order.  This is to reduce the number of parameterized
     426             :  *    paths that are kept; see discussion in src/backend/optimizer/README.
     427             :  *
     428             :  *    Second, we only consider cheap startup cost to be interesting if
     429             :  *    parent_rel->consider_startup is true for an unparameterized path, or
     430             :  *    parent_rel->consider_param_startup is true for a parameterized one.
     431             :  *    Again, this allows discarding useless paths sooner.
     432             :  *
     433             :  *    The pathlist is kept sorted by disabled_nodes and then by total_cost,
     434             :  *    with cheaper paths at the front.  Within this routine, that's simply a
     435             :  *    speed hack: doing it that way makes it more likely that we will reject
     436             :  *    an inferior path after a few comparisons, rather than many comparisons.
     437             :  *    However, add_path_precheck relies on this ordering to exit early
     438             :  *    when possible.
     439             :  *
     440             :  *    NOTE: discarded Path objects are immediately pfree'd to reduce planner
     441             :  *    memory consumption.  We dare not try to free the substructure of a Path,
     442             :  *    since much of it may be shared with other Paths or the query tree itself;
     443             :  *    but just recycling discarded Path nodes is a very useful savings in
     444             :  *    a large join tree.  We can recycle the List nodes of pathlist, too.
     445             :  *
     446             :  *    As noted in optimizer/README, deleting a previously-accepted Path is
     447             :  *    safe because we know that Paths of this rel cannot yet be referenced
     448             :  *    from any other rel, such as a higher-level join.  However, in some cases
     449             :  *    it is possible that a Path is referenced by another Path for its own
     450             :  *    rel; we must not delete such a Path, even if it is dominated by the new
     451             :  *    Path.  Currently this occurs only for IndexPath objects, which may be
     452             :  *    referenced as children of BitmapHeapPaths as well as being paths in
     453             :  *    their own right.  Hence, we don't pfree IndexPaths when rejecting them.
     454             :  *
     455             :  * 'parent_rel' is the relation entry to which the path corresponds.
     456             :  * 'new_path' is a potential path for parent_rel.
     457             :  *
     458             :  * Returns nothing, but modifies parent_rel->pathlist.
     459             :  */
     460             : void
     461     4370896 : add_path(RelOptInfo *parent_rel, Path *new_path)
     462             : {
     463     4370896 :     bool        accept_new = true;  /* unless we find a superior old path */
     464     4370896 :     int         insert_at = 0;  /* where to insert new item */
     465             :     List       *new_path_pathkeys;
     466             :     ListCell   *p1;
     467             : 
     468             :     /*
     469             :      * This is a convenient place to check for query cancel --- no part of the
     470             :      * planner goes very long without calling add_path().
     471             :      */
     472     4370896 :     CHECK_FOR_INTERRUPTS();
     473             : 
     474             :     /* Pretend parameterized paths have no pathkeys, per comment above */
     475     4370896 :     new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
     476             : 
     477             :     /*
     478             :      * Loop to check proposed new path against old paths.  Note it is possible
     479             :      * for more than one old path to be tossed out because new_path dominates
     480             :      * it.
     481             :      */
     482     6749682 :     foreach(p1, parent_rel->pathlist)
     483             :     {
     484     4016380 :         Path       *old_path = (Path *) lfirst(p1);
     485     4016380 :         bool        remove_old = false; /* unless new proves superior */
     486             :         PathCostComparison costcmp;
     487             :         PathKeysComparison keyscmp;
     488             :         BMS_Comparison outercmp;
     489             : 
     490             :         /*
     491             :          * Do a fuzzy cost comparison with standard fuzziness limit.
     492             :          */
     493     4016380 :         costcmp = compare_path_costs_fuzzily(new_path, old_path,
     494             :                                              STD_FUZZ_FACTOR);
     495             : 
     496             :         /*
     497             :          * If the two paths compare differently for startup and total cost,
     498             :          * then we want to keep both, and we can skip comparing pathkeys and
     499             :          * required_outer rels.  If they compare the same, proceed with the
     500             :          * other comparisons.  Row count is checked last.  (We make the tests
     501             :          * in this order because the cost comparison is most likely to turn
     502             :          * out "different", and the pathkeys comparison next most likely.  As
     503             :          * explained above, row count very seldom makes a difference, so even
     504             :          * though it's cheap to compare there's not much point in checking it
     505             :          * earlier.)
     506             :          */
     507     4016380 :         if (costcmp != COSTS_DIFFERENT)
     508             :         {
     509             :             /* Similarly check to see if either dominates on pathkeys */
     510             :             List       *old_path_pathkeys;
     511             : 
     512     3895998 :             old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
     513     3895998 :             keyscmp = compare_pathkeys(new_path_pathkeys,
     514             :                                        old_path_pathkeys);
     515     3895998 :             if (keyscmp != PATHKEYS_DIFFERENT)
     516             :             {
     517     3693614 :                 switch (costcmp)
     518             :                 {
     519      377366 :                     case COSTS_EQUAL:
     520      377366 :                         outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
     521      377366 :                                                       PATH_REQ_OUTER(old_path));
     522      377366 :                         if (keyscmp == PATHKEYS_BETTER1)
     523             :                         {
     524        5620 :                             if ((outercmp == BMS_EQUAL ||
     525        5620 :                                  outercmp == BMS_SUBSET1) &&
     526        5620 :                                 new_path->rows <= old_path->rows &&
     527        5612 :                                 new_path->parallel_safe >= old_path->parallel_safe)
     528        5612 :                                 remove_old = true;  /* new dominates old */
     529             :                         }
     530      371746 :                         else if (keyscmp == PATHKEYS_BETTER2)
     531             :                         {
     532       16884 :                             if ((outercmp == BMS_EQUAL ||
     533       16884 :                                  outercmp == BMS_SUBSET2) &&
     534       16884 :                                 new_path->rows >= old_path->rows &&
     535       16884 :                                 new_path->parallel_safe <= old_path->parallel_safe)
     536       16884 :                                 accept_new = false; /* old dominates new */
     537             :                         }
     538             :                         else    /* keyscmp == PATHKEYS_EQUAL */
     539             :                         {
     540      354862 :                             if (outercmp == BMS_EQUAL)
     541             :                             {
     542             :                                 /*
     543             :                                  * Same pathkeys and outer rels, and fuzzily
     544             :                                  * the same cost, so keep just one; to decide
     545             :                                  * which, first check parallel-safety, then
     546             :                                  * rows, then do a fuzzy cost comparison with
     547             :                                  * very small fuzz limit.  (We used to do an
     548             :                                  * exact cost comparison, but that results in
     549             :                                  * annoying platform-specific plan variations
     550             :                                  * due to roundoff in the cost estimates.)  If
     551             :                                  * things are still tied, arbitrarily keep
     552             :                                  * only the old path.  Notice that we will
     553             :                                  * keep only the old path even if the
     554             :                                  * less-fuzzy comparison decides the startup
     555             :                                  * and total costs compare differently.
     556             :                                  */
     557      349612 :                                 if (new_path->parallel_safe >
     558      349612 :                                     old_path->parallel_safe)
     559          42 :                                     remove_old = true;  /* new dominates old */
     560      349570 :                                 else if (new_path->parallel_safe <
     561      349570 :                                          old_path->parallel_safe)
     562          54 :                                     accept_new = false; /* old dominates new */
     563      349516 :                                 else if (new_path->rows < old_path->rows)
     564           0 :                                     remove_old = true;  /* new dominates old */
     565      349516 :                                 else if (new_path->rows > old_path->rows)
     566         204 :                                     accept_new = false; /* old dominates new */
     567      349312 :                                 else if (compare_path_costs_fuzzily(new_path,
     568             :                                                                     old_path,
     569             :                                                                     1.0000000001) == COSTS_BETTER1)
     570       16086 :                                     remove_old = true;  /* new dominates old */
     571             :                                 else
     572      333226 :                                     accept_new = false; /* old equals or
     573             :                                                          * dominates new */
     574             :                             }
     575        5250 :                             else if (outercmp == BMS_SUBSET1 &&
     576        1290 :                                      new_path->rows <= old_path->rows &&
     577        1274 :                                      new_path->parallel_safe >= old_path->parallel_safe)
     578        1274 :                                 remove_old = true;  /* new dominates old */
     579        3976 :                             else if (outercmp == BMS_SUBSET2 &&
     580        3304 :                                      new_path->rows >= old_path->rows &&
     581        3270 :                                      new_path->parallel_safe <= old_path->parallel_safe)
     582        3270 :                                 accept_new = false; /* old dominates new */
     583             :                             /* else different parameterizations, keep both */
     584             :                         }
     585      377366 :                         break;
     586     1053704 :                     case COSTS_BETTER1:
     587     1053704 :                         if (keyscmp != PATHKEYS_BETTER2)
     588             :                         {
     589      730826 :                             outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
     590      730826 :                                                           PATH_REQ_OUTER(old_path));
     591      730826 :                             if ((outercmp == BMS_EQUAL ||
     592      624898 :                                  outercmp == BMS_SUBSET1) &&
     593      624898 :                                 new_path->rows <= old_path->rows &&
     594      619902 :                                 new_path->parallel_safe >= old_path->parallel_safe)
     595      617398 :                                 remove_old = true;  /* new dominates old */
     596             :                         }
     597     1053704 :                         break;
     598     2262544 :                     case COSTS_BETTER2:
     599     2262544 :                         if (keyscmp != PATHKEYS_BETTER1)
     600             :                         {
     601     1429388 :                             outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
     602     1429388 :                                                           PATH_REQ_OUTER(old_path));
     603     1429388 :                             if ((outercmp == BMS_EQUAL ||
     604     1343412 :                                  outercmp == BMS_SUBSET2) &&
     605     1343412 :                                 new_path->rows >= old_path->rows &&
     606     1285684 :                                 new_path->parallel_safe <= old_path->parallel_safe)
     607     1283956 :                                 accept_new = false; /* old dominates new */
     608             :                         }
     609     2262544 :                         break;
     610           0 :                     case COSTS_DIFFERENT:
     611             : 
     612             :                         /*
     613             :                          * can't get here, but keep this case to keep compiler
     614             :                          * quiet
     615             :                          */
     616           0 :                         break;
     617             :                 }
     618             :             }
     619             :         }
     620             : 
     621             :         /*
     622             :          * Remove current element from pathlist if dominated by new.
     623             :          */
     624     4016380 :         if (remove_old)
     625             :         {
     626      640412 :             parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
     627             :                                                           p1);
     628             : 
     629             :             /*
     630             :              * Delete the data pointed-to by the deleted cell, if possible
     631             :              */
     632      640412 :             if (!IsA(old_path, IndexPath))
     633      623378 :                 pfree(old_path);
     634             :         }
     635             :         else
     636             :         {
     637             :             /*
     638             :              * new belongs after this old path if it has more disabled nodes
     639             :              * or if it has the same number of nodes but a greater total cost
     640             :              */
     641     3375968 :             if (new_path->disabled_nodes > old_path->disabled_nodes ||
     642     3362202 :                 (new_path->disabled_nodes == old_path->disabled_nodes &&
     643     3361338 :                  new_path->total_cost >= old_path->total_cost))
     644     2824380 :                 insert_at = foreach_current_index(p1) + 1;
     645             :         }
     646             : 
     647             :         /*
     648             :          * If we found an old path that dominates new_path, we can quit
     649             :          * scanning the pathlist; we will not add new_path, and we assume
     650             :          * new_path cannot dominate any other elements of the pathlist.
     651             :          */
     652     4016380 :         if (!accept_new)
     653     1637594 :             break;
     654             :     }
     655             : 
     656     4370896 :     if (accept_new)
     657             :     {
     658             :         /* Accept the new path: insert it at proper place in pathlist */
     659     2733302 :         parent_rel->pathlist =
     660     2733302 :             list_insert_nth(parent_rel->pathlist, insert_at, new_path);
     661             :     }
     662             :     else
     663             :     {
     664             :         /* Reject and recycle the new path */
     665     1637594 :         if (!IsA(new_path, IndexPath))
     666     1536762 :             pfree(new_path);
     667             :     }
     668     4370896 : }
     669             : 
     670             : /*
     671             :  * add_path_precheck
     672             :  *    Check whether a proposed new path could possibly get accepted.
     673             :  *    We assume we know the path's pathkeys and parameterization accurately,
     674             :  *    and have lower bounds for its costs.
     675             :  *
     676             :  * Note that we do not know the path's rowcount, since getting an estimate for
     677             :  * that is too expensive to do before prechecking.  We assume here that paths
     678             :  * of a superset parameterization will generate fewer rows; if that holds,
     679             :  * then paths with different parameterizations cannot dominate each other
     680             :  * and so we can simply ignore existing paths of another parameterization.
     681             :  * (In the infrequent cases where that rule of thumb fails, add_path will
     682             :  * get rid of the inferior path.)
     683             :  *
     684             :  * At the time this is called, we haven't actually built a Path structure,
     685             :  * so the required information has to be passed piecemeal.
     686             :  */
     687             : bool
     688     4836914 : add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
     689             :                   Cost startup_cost, Cost total_cost,
     690             :                   List *pathkeys, Relids required_outer)
     691             : {
     692             :     List       *new_path_pathkeys;
     693             :     bool        consider_startup;
     694             :     ListCell   *p1;
     695             : 
     696             :     /* Pretend parameterized paths have no pathkeys, per add_path policy */
     697     4836914 :     new_path_pathkeys = required_outer ? NIL : pathkeys;
     698             : 
     699             :     /* Decide whether new path's startup cost is interesting */
     700     4836914 :     consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
     701             : 
     702     6357336 :     foreach(p1, parent_rel->pathlist)
     703             :     {
     704     6046468 :         Path       *old_path = (Path *) lfirst(p1);
     705             :         PathKeysComparison keyscmp;
     706             : 
     707             :         /*
     708             :          * Since the pathlist is sorted by disabled_nodes and then by
     709             :          * total_cost, we can stop looking once we reach a path with more
     710             :          * disabled nodes, or the same number of disabled nodes plus a
     711             :          * total_cost larger than the new path's.
     712             :          */
     713     6046468 :         if (unlikely(old_path->disabled_nodes != disabled_nodes))
     714             :         {
     715       11904 :             if (disabled_nodes < old_path->disabled_nodes)
     716         318 :                 break;
     717             :         }
     718     6034564 :         else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
     719     1714244 :             break;
     720             : 
     721             :         /*
     722             :          * We are looking for an old_path with the same parameterization (and
     723             :          * by assumption the same rowcount) that dominates the new path on
     724             :          * pathkeys as well as both cost metrics.  If we find one, we can
     725             :          * reject the new path.
     726             :          *
     727             :          * Cost comparisons here should match compare_path_costs_fuzzily.
     728             :          */
     729             :         /* new path can win on startup cost only if consider_startup */
     730     4331906 :         if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
     731     2035342 :             !consider_startup)
     732             :         {
     733             :             /* new path loses on cost, so check pathkeys... */
     734             :             List       *old_path_pathkeys;
     735             : 
     736     4239024 :             old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
     737     4239024 :             keyscmp = compare_pathkeys(new_path_pathkeys,
     738             :                                        old_path_pathkeys);
     739     4239024 :             if (keyscmp == PATHKEYS_EQUAL ||
     740             :                 keyscmp == PATHKEYS_BETTER2)
     741             :             {
     742             :                 /* new path does not win on pathkeys... */
     743     2872550 :                 if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
     744             :                 {
     745             :                     /* Found an old path that dominates the new one */
     746     2811484 :                     return false;
     747             :                 }
     748             :             }
     749             :         }
     750             :     }
     751             : 
     752     2025430 :     return true;
     753             : }
     754             : 
     755             : /*
     756             :  * add_partial_path
     757             :  *    Like add_path, our goal here is to consider whether a path is worthy
     758             :  *    of being kept around, but the considerations here are a bit different.
     759             :  *    A partial path is one which can be executed in any number of workers in
     760             :  *    parallel such that each worker will generate a subset of the path's
     761             :  *    overall result.
     762             :  *
     763             :  *    As in add_path, the partial_pathlist is kept sorted with the cheapest
     764             :  *    total path in front.  This is depended on by multiple places, which
     765             :  *    just take the front entry as the cheapest path without searching.
     766             :  *
     767             :  *    We don't generate parameterized partial paths for several reasons.  Most
     768             :  *    importantly, they're not safe to execute, because there's nothing to
     769             :  *    make sure that a parallel scan within the parameterized portion of the
     770             :  *    plan is running with the same value in every worker at the same time.
     771             :  *    Fortunately, it seems unlikely to be worthwhile anyway, because having
     772             :  *    each worker scan the entire outer relation and a subset of the inner
     773             :  *    relation will generally be a terrible plan.  The inner (parameterized)
     774             :  *    side of the plan will be small anyway.  There could be rare cases where
     775             :  *    this wins big - e.g. if join order constraints put a 1-row relation on
     776             :  *    the outer side of the topmost join with a parameterized plan on the inner
     777             :  *    side - but we'll have to be content not to handle such cases until
     778             :  *    somebody builds an executor infrastructure that can cope with them.
     779             :  *
     780             :  *    Because we don't consider parameterized paths here, we also don't
     781             :  *    need to consider the row counts as a measure of quality: every path will
     782             :  *    produce the same number of rows.  Neither do we need to consider startup
     783             :  *    costs: parallelism is only used for plans that will be run to completion.
     784             :  *    Therefore, this routine is much simpler than add_path: it needs to
     785             :  *    consider only disabled nodes, pathkeys and total cost.
     786             :  *
     787             :  *    As with add_path, we pfree paths that are found to be dominated by
     788             :  *    another partial path; this requires that there be no other references to
     789             :  *    such paths yet.  Hence, GatherPaths must not be created for a rel until
     790             :  *    we're done creating all partial paths for it.  Unlike add_path, we don't
     791             :  *    take an exception for IndexPaths as partial index paths won't be
     792             :  *    referenced by partial BitmapHeapPaths.
     793             :  */
     794             : void
     795      102900 : add_partial_path(RelOptInfo *parent_rel, Path *new_path)
     796             : {
     797      102900 :     bool        accept_new = true;  /* unless we find a superior old path */
     798      102900 :     int         insert_at = 0;  /* where to insert new item */
     799             :     ListCell   *p1;
     800             : 
     801             :     /* Check for query cancel. */
     802      102900 :     CHECK_FOR_INTERRUPTS();
     803             : 
     804             :     /* Path to be added must be parallel safe. */
     805             :     Assert(new_path->parallel_safe);
     806             : 
     807             :     /* Relation should be OK for parallelism, too. */
     808             :     Assert(parent_rel->consider_parallel);
     809             : 
     810             :     /*
     811             :      * As in add_path, throw out any paths which are dominated by the new
     812             :      * path, but throw out the new path if some existing path dominates it.
     813             :      */
     814      137394 :     foreach(p1, parent_rel->partial_pathlist)
     815             :     {
     816       53678 :         Path       *old_path = (Path *) lfirst(p1);
     817       53678 :         bool        remove_old = false; /* unless new proves superior */
     818             :         PathKeysComparison keyscmp;
     819             : 
     820             :         /* Compare pathkeys. */
     821       53678 :         keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
     822             : 
     823             :         /* Unless pathkeys are incompatible, keep just one of the two paths. */
     824       53678 :         if (keyscmp != PATHKEYS_DIFFERENT)
     825             :         {
     826       53468 :             if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
     827             :             {
     828        1484 :                 if (new_path->disabled_nodes > old_path->disabled_nodes)
     829         956 :                     accept_new = false;
     830             :                 else
     831         528 :                     remove_old = true;
     832             :             }
     833       51984 :             else if (new_path->total_cost > old_path->total_cost
     834       51984 :                      * STD_FUZZ_FACTOR)
     835             :             {
     836             :                 /* New path costs more; keep it only if pathkeys are better. */
     837       18194 :                 if (keyscmp != PATHKEYS_BETTER1)
     838        9490 :                     accept_new = false;
     839             :             }
     840       33790 :             else if (old_path->total_cost > new_path->total_cost
     841       33790 :                      * STD_FUZZ_FACTOR)
     842             :             {
     843             :                 /* Old path costs more; keep it only if pathkeys are better. */
     844       24552 :                 if (keyscmp != PATHKEYS_BETTER2)
     845       12674 :                     remove_old = true;
     846             :             }
     847        9238 :             else if (keyscmp == PATHKEYS_BETTER1)
     848             :             {
     849             :                 /* Costs are about the same, new path has better pathkeys. */
     850           0 :                 remove_old = true;
     851             :             }
     852        9238 :             else if (keyscmp == PATHKEYS_BETTER2)
     853             :             {
     854             :                 /* Costs are about the same, old path has better pathkeys. */
     855        1740 :                 accept_new = false;
     856             :             }
     857        7498 :             else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
     858             :             {
     859             :                 /* Pathkeys are the same, and the old path costs more. */
     860         500 :                 remove_old = true;
     861             :             }
     862             :             else
     863             :             {
     864             :                 /*
     865             :                  * Pathkeys are the same, and new path isn't materially
     866             :                  * cheaper.
     867             :                  */
     868        6998 :                 accept_new = false;
     869             :             }
     870             :         }
     871             : 
     872             :         /*
     873             :          * Remove current element from partial_pathlist if dominated by new.
     874             :          */
     875       53678 :         if (remove_old)
     876             :         {
     877       13702 :             parent_rel->partial_pathlist =
     878       13702 :                 foreach_delete_current(parent_rel->partial_pathlist, p1);
     879       13702 :             pfree(old_path);
     880             :         }
     881             :         else
     882             :         {
     883             :             /* new belongs after this old path if it has cost >= old's */
     884       39976 :             if (new_path->total_cost >= old_path->total_cost)
     885       27112 :                 insert_at = foreach_current_index(p1) + 1;
     886             :         }
     887             : 
     888             :         /*
     889             :          * If we found an old path that dominates new_path, we can quit
     890             :          * scanning the partial_pathlist; we will not add new_path, and we
     891             :          * assume new_path cannot dominate any later path.
     892             :          */
     893       53678 :         if (!accept_new)
     894       19184 :             break;
     895             :     }
     896             : 
     897      102900 :     if (accept_new)
     898             :     {
     899             :         /* Accept the new path: insert it at proper place */
     900       83716 :         parent_rel->partial_pathlist =
     901       83716 :             list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
     902             :     }
     903             :     else
     904             :     {
     905             :         /* Reject and recycle the new path */
     906       19184 :         pfree(new_path);
     907             :     }
     908      102900 : }
     909             : 
     910             : /*
     911             :  * add_partial_path_precheck
     912             :  *    Check whether a proposed new partial path could possibly get accepted.
     913             :  *
     914             :  * Unlike add_path_precheck, we can ignore startup cost and parameterization,
     915             :  * since they don't matter for partial paths (see add_partial_path).  But
     916             :  * we do want to make sure we don't add a partial path if there's already
     917             :  * a complete path that dominates it, since in that case the proposed path
     918             :  * is surely a loser.
     919             :  */
     920             : bool
     921       83896 : add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
     922             :                           Cost total_cost, List *pathkeys)
     923             : {
     924             :     ListCell   *p1;
     925             : 
     926             :     /*
     927             :      * Our goal here is twofold.  First, we want to find out whether this path
     928             :      * is clearly inferior to some existing partial path.  If so, we want to
     929             :      * reject it immediately.  Second, we want to find out whether this path
     930             :      * is clearly superior to some existing partial path -- at least, modulo
     931             :      * final cost computations.  If so, we definitely want to consider it.
     932             :      *
     933             :      * Unlike add_path(), we always compare pathkeys here.  This is because we
     934             :      * expect partial_pathlist to be very short, and getting a definitive
     935             :      * answer at this stage avoids the need to call add_path_precheck.
     936             :      */
     937      114260 :     foreach(p1, parent_rel->partial_pathlist)
     938             :     {
     939       92672 :         Path       *old_path = (Path *) lfirst(p1);
     940             :         PathKeysComparison keyscmp;
     941             : 
     942       92672 :         keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
     943       92672 :         if (keyscmp != PATHKEYS_DIFFERENT)
     944             :         {
     945       92480 :             if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
     946             :                 keyscmp != PATHKEYS_BETTER1)
     947       62308 :                 return false;
     948       44814 :             if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
     949             :                 keyscmp != PATHKEYS_BETTER2)
     950       14642 :                 return true;
     951             :         }
     952             :     }
     953             : 
     954             :     /*
     955             :      * This path is neither clearly inferior to an existing partial path nor
     956             :      * clearly good enough that it might replace one.  Compare it to
     957             :      * non-parallel plans.  If it loses even before accounting for the cost of
     958             :      * the Gather node, we should definitely reject it.
     959             :      *
     960             :      * Note that we pass the total_cost to add_path_precheck twice.  This is
     961             :      * because it's never advantageous to consider the startup cost of a
     962             :      * partial path; the resulting plans, if run in parallel, will be run to
     963             :      * completion.
     964             :      */
     965       21588 :     if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
     966             :                            pathkeys, NULL))
     967        2558 :         return false;
     968             : 
     969       19030 :     return true;
     970             : }
     971             : 
     972             : 
     973             : /*****************************************************************************
     974             :  *      PATH NODE CREATION ROUTINES
     975             :  *****************************************************************************/
     976             : 
     977             : /*
     978             :  * create_seqscan_path
     979             :  *    Creates a path corresponding to a sequential scan, returning the
     980             :  *    pathnode.
     981             :  */
     982             : Path *
     983      427626 : create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
     984             :                     Relids required_outer, int parallel_workers)
     985             : {
     986      427626 :     Path       *pathnode = makeNode(Path);
     987             : 
     988      427626 :     pathnode->pathtype = T_SeqScan;
     989      427626 :     pathnode->parent = rel;
     990      427626 :     pathnode->pathtarget = rel->reltarget;
     991      427626 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
     992             :                                                      required_outer);
     993      427626 :     pathnode->parallel_aware = (parallel_workers > 0);
     994      427626 :     pathnode->parallel_safe = rel->consider_parallel;
     995      427626 :     pathnode->parallel_workers = parallel_workers;
     996      427626 :     pathnode->pathkeys = NIL;    /* seqscan has unordered result */
     997             : 
     998      427626 :     cost_seqscan(pathnode, root, rel, pathnode->param_info);
     999             : 
    1000      427626 :     return pathnode;
    1001             : }
    1002             : 
    1003             : /*
    1004             :  * create_samplescan_path
    1005             :  *    Creates a path node for a sampled table scan.
    1006             :  */
    1007             : Path *
    1008         306 : create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
    1009             : {
    1010         306 :     Path       *pathnode = makeNode(Path);
    1011             : 
    1012         306 :     pathnode->pathtype = T_SampleScan;
    1013         306 :     pathnode->parent = rel;
    1014         306 :     pathnode->pathtarget = rel->reltarget;
    1015         306 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1016             :                                                      required_outer);
    1017         306 :     pathnode->parallel_aware = false;
    1018         306 :     pathnode->parallel_safe = rel->consider_parallel;
    1019         306 :     pathnode->parallel_workers = 0;
    1020         306 :     pathnode->pathkeys = NIL;    /* samplescan has unordered result */
    1021             : 
    1022         306 :     cost_samplescan(pathnode, root, rel, pathnode->param_info);
    1023             : 
    1024         306 :     return pathnode;
    1025             : }
    1026             : 
    1027             : /*
    1028             :  * create_index_path
    1029             :  *    Creates a path node for an index scan.
    1030             :  *
    1031             :  * 'index' is a usable index.
    1032             :  * 'indexclauses' is a list of IndexClause nodes representing clauses
    1033             :  *          to be enforced as qual conditions in the scan.
    1034             :  * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
    1035             :  *          to be used as index ordering operators in the scan.
    1036             :  * 'indexorderbycols' is an integer list of index column numbers (zero based)
    1037             :  *          the ordering operators can be used with.
    1038             :  * 'pathkeys' describes the ordering of the path.
    1039             :  * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
    1040             :  * 'indexonly' is true if an index-only scan is wanted.
    1041             :  * 'required_outer' is the set of outer relids for a parameterized path.
    1042             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    1043             :  *      estimates of caching behavior.
    1044             :  * 'partial_path' is true if constructing a parallel index scan path.
    1045             :  *
    1046             :  * Returns the new path node.
    1047             :  */
    1048             : IndexPath *
    1049      784032 : create_index_path(PlannerInfo *root,
    1050             :                   IndexOptInfo *index,
    1051             :                   List *indexclauses,
    1052             :                   List *indexorderbys,
    1053             :                   List *indexorderbycols,
    1054             :                   List *pathkeys,
    1055             :                   ScanDirection indexscandir,
    1056             :                   bool indexonly,
    1057             :                   Relids required_outer,
    1058             :                   double loop_count,
    1059             :                   bool partial_path)
    1060             : {
    1061      784032 :     IndexPath  *pathnode = makeNode(IndexPath);
    1062      784032 :     RelOptInfo *rel = index->rel;
    1063             : 
    1064      784032 :     pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
    1065      784032 :     pathnode->path.parent = rel;
    1066      784032 :     pathnode->path.pathtarget = rel->reltarget;
    1067      784032 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1068             :                                                           required_outer);
    1069      784032 :     pathnode->path.parallel_aware = false;
    1070      784032 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1071      784032 :     pathnode->path.parallel_workers = 0;
    1072      784032 :     pathnode->path.pathkeys = pathkeys;
    1073             : 
    1074      784032 :     pathnode->indexinfo = index;
    1075      784032 :     pathnode->indexclauses = indexclauses;
    1076      784032 :     pathnode->indexorderbys = indexorderbys;
    1077      784032 :     pathnode->indexorderbycols = indexorderbycols;
    1078      784032 :     pathnode->indexscandir = indexscandir;
    1079             : 
    1080      784032 :     cost_index(pathnode, root, loop_count, partial_path);
    1081             : 
    1082      784032 :     return pathnode;
    1083             : }
    1084             : 
    1085             : /*
    1086             :  * create_bitmap_heap_path
    1087             :  *    Creates a path node for a bitmap scan.
    1088             :  *
    1089             :  * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
    1090             :  * 'required_outer' is the set of outer relids for a parameterized path.
    1091             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    1092             :  *      estimates of caching behavior.
    1093             :  *
    1094             :  * loop_count should match the value used when creating the component
    1095             :  * IndexPaths.
    1096             :  */
    1097             : BitmapHeapPath *
    1098      342338 : create_bitmap_heap_path(PlannerInfo *root,
    1099             :                         RelOptInfo *rel,
    1100             :                         Path *bitmapqual,
    1101             :                         Relids required_outer,
    1102             :                         double loop_count,
    1103             :                         int parallel_degree)
    1104             : {
    1105      342338 :     BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
    1106             : 
    1107      342338 :     pathnode->path.pathtype = T_BitmapHeapScan;
    1108      342338 :     pathnode->path.parent = rel;
    1109      342338 :     pathnode->path.pathtarget = rel->reltarget;
    1110      342338 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1111             :                                                           required_outer);
    1112      342338 :     pathnode->path.parallel_aware = (parallel_degree > 0);
    1113      342338 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1114      342338 :     pathnode->path.parallel_workers = parallel_degree;
    1115      342338 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1116             : 
    1117      342338 :     pathnode->bitmapqual = bitmapqual;
    1118             : 
    1119      342338 :     cost_bitmap_heap_scan(&pathnode->path, root, rel,
    1120             :                           pathnode->path.param_info,
    1121             :                           bitmapqual, loop_count);
    1122             : 
    1123      342338 :     return pathnode;
    1124             : }
    1125             : 
    1126             : /*
    1127             :  * create_bitmap_and_path
    1128             :  *    Creates a path node representing a BitmapAnd.
    1129             :  */
    1130             : BitmapAndPath *
    1131       51456 : create_bitmap_and_path(PlannerInfo *root,
    1132             :                        RelOptInfo *rel,
    1133             :                        List *bitmapquals)
    1134             : {
    1135       51456 :     BitmapAndPath *pathnode = makeNode(BitmapAndPath);
    1136       51456 :     Relids      required_outer = NULL;
    1137             :     ListCell   *lc;
    1138             : 
    1139       51456 :     pathnode->path.pathtype = T_BitmapAnd;
    1140       51456 :     pathnode->path.parent = rel;
    1141       51456 :     pathnode->path.pathtarget = rel->reltarget;
    1142             : 
    1143             :     /*
    1144             :      * Identify the required outer rels as the union of what the child paths
    1145             :      * depend on.  (Alternatively, we could insist that the caller pass this
    1146             :      * in, but it's more convenient and reliable to compute it here.)
    1147             :      */
    1148      154368 :     foreach(lc, bitmapquals)
    1149             :     {
    1150      102912 :         Path       *bitmapqual = (Path *) lfirst(lc);
    1151             : 
    1152      102912 :         required_outer = bms_add_members(required_outer,
    1153      102912 :                                          PATH_REQ_OUTER(bitmapqual));
    1154             :     }
    1155       51456 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1156             :                                                           required_outer);
    1157             : 
    1158             :     /*
    1159             :      * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
    1160             :      * parallel-safe if and only if rel->consider_parallel is set.  So, we can
    1161             :      * set the flag for this path based only on the relation-level flag,
    1162             :      * without actually iterating over the list of children.
    1163             :      */
    1164       51456 :     pathnode->path.parallel_aware = false;
    1165       51456 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1166       51456 :     pathnode->path.parallel_workers = 0;
    1167             : 
    1168       51456 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1169             : 
    1170       51456 :     pathnode->bitmapquals = bitmapquals;
    1171             : 
    1172             :     /* this sets bitmapselectivity as well as the regular cost fields: */
    1173       51456 :     cost_bitmap_and_node(pathnode, root);
    1174             : 
    1175       51456 :     return pathnode;
    1176             : }
    1177             : 
    1178             : /*
    1179             :  * create_bitmap_or_path
    1180             :  *    Creates a path node representing a BitmapOr.
    1181             :  */
    1182             : BitmapOrPath *
    1183         976 : create_bitmap_or_path(PlannerInfo *root,
    1184             :                       RelOptInfo *rel,
    1185             :                       List *bitmapquals)
    1186             : {
    1187         976 :     BitmapOrPath *pathnode = makeNode(BitmapOrPath);
    1188         976 :     Relids      required_outer = NULL;
    1189             :     ListCell   *lc;
    1190             : 
    1191         976 :     pathnode->path.pathtype = T_BitmapOr;
    1192         976 :     pathnode->path.parent = rel;
    1193         976 :     pathnode->path.pathtarget = rel->reltarget;
    1194             : 
    1195             :     /*
    1196             :      * Identify the required outer rels as the union of what the child paths
    1197             :      * depend on.  (Alternatively, we could insist that the caller pass this
    1198             :      * in, but it's more convenient and reliable to compute it here.)
    1199             :      */
    1200        2736 :     foreach(lc, bitmapquals)
    1201             :     {
    1202        1760 :         Path       *bitmapqual = (Path *) lfirst(lc);
    1203             : 
    1204        1760 :         required_outer = bms_add_members(required_outer,
    1205        1760 :                                          PATH_REQ_OUTER(bitmapqual));
    1206             :     }
    1207         976 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1208             :                                                           required_outer);
    1209             : 
    1210             :     /*
    1211             :      * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
    1212             :      * parallel-safe if and only if rel->consider_parallel is set.  So, we can
    1213             :      * set the flag for this path based only on the relation-level flag,
    1214             :      * without actually iterating over the list of children.
    1215             :      */
    1216         976 :     pathnode->path.parallel_aware = false;
    1217         976 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1218         976 :     pathnode->path.parallel_workers = 0;
    1219             : 
    1220         976 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1221             : 
    1222         976 :     pathnode->bitmapquals = bitmapquals;
    1223             : 
    1224             :     /* this sets bitmapselectivity as well as the regular cost fields: */
    1225         976 :     cost_bitmap_or_node(pathnode, root);
    1226             : 
    1227         976 :     return pathnode;
    1228             : }
    1229             : 
    1230             : /*
    1231             :  * create_tidscan_path
    1232             :  *    Creates a path corresponding to a scan by TID, returning the pathnode.
    1233             :  */
    1234             : TidPath *
    1235         852 : create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals,
    1236             :                     Relids required_outer)
    1237             : {
    1238         852 :     TidPath    *pathnode = makeNode(TidPath);
    1239             : 
    1240         852 :     pathnode->path.pathtype = T_TidScan;
    1241         852 :     pathnode->path.parent = rel;
    1242         852 :     pathnode->path.pathtarget = rel->reltarget;
    1243         852 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1244             :                                                           required_outer);
    1245         852 :     pathnode->path.parallel_aware = false;
    1246         852 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1247         852 :     pathnode->path.parallel_workers = 0;
    1248         852 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1249             : 
    1250         852 :     pathnode->tidquals = tidquals;
    1251             : 
    1252         852 :     cost_tidscan(&pathnode->path, root, rel, tidquals,
    1253             :                  pathnode->path.param_info);
    1254             : 
    1255         852 :     return pathnode;
    1256             : }
    1257             : 
    1258             : /*
    1259             :  * create_tidrangescan_path
    1260             :  *    Creates a path corresponding to a scan by a range of TIDs, returning
    1261             :  *    the pathnode.
    1262             :  */
    1263             : TidRangePath *
    1264        1940 : create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel,
    1265             :                          List *tidrangequals, Relids required_outer)
    1266             : {
    1267        1940 :     TidRangePath *pathnode = makeNode(TidRangePath);
    1268             : 
    1269        1940 :     pathnode->path.pathtype = T_TidRangeScan;
    1270        1940 :     pathnode->path.parent = rel;
    1271        1940 :     pathnode->path.pathtarget = rel->reltarget;
    1272        1940 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1273             :                                                           required_outer);
    1274        1940 :     pathnode->path.parallel_aware = false;
    1275        1940 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1276        1940 :     pathnode->path.parallel_workers = 0;
    1277        1940 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1278             : 
    1279        1940 :     pathnode->tidrangequals = tidrangequals;
    1280             : 
    1281        1940 :     cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
    1282             :                       pathnode->path.param_info);
    1283             : 
    1284        1940 :     return pathnode;
    1285             : }
    1286             : 
    1287             : /*
    1288             :  * create_append_path
    1289             :  *    Creates a path corresponding to an Append plan, returning the
    1290             :  *    pathnode.
    1291             :  *
    1292             :  * Note that we must handle subpaths = NIL, representing a dummy access path.
    1293             :  * Also, there are callers that pass root = NULL.
    1294             :  *
    1295             :  * 'rows', when passed as a non-negative number, will be used to overwrite the
    1296             :  * returned path's row estimate.  Otherwise, the row estimate is calculated
    1297             :  * by totalling the row estimates from the 'subpaths' list.
    1298             :  */
    1299             : AppendPath *
    1300       76376 : create_append_path(PlannerInfo *root,
    1301             :                    RelOptInfo *rel,
    1302             :                    List *subpaths, List *partial_subpaths,
    1303             :                    List *pathkeys, Relids required_outer,
    1304             :                    int parallel_workers, bool parallel_aware,
    1305             :                    double rows)
    1306             : {
    1307       76376 :     AppendPath *pathnode = makeNode(AppendPath);
    1308             :     ListCell   *l;
    1309             : 
    1310             :     Assert(!parallel_aware || parallel_workers > 0);
    1311             : 
    1312       76376 :     pathnode->path.pathtype = T_Append;
    1313       76376 :     pathnode->path.parent = rel;
    1314       76376 :     pathnode->path.pathtarget = rel->reltarget;
    1315             : 
    1316             :     /*
    1317             :      * If this is for a baserel (not a join or non-leaf partition), we prefer
    1318             :      * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
    1319             :      * for the path.  This supports building a Memoize path atop this path,
    1320             :      * and if this is a partitioned table the info may be useful for run-time
    1321             :      * pruning (cf make_partition_pruneinfo()).
    1322             :      *
    1323             :      * However, if we don't have "root" then that won't work and we fall back
    1324             :      * on the simpler get_appendrel_parampathinfo.  There's no point in doing
    1325             :      * the more expensive thing for a dummy path, either.
    1326             :      */
    1327       76376 :     if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
    1328       37936 :         pathnode->path.param_info = get_baserel_parampathinfo(root,
    1329             :                                                               rel,
    1330             :                                                               required_outer);
    1331             :     else
    1332       38440 :         pathnode->path.param_info = get_appendrel_parampathinfo(rel,
    1333             :                                                                 required_outer);
    1334             : 
    1335       76376 :     pathnode->path.parallel_aware = parallel_aware;
    1336       76376 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1337       76376 :     pathnode->path.parallel_workers = parallel_workers;
    1338       76376 :     pathnode->path.pathkeys = pathkeys;
    1339             : 
    1340             :     /*
    1341             :      * For parallel append, non-partial paths are sorted by descending total
    1342             :      * costs. That way, the total time to finish all non-partial paths is
    1343             :      * minimized.  Also, the partial paths are sorted by descending startup
    1344             :      * costs.  There may be some paths that require to do startup work by a
    1345             :      * single worker.  In such case, it's better for workers to choose the
    1346             :      * expensive ones first, whereas the leader should choose the cheapest
    1347             :      * startup plan.
    1348             :      */
    1349       76376 :     if (pathnode->path.parallel_aware)
    1350             :     {
    1351             :         /*
    1352             :          * We mustn't fiddle with the order of subpaths when the Append has
    1353             :          * pathkeys.  The order they're listed in is critical to keeping the
    1354             :          * pathkeys valid.
    1355             :          */
    1356             :         Assert(pathkeys == NIL);
    1357             : 
    1358       25676 :         list_sort(subpaths, append_total_cost_compare);
    1359       25676 :         list_sort(partial_subpaths, append_startup_cost_compare);
    1360             :     }
    1361       76376 :     pathnode->first_partial_path = list_length(subpaths);
    1362       76376 :     pathnode->subpaths = list_concat(subpaths, partial_subpaths);
    1363             : 
    1364             :     /*
    1365             :      * Apply query-wide LIMIT if known and path is for sole base relation.
    1366             :      * (Handling this at this low level is a bit klugy.)
    1367             :      */
    1368       76376 :     if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
    1369       39042 :         pathnode->limit_tuples = root->limit_tuples;
    1370             :     else
    1371       37334 :         pathnode->limit_tuples = -1.0;
    1372             : 
    1373      250472 :     foreach(l, pathnode->subpaths)
    1374             :     {
    1375      174096 :         Path       *subpath = (Path *) lfirst(l);
    1376             : 
    1377      308842 :         pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
    1378      134746 :             subpath->parallel_safe;
    1379             : 
    1380             :         /* All child paths must have same parameterization */
    1381             :         Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
    1382             :     }
    1383             : 
    1384             :     Assert(!parallel_aware || pathnode->path.parallel_safe);
    1385             : 
    1386             :     /*
    1387             :      * If there's exactly one child path then the output of the Append is
    1388             :      * necessarily ordered the same as the child's, so we can inherit the
    1389             :      * child's pathkeys if any, overriding whatever the caller might've said.
    1390             :      * Furthermore, if the child's parallel awareness matches the Append's,
    1391             :      * then the Append is a no-op and will be discarded later (in setrefs.c).
    1392             :      * Then we can inherit the child's size and cost too, effectively charging
    1393             :      * zero for the Append.  Otherwise, we must do the normal costsize
    1394             :      * calculation.
    1395             :      */
    1396       76376 :     if (list_length(pathnode->subpaths) == 1)
    1397             :     {
    1398       22194 :         Path       *child = (Path *) linitial(pathnode->subpaths);
    1399             : 
    1400       22194 :         if (child->parallel_aware == parallel_aware)
    1401             :         {
    1402       21756 :             pathnode->path.rows = child->rows;
    1403       21756 :             pathnode->path.startup_cost = child->startup_cost;
    1404       21756 :             pathnode->path.total_cost = child->total_cost;
    1405             :         }
    1406             :         else
    1407         438 :             cost_append(pathnode, root);
    1408             :         /* Must do this last, else cost_append complains */
    1409       22194 :         pathnode->path.pathkeys = child->pathkeys;
    1410             :     }
    1411             :     else
    1412       54182 :         cost_append(pathnode, root);
    1413             : 
    1414             :     /* If the caller provided a row estimate, override the computed value. */
    1415       76376 :     if (rows >= 0)
    1416         576 :         pathnode->path.rows = rows;
    1417             : 
    1418       76376 :     return pathnode;
    1419             : }
    1420             : 
    1421             : /*
    1422             :  * append_total_cost_compare
    1423             :  *    list_sort comparator for sorting append child paths
    1424             :  *    by total_cost descending
    1425             :  *
    1426             :  * For equal total costs, we fall back to comparing startup costs; if those
    1427             :  * are equal too, break ties using bms_compare on the paths' relids.
    1428             :  * (This is to avoid getting unpredictable results from list_sort.)
    1429             :  */
    1430             : static int
    1431        4574 : append_total_cost_compare(const ListCell *a, const ListCell *b)
    1432             : {
    1433        4574 :     Path       *path1 = (Path *) lfirst(a);
    1434        4574 :     Path       *path2 = (Path *) lfirst(b);
    1435             :     int         cmp;
    1436             : 
    1437        4574 :     cmp = compare_path_costs(path1, path2, TOTAL_COST);
    1438        4574 :     if (cmp != 0)
    1439        4298 :         return -cmp;
    1440         276 :     return bms_compare(path1->parent->relids, path2->parent->relids);
    1441             : }
    1442             : 
    1443             : /*
    1444             :  * append_startup_cost_compare
    1445             :  *    list_sort comparator for sorting append child paths
    1446             :  *    by startup_cost descending
    1447             :  *
    1448             :  * For equal startup costs, we fall back to comparing total costs; if those
    1449             :  * are equal too, break ties using bms_compare on the paths' relids.
    1450             :  * (This is to avoid getting unpredictable results from list_sort.)
    1451             :  */
    1452             : static int
    1453       34094 : append_startup_cost_compare(const ListCell *a, const ListCell *b)
    1454             : {
    1455       34094 :     Path       *path1 = (Path *) lfirst(a);
    1456       34094 :     Path       *path2 = (Path *) lfirst(b);
    1457             :     int         cmp;
    1458             : 
    1459       34094 :     cmp = compare_path_costs(path1, path2, STARTUP_COST);
    1460       34094 :     if (cmp != 0)
    1461       13440 :         return -cmp;
    1462       20654 :     return bms_compare(path1->parent->relids, path2->parent->relids);
    1463             : }
    1464             : 
    1465             : /*
    1466             :  * create_merge_append_path
    1467             :  *    Creates a path corresponding to a MergeAppend plan, returning the
    1468             :  *    pathnode.
    1469             :  */
    1470             : MergeAppendPath *
    1471        4332 : create_merge_append_path(PlannerInfo *root,
    1472             :                          RelOptInfo *rel,
    1473             :                          List *subpaths,
    1474             :                          List *pathkeys,
    1475             :                          Relids required_outer)
    1476             : {
    1477        4332 :     MergeAppendPath *pathnode = makeNode(MergeAppendPath);
    1478             :     int         input_disabled_nodes;
    1479             :     Cost        input_startup_cost;
    1480             :     Cost        input_total_cost;
    1481             :     ListCell   *l;
    1482             : 
    1483             :     /*
    1484             :      * We don't currently support parameterized MergeAppend paths, as
    1485             :      * explained in the comments for generate_orderedappend_paths.
    1486             :      */
    1487             :     Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
    1488             : 
    1489        4332 :     pathnode->path.pathtype = T_MergeAppend;
    1490        4332 :     pathnode->path.parent = rel;
    1491        4332 :     pathnode->path.pathtarget = rel->reltarget;
    1492        4332 :     pathnode->path.param_info = NULL;
    1493        4332 :     pathnode->path.parallel_aware = false;
    1494        4332 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1495        4332 :     pathnode->path.parallel_workers = 0;
    1496        4332 :     pathnode->path.pathkeys = pathkeys;
    1497        4332 :     pathnode->subpaths = subpaths;
    1498             : 
    1499             :     /*
    1500             :      * Apply query-wide LIMIT if known and path is for sole base relation.
    1501             :      * (Handling this at this low level is a bit klugy.)
    1502             :      */
    1503        4332 :     if (bms_equal(rel->relids, root->all_query_rels))
    1504        2190 :         pathnode->limit_tuples = root->limit_tuples;
    1505             :     else
    1506        2142 :         pathnode->limit_tuples = -1.0;
    1507             : 
    1508             :     /*
    1509             :      * Add up the sizes and costs of the input paths.
    1510             :      */
    1511        4332 :     pathnode->path.rows = 0;
    1512        4332 :     input_disabled_nodes = 0;
    1513        4332 :     input_startup_cost = 0;
    1514        4332 :     input_total_cost = 0;
    1515       16152 :     foreach(l, subpaths)
    1516             :     {
    1517       11820 :         Path       *subpath = (Path *) lfirst(l);
    1518             :         int         presorted_keys;
    1519             :         Path        sort_path;  /* dummy for result of
    1520             :                                  * cost_sort/cost_incremental_sort */
    1521             : 
    1522             :         /* All child paths should be unparameterized */
    1523             :         Assert(bms_is_empty(PATH_REQ_OUTER(subpath)));
    1524             : 
    1525       11820 :         pathnode->path.rows += subpath->rows;
    1526       20842 :         pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
    1527        9022 :             subpath->parallel_safe;
    1528             : 
    1529       11820 :         if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
    1530             :                                          &presorted_keys))
    1531             :         {
    1532             :             /*
    1533             :              * We'll need to insert a Sort node, so include costs for that. We
    1534             :              * choose to use incremental sort if it is enabled and there are
    1535             :              * presorted keys; otherwise we use full sort.
    1536             :              *
    1537             :              * We can use the parent's LIMIT if any, since we certainly won't
    1538             :              * pull more than that many tuples from any child.
    1539             :              */
    1540         346 :             if (enable_incremental_sort && presorted_keys > 0)
    1541             :             {
    1542          18 :                 cost_incremental_sort(&sort_path,
    1543             :                                       root,
    1544             :                                       pathkeys,
    1545             :                                       presorted_keys,
    1546             :                                       subpath->disabled_nodes,
    1547             :                                       subpath->startup_cost,
    1548             :                                       subpath->total_cost,
    1549             :                                       subpath->rows,
    1550          18 :                                       subpath->pathtarget->width,
    1551             :                                       0.0,
    1552             :                                       work_mem,
    1553             :                                       pathnode->limit_tuples);
    1554             :             }
    1555             :             else
    1556             :             {
    1557         328 :                 cost_sort(&sort_path,
    1558             :                           root,
    1559             :                           pathkeys,
    1560             :                           subpath->disabled_nodes,
    1561             :                           subpath->total_cost,
    1562             :                           subpath->rows,
    1563         328 :                           subpath->pathtarget->width,
    1564             :                           0.0,
    1565             :                           work_mem,
    1566             :                           pathnode->limit_tuples);
    1567             :             }
    1568             : 
    1569         346 :             subpath = &sort_path;
    1570             :         }
    1571             : 
    1572       11820 :         input_disabled_nodes += subpath->disabled_nodes;
    1573       11820 :         input_startup_cost += subpath->startup_cost;
    1574       11820 :         input_total_cost += subpath->total_cost;
    1575             :     }
    1576             : 
    1577             :     /*
    1578             :      * Now we can compute total costs of the MergeAppend.  If there's exactly
    1579             :      * one child path and its parallel awareness matches that of the
    1580             :      * MergeAppend, then the MergeAppend is a no-op and will be discarded
    1581             :      * later (in setrefs.c); otherwise we do the normal cost calculation.
    1582             :      */
    1583        4332 :     if (list_length(subpaths) == 1 &&
    1584         112 :         ((Path *) linitial(subpaths))->parallel_aware ==
    1585         112 :         pathnode->path.parallel_aware)
    1586             :     {
    1587         112 :         pathnode->path.disabled_nodes = input_disabled_nodes;
    1588         112 :         pathnode->path.startup_cost = input_startup_cost;
    1589         112 :         pathnode->path.total_cost = input_total_cost;
    1590             :     }
    1591             :     else
    1592        4220 :         cost_merge_append(&pathnode->path, root,
    1593             :                           pathkeys, list_length(subpaths),
    1594             :                           input_disabled_nodes,
    1595             :                           input_startup_cost, input_total_cost,
    1596             :                           pathnode->path.rows);
    1597             : 
    1598        4332 :     return pathnode;
    1599             : }
    1600             : 
    1601             : /*
    1602             :  * create_group_result_path
    1603             :  *    Creates a path representing a Result-and-nothing-else plan.
    1604             :  *
    1605             :  * This is only used for degenerate grouping cases, in which we know we
    1606             :  * need to produce one result row, possibly filtered by a HAVING qual.
    1607             :  */
    1608             : GroupResultPath *
    1609      192596 : create_group_result_path(PlannerInfo *root, RelOptInfo *rel,
    1610             :                          PathTarget *target, List *havingqual)
    1611             : {
    1612      192596 :     GroupResultPath *pathnode = makeNode(GroupResultPath);
    1613             : 
    1614      192596 :     pathnode->path.pathtype = T_Result;
    1615      192596 :     pathnode->path.parent = rel;
    1616      192596 :     pathnode->path.pathtarget = target;
    1617      192596 :     pathnode->path.param_info = NULL;    /* there are no other rels... */
    1618      192596 :     pathnode->path.parallel_aware = false;
    1619      192596 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1620      192596 :     pathnode->path.parallel_workers = 0;
    1621      192596 :     pathnode->path.pathkeys = NIL;
    1622      192596 :     pathnode->quals = havingqual;
    1623             : 
    1624             :     /*
    1625             :      * We can't quite use cost_resultscan() because the quals we want to
    1626             :      * account for are not baserestrict quals of the rel.  Might as well just
    1627             :      * hack it here.
    1628             :      */
    1629      192596 :     pathnode->path.rows = 1;
    1630      192596 :     pathnode->path.startup_cost = target->cost.startup;
    1631      192596 :     pathnode->path.total_cost = target->cost.startup +
    1632      192596 :         cpu_tuple_cost + target->cost.per_tuple;
    1633             : 
    1634             :     /*
    1635             :      * Add cost of qual, if any --- but we ignore its selectivity, since our
    1636             :      * rowcount estimate should be 1 no matter what the qual is.
    1637             :      */
    1638      192596 :     if (havingqual)
    1639             :     {
    1640             :         QualCost    qual_cost;
    1641             : 
    1642         632 :         cost_qual_eval(&qual_cost, havingqual, root);
    1643             :         /* havingqual is evaluated once at startup */
    1644         632 :         pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
    1645         632 :         pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
    1646             :     }
    1647             : 
    1648      192596 :     return pathnode;
    1649             : }
    1650             : 
    1651             : /*
    1652             :  * create_material_path
    1653             :  *    Creates a path corresponding to a Material plan, returning the
    1654             :  *    pathnode.
    1655             :  */
    1656             : MaterialPath *
    1657      533064 : create_material_path(RelOptInfo *rel, Path *subpath)
    1658             : {
    1659      533064 :     MaterialPath *pathnode = makeNode(MaterialPath);
    1660             : 
    1661             :     Assert(subpath->parent == rel);
    1662             : 
    1663      533064 :     pathnode->path.pathtype = T_Material;
    1664      533064 :     pathnode->path.parent = rel;
    1665      533064 :     pathnode->path.pathtarget = rel->reltarget;
    1666      533064 :     pathnode->path.param_info = subpath->param_info;
    1667      533064 :     pathnode->path.parallel_aware = false;
    1668     1012098 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    1669      479034 :         subpath->parallel_safe;
    1670      533064 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    1671      533064 :     pathnode->path.pathkeys = subpath->pathkeys;
    1672             : 
    1673      533064 :     pathnode->subpath = subpath;
    1674             : 
    1675      533064 :     cost_material(&pathnode->path,
    1676             :                   subpath->disabled_nodes,
    1677             :                   subpath->startup_cost,
    1678             :                   subpath->total_cost,
    1679             :                   subpath->rows,
    1680      533064 :                   subpath->pathtarget->width);
    1681             : 
    1682      533064 :     return pathnode;
    1683             : }
    1684             : 
    1685             : /*
    1686             :  * create_memoize_path
    1687             :  *    Creates a path corresponding to a Memoize plan, returning the pathnode.
    1688             :  */
    1689             : MemoizePath *
    1690      320702 : create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1691             :                     List *param_exprs, List *hash_operators,
    1692             :                     bool singlerow, bool binary_mode, double calls)
    1693             : {
    1694      320702 :     MemoizePath *pathnode = makeNode(MemoizePath);
    1695             : 
    1696             :     Assert(subpath->parent == rel);
    1697             : 
    1698      320702 :     pathnode->path.pathtype = T_Memoize;
    1699      320702 :     pathnode->path.parent = rel;
    1700      320702 :     pathnode->path.pathtarget = rel->reltarget;
    1701      320702 :     pathnode->path.param_info = subpath->param_info;
    1702      320702 :     pathnode->path.parallel_aware = false;
    1703      627320 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    1704      306618 :         subpath->parallel_safe;
    1705      320702 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    1706      320702 :     pathnode->path.pathkeys = subpath->pathkeys;
    1707             : 
    1708      320702 :     pathnode->subpath = subpath;
    1709      320702 :     pathnode->hash_operators = hash_operators;
    1710      320702 :     pathnode->param_exprs = param_exprs;
    1711      320702 :     pathnode->singlerow = singlerow;
    1712      320702 :     pathnode->binary_mode = binary_mode;
    1713      320702 :     pathnode->calls = clamp_row_est(calls);
    1714             : 
    1715             :     /*
    1716             :      * For now we set est_entries to 0.  cost_memoize_rescan() does all the
    1717             :      * hard work to determine how many cache entries there are likely to be,
    1718             :      * so it seems best to leave it up to that function to fill this field in.
    1719             :      * If left at 0, the executor will make a guess at a good value.
    1720             :      */
    1721      320702 :     pathnode->est_entries = 0;
    1722             : 
    1723             :     /* we should not generate this path type when enable_memoize=false */
    1724             :     Assert(enable_memoize);
    1725      320702 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    1726             : 
    1727             :     /*
    1728             :      * Add a small additional charge for caching the first entry.  All the
    1729             :      * harder calculations for rescans are performed in cost_memoize_rescan().
    1730             :      */
    1731      320702 :     pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
    1732      320702 :     pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
    1733      320702 :     pathnode->path.rows = subpath->rows;
    1734             : 
    1735      320702 :     return pathnode;
    1736             : }
    1737             : 
    1738             : /*
    1739             :  * create_unique_path
    1740             :  *    Creates a path representing elimination of distinct rows from the
    1741             :  *    input data.  Distinct-ness is defined according to the needs of the
    1742             :  *    semijoin represented by sjinfo.  If it is not possible to identify
    1743             :  *    how to make the data unique, NULL is returned.
    1744             :  *
    1745             :  * If used at all, this is likely to be called repeatedly on the same rel;
    1746             :  * and the input subpath should always be the same (the cheapest_total path
    1747             :  * for the rel).  So we cache the result.
    1748             :  */
    1749             : UniquePath *
    1750       47246 : create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1751             :                    SpecialJoinInfo *sjinfo)
    1752             : {
    1753             :     UniquePath *pathnode;
    1754             :     Path        sort_path;      /* dummy for result of cost_sort */
    1755             :     Path        agg_path;       /* dummy for result of cost_agg */
    1756             :     MemoryContext oldcontext;
    1757             :     int         numCols;
    1758             : 
    1759             :     /* Caller made a mistake if subpath isn't cheapest_total ... */
    1760             :     Assert(subpath == rel->cheapest_total_path);
    1761             :     Assert(subpath->parent == rel);
    1762             :     /* ... or if SpecialJoinInfo is the wrong one */
    1763             :     Assert(sjinfo->jointype == JOIN_SEMI);
    1764             :     Assert(bms_equal(rel->relids, sjinfo->syn_righthand));
    1765             : 
    1766             :     /* If result already cached, return it */
    1767       47246 :     if (rel->cheapest_unique_path)
    1768       40782 :         return (UniquePath *) rel->cheapest_unique_path;
    1769             : 
    1770             :     /* If it's not possible to unique-ify, return NULL */
    1771        6464 :     if (!(sjinfo->semi_can_btree || sjinfo->semi_can_hash))
    1772         120 :         return NULL;
    1773             : 
    1774             :     /*
    1775             :      * When called during GEQO join planning, we are in a short-lived memory
    1776             :      * context.  We must make sure that the path and any subsidiary data
    1777             :      * structures created for a baserel survive the GEQO cycle, else the
    1778             :      * baserel is trashed for future GEQO cycles.  On the other hand, when we
    1779             :      * are creating those for a joinrel during GEQO, we don't want them to
    1780             :      * clutter the main planning context.  Upshot is that the best solution is
    1781             :      * to explicitly allocate memory in the same context the given RelOptInfo
    1782             :      * is in.
    1783             :      */
    1784        6344 :     oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
    1785             : 
    1786        6344 :     pathnode = makeNode(UniquePath);
    1787             : 
    1788        6344 :     pathnode->path.pathtype = T_Unique;
    1789        6344 :     pathnode->path.parent = rel;
    1790        6344 :     pathnode->path.pathtarget = rel->reltarget;
    1791        6344 :     pathnode->path.param_info = subpath->param_info;
    1792        6344 :     pathnode->path.parallel_aware = false;
    1793       12036 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    1794        5692 :         subpath->parallel_safe;
    1795        6344 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    1796             : 
    1797             :     /*
    1798             :      * Assume the output is unsorted, since we don't necessarily have pathkeys
    1799             :      * to represent it.  (This might get overridden below.)
    1800             :      */
    1801        6344 :     pathnode->path.pathkeys = NIL;
    1802             : 
    1803        6344 :     pathnode->subpath = subpath;
    1804             : 
    1805             :     /*
    1806             :      * Under GEQO and when planning child joins, the sjinfo might be
    1807             :      * short-lived, so we'd better make copies of data structures we extract
    1808             :      * from it.
    1809             :      */
    1810        6344 :     pathnode->in_operators = copyObject(sjinfo->semi_operators);
    1811        6344 :     pathnode->uniq_exprs = copyObject(sjinfo->semi_rhs_exprs);
    1812             : 
    1813             :     /*
    1814             :      * If the input is a relation and it has a unique index that proves the
    1815             :      * semi_rhs_exprs are unique, then we don't need to do anything.  Note
    1816             :      * that relation_has_unique_index_for automatically considers restriction
    1817             :      * clauses for the rel, as well.
    1818             :      */
    1819        7280 :     if (rel->rtekind == RTE_RELATION && sjinfo->semi_can_btree &&
    1820         936 :         relation_has_unique_index_for(root, rel, NIL,
    1821             :                                       sjinfo->semi_rhs_exprs,
    1822             :                                       sjinfo->semi_operators))
    1823             :     {
    1824           0 :         pathnode->umethod = UNIQUE_PATH_NOOP;
    1825           0 :         pathnode->path.rows = rel->rows;
    1826           0 :         pathnode->path.disabled_nodes = subpath->disabled_nodes;
    1827           0 :         pathnode->path.startup_cost = subpath->startup_cost;
    1828           0 :         pathnode->path.total_cost = subpath->total_cost;
    1829           0 :         pathnode->path.pathkeys = subpath->pathkeys;
    1830             : 
    1831           0 :         rel->cheapest_unique_path = (Path *) pathnode;
    1832             : 
    1833           0 :         MemoryContextSwitchTo(oldcontext);
    1834             : 
    1835           0 :         return pathnode;
    1836             :     }
    1837             : 
    1838             :     /*
    1839             :      * If the input is a subquery whose output must be unique already, then we
    1840             :      * don't need to do anything.  The test for uniqueness has to consider
    1841             :      * exactly which columns we are extracting; for example "SELECT DISTINCT
    1842             :      * x,y" doesn't guarantee that x alone is distinct. So we cannot check for
    1843             :      * this optimization unless semi_rhs_exprs consists only of simple Vars
    1844             :      * referencing subquery outputs.  (Possibly we could do something with
    1845             :      * expressions in the subquery outputs, too, but for now keep it simple.)
    1846             :      */
    1847        6344 :     if (rel->rtekind == RTE_SUBQUERY)
    1848             :     {
    1849        3308 :         RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
    1850             : 
    1851        3308 :         if (query_supports_distinctness(rte->subquery))
    1852             :         {
    1853             :             List       *sub_tlist_colnos;
    1854             : 
    1855        3248 :             sub_tlist_colnos = translate_sub_tlist(sjinfo->semi_rhs_exprs,
    1856        3248 :                                                    rel->relid);
    1857             : 
    1858        3444 :             if (sub_tlist_colnos &&
    1859         196 :                 query_is_distinct_for(rte->subquery,
    1860             :                                       sub_tlist_colnos,
    1861             :                                       sjinfo->semi_operators))
    1862             :             {
    1863           0 :                 pathnode->umethod = UNIQUE_PATH_NOOP;
    1864           0 :                 pathnode->path.rows = rel->rows;
    1865           0 :                 pathnode->path.disabled_nodes = subpath->disabled_nodes;
    1866           0 :                 pathnode->path.startup_cost = subpath->startup_cost;
    1867           0 :                 pathnode->path.total_cost = subpath->total_cost;
    1868           0 :                 pathnode->path.pathkeys = subpath->pathkeys;
    1869             : 
    1870           0 :                 rel->cheapest_unique_path = (Path *) pathnode;
    1871             : 
    1872           0 :                 MemoryContextSwitchTo(oldcontext);
    1873             : 
    1874           0 :                 return pathnode;
    1875             :             }
    1876             :         }
    1877             :     }
    1878             : 
    1879             :     /* Estimate number of output rows */
    1880        6344 :     pathnode->path.rows = estimate_num_groups(root,
    1881             :                                               sjinfo->semi_rhs_exprs,
    1882             :                                               rel->rows,
    1883             :                                               NULL,
    1884             :                                               NULL);
    1885        6344 :     numCols = list_length(sjinfo->semi_rhs_exprs);
    1886             : 
    1887        6344 :     if (sjinfo->semi_can_btree)
    1888             :     {
    1889             :         /*
    1890             :          * Estimate cost for sort+unique implementation
    1891             :          */
    1892        6344 :         cost_sort(&sort_path, root, NIL,
    1893             :                   subpath->disabled_nodes,
    1894             :                   subpath->total_cost,
    1895             :                   rel->rows,
    1896        6344 :                   subpath->pathtarget->width,
    1897             :                   0.0,
    1898             :                   work_mem,
    1899             :                   -1.0);
    1900             : 
    1901             :         /*
    1902             :          * Charge one cpu_operator_cost per comparison per input tuple. We
    1903             :          * assume all columns get compared at most of the tuples. (XXX
    1904             :          * probably this is an overestimate.)  This should agree with
    1905             :          * create_upper_unique_path.
    1906             :          */
    1907        6344 :         sort_path.total_cost += cpu_operator_cost * rel->rows * numCols;
    1908             :     }
    1909             : 
    1910        6344 :     if (sjinfo->semi_can_hash)
    1911             :     {
    1912             :         /*
    1913             :          * Estimate the overhead per hashtable entry at 64 bytes (same as in
    1914             :          * planner.c).
    1915             :          */
    1916        6344 :         int         hashentrysize = subpath->pathtarget->width + 64;
    1917             : 
    1918        6344 :         if (hashentrysize * pathnode->path.rows > get_hash_memory_limit())
    1919             :         {
    1920             :             /*
    1921             :              * We should not try to hash.  Hack the SpecialJoinInfo to
    1922             :              * remember this, in case we come through here again.
    1923             :              */
    1924           0 :             sjinfo->semi_can_hash = false;
    1925             :         }
    1926             :         else
    1927        6344 :             cost_agg(&agg_path, root,
    1928             :                      AGG_HASHED, NULL,
    1929             :                      numCols, pathnode->path.rows,
    1930             :                      NIL,
    1931             :                      subpath->disabled_nodes,
    1932             :                      subpath->startup_cost,
    1933             :                      subpath->total_cost,
    1934             :                      rel->rows,
    1935        6344 :                      subpath->pathtarget->width);
    1936             :     }
    1937             : 
    1938        6344 :     if (sjinfo->semi_can_btree && sjinfo->semi_can_hash)
    1939             :     {
    1940        6344 :         if (agg_path.disabled_nodes < sort_path.disabled_nodes ||
    1941        6338 :             (agg_path.disabled_nodes == sort_path.disabled_nodes &&
    1942        6338 :              agg_path.total_cost < sort_path.total_cost))
    1943        6086 :             pathnode->umethod = UNIQUE_PATH_HASH;
    1944             :         else
    1945         258 :             pathnode->umethod = UNIQUE_PATH_SORT;
    1946             :     }
    1947           0 :     else if (sjinfo->semi_can_btree)
    1948           0 :         pathnode->umethod = UNIQUE_PATH_SORT;
    1949           0 :     else if (sjinfo->semi_can_hash)
    1950           0 :         pathnode->umethod = UNIQUE_PATH_HASH;
    1951             :     else
    1952             :     {
    1953             :         /* we can get here only if we abandoned hashing above */
    1954           0 :         MemoryContextSwitchTo(oldcontext);
    1955           0 :         return NULL;
    1956             :     }
    1957             : 
    1958        6344 :     if (pathnode->umethod == UNIQUE_PATH_HASH)
    1959             :     {
    1960        6086 :         pathnode->path.disabled_nodes = agg_path.disabled_nodes;
    1961        6086 :         pathnode->path.startup_cost = agg_path.startup_cost;
    1962        6086 :         pathnode->path.total_cost = agg_path.total_cost;
    1963             :     }
    1964             :     else
    1965             :     {
    1966         258 :         pathnode->path.disabled_nodes = sort_path.disabled_nodes;
    1967         258 :         pathnode->path.startup_cost = sort_path.startup_cost;
    1968         258 :         pathnode->path.total_cost = sort_path.total_cost;
    1969             :     }
    1970             : 
    1971        6344 :     rel->cheapest_unique_path = (Path *) pathnode;
    1972             : 
    1973        6344 :     MemoryContextSwitchTo(oldcontext);
    1974             : 
    1975        6344 :     return pathnode;
    1976             : }
    1977             : 
    1978             : /*
    1979             :  * create_gather_merge_path
    1980             :  *
    1981             :  *    Creates a path corresponding to a gather merge scan, returning
    1982             :  *    the pathnode.
    1983             :  */
    1984             : GatherMergePath *
    1985       10214 : create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1986             :                          PathTarget *target, List *pathkeys,
    1987             :                          Relids required_outer, double *rows)
    1988             : {
    1989       10214 :     GatherMergePath *pathnode = makeNode(GatherMergePath);
    1990       10214 :     int         input_disabled_nodes = 0;
    1991       10214 :     Cost        input_startup_cost = 0;
    1992       10214 :     Cost        input_total_cost = 0;
    1993             : 
    1994             :     Assert(subpath->parallel_safe);
    1995             :     Assert(pathkeys);
    1996             : 
    1997             :     /*
    1998             :      * The subpath should guarantee that it is adequately ordered either by
    1999             :      * adding an explicit sort node or by using presorted input.  We cannot
    2000             :      * add an explicit Sort node for the subpath in createplan.c on additional
    2001             :      * pathkeys, because we can't guarantee the sort would be safe.  For
    2002             :      * example, expressions may be volatile or otherwise parallel unsafe.
    2003             :      */
    2004       10214 :     if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
    2005           0 :         elog(ERROR, "gather merge input not sufficiently sorted");
    2006             : 
    2007       10214 :     pathnode->path.pathtype = T_GatherMerge;
    2008       10214 :     pathnode->path.parent = rel;
    2009       10214 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    2010             :                                                           required_outer);
    2011       10214 :     pathnode->path.parallel_aware = false;
    2012             : 
    2013       10214 :     pathnode->subpath = subpath;
    2014       10214 :     pathnode->num_workers = subpath->parallel_workers;
    2015       10214 :     pathnode->path.pathkeys = pathkeys;
    2016       10214 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2017             : 
    2018       10214 :     input_disabled_nodes += subpath->disabled_nodes;
    2019       10214 :     input_startup_cost += subpath->startup_cost;
    2020       10214 :     input_total_cost += subpath->total_cost;
    2021             : 
    2022       10214 :     cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
    2023             :                       input_disabled_nodes, input_startup_cost,
    2024             :                       input_total_cost, rows);
    2025             : 
    2026       10214 :     return pathnode;
    2027             : }
    2028             : 
    2029             : /*
    2030             :  * translate_sub_tlist - get subquery column numbers represented by tlist
    2031             :  *
    2032             :  * The given targetlist usually contains only Vars referencing the given relid.
    2033             :  * Extract their varattnos (ie, the column numbers of the subquery) and return
    2034             :  * as an integer List.
    2035             :  *
    2036             :  * If any of the tlist items is not a simple Var, we cannot determine whether
    2037             :  * the subquery's uniqueness condition (if any) matches ours, so punt and
    2038             :  * return NIL.
    2039             :  */
    2040             : static List *
    2041        3248 : translate_sub_tlist(List *tlist, int relid)
    2042             : {
    2043        3248 :     List       *result = NIL;
    2044             :     ListCell   *l;
    2045             : 
    2046        3444 :     foreach(l, tlist)
    2047             :     {
    2048        3248 :         Var        *var = (Var *) lfirst(l);
    2049             : 
    2050        3248 :         if (!var || !IsA(var, Var) ||
    2051         196 :             var->varno != relid)
    2052        3052 :             return NIL;         /* punt */
    2053             : 
    2054         196 :         result = lappend_int(result, var->varattno);
    2055             :     }
    2056         196 :     return result;
    2057             : }
    2058             : 
    2059             : /*
    2060             :  * create_gather_path
    2061             :  *    Creates a path corresponding to a gather scan, returning the
    2062             :  *    pathnode.
    2063             :  *
    2064             :  * 'rows' may optionally be set to override row estimates from other sources.
    2065             :  */
    2066             : GatherPath *
    2067       19144 : create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    2068             :                    PathTarget *target, Relids required_outer, double *rows)
    2069             : {
    2070       19144 :     GatherPath *pathnode = makeNode(GatherPath);
    2071             : 
    2072             :     Assert(subpath->parallel_safe);
    2073             : 
    2074       19144 :     pathnode->path.pathtype = T_Gather;
    2075       19144 :     pathnode->path.parent = rel;
    2076       19144 :     pathnode->path.pathtarget = target;
    2077       19144 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    2078             :                                                           required_outer);
    2079       19144 :     pathnode->path.parallel_aware = false;
    2080       19144 :     pathnode->path.parallel_safe = false;
    2081       19144 :     pathnode->path.parallel_workers = 0;
    2082       19144 :     pathnode->path.pathkeys = NIL;   /* Gather has unordered result */
    2083             : 
    2084       19144 :     pathnode->subpath = subpath;
    2085       19144 :     pathnode->num_workers = subpath->parallel_workers;
    2086       19144 :     pathnode->single_copy = false;
    2087             : 
    2088       19144 :     if (pathnode->num_workers == 0)
    2089             :     {
    2090           0 :         pathnode->path.pathkeys = subpath->pathkeys;
    2091           0 :         pathnode->num_workers = 1;
    2092           0 :         pathnode->single_copy = true;
    2093             :     }
    2094             : 
    2095       19144 :     cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
    2096             : 
    2097       19144 :     return pathnode;
    2098             : }
    2099             : 
    2100             : /*
    2101             :  * create_subqueryscan_path
    2102             :  *    Creates a path corresponding to a scan of a subquery,
    2103             :  *    returning the pathnode.
    2104             :  *
    2105             :  * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
    2106             :  * be trivial, ie just a fetch of all the subquery output columns in order.
    2107             :  * While we could determine that here, the caller can usually do it more
    2108             :  * efficiently (or at least amortize it over multiple calls).
    2109             :  */
    2110             : SubqueryScanPath *
    2111       48746 : create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    2112             :                          bool trivial_pathtarget,
    2113             :                          List *pathkeys, Relids required_outer)
    2114             : {
    2115       48746 :     SubqueryScanPath *pathnode = makeNode(SubqueryScanPath);
    2116             : 
    2117       48746 :     pathnode->path.pathtype = T_SubqueryScan;
    2118       48746 :     pathnode->path.parent = rel;
    2119       48746 :     pathnode->path.pathtarget = rel->reltarget;
    2120       48746 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    2121             :                                                           required_outer);
    2122       48746 :     pathnode->path.parallel_aware = false;
    2123       82118 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2124       33372 :         subpath->parallel_safe;
    2125       48746 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2126       48746 :     pathnode->path.pathkeys = pathkeys;
    2127       48746 :     pathnode->subpath = subpath;
    2128             : 
    2129       48746 :     cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
    2130             :                       trivial_pathtarget);
    2131             : 
    2132       48746 :     return pathnode;
    2133             : }
    2134             : 
    2135             : /*
    2136             :  * create_functionscan_path
    2137             :  *    Creates a path corresponding to a sequential scan of a function,
    2138             :  *    returning the pathnode.
    2139             :  */
    2140             : Path *
    2141       51832 : create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
    2142             :                          List *pathkeys, Relids required_outer)
    2143             : {
    2144       51832 :     Path       *pathnode = makeNode(Path);
    2145             : 
    2146       51832 :     pathnode->pathtype = T_FunctionScan;
    2147       51832 :     pathnode->parent = rel;
    2148       51832 :     pathnode->pathtarget = rel->reltarget;
    2149       51832 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2150             :                                                      required_outer);
    2151       51832 :     pathnode->parallel_aware = false;
    2152       51832 :     pathnode->parallel_safe = rel->consider_parallel;
    2153       51832 :     pathnode->parallel_workers = 0;
    2154       51832 :     pathnode->pathkeys = pathkeys;
    2155             : 
    2156       51832 :     cost_functionscan(pathnode, root, rel, pathnode->param_info);
    2157             : 
    2158       51832 :     return pathnode;
    2159             : }
    2160             : 
    2161             : /*
    2162             :  * create_tablefuncscan_path
    2163             :  *    Creates a path corresponding to a sequential scan of a table function,
    2164             :  *    returning the pathnode.
    2165             :  */
    2166             : Path *
    2167         626 : create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
    2168             :                           Relids required_outer)
    2169             : {
    2170         626 :     Path       *pathnode = makeNode(Path);
    2171             : 
    2172         626 :     pathnode->pathtype = T_TableFuncScan;
    2173         626 :     pathnode->parent = rel;
    2174         626 :     pathnode->pathtarget = rel->reltarget;
    2175         626 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2176             :                                                      required_outer);
    2177         626 :     pathnode->parallel_aware = false;
    2178         626 :     pathnode->parallel_safe = rel->consider_parallel;
    2179         626 :     pathnode->parallel_workers = 0;
    2180         626 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2181             : 
    2182         626 :     cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
    2183             : 
    2184         626 :     return pathnode;
    2185             : }
    2186             : 
    2187             : /*
    2188             :  * create_valuesscan_path
    2189             :  *    Creates a path corresponding to a scan of a VALUES list,
    2190             :  *    returning the pathnode.
    2191             :  */
    2192             : Path *
    2193        8242 : create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
    2194             :                        Relids required_outer)
    2195             : {
    2196        8242 :     Path       *pathnode = makeNode(Path);
    2197             : 
    2198        8242 :     pathnode->pathtype = T_ValuesScan;
    2199        8242 :     pathnode->parent = rel;
    2200        8242 :     pathnode->pathtarget = rel->reltarget;
    2201        8242 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2202             :                                                      required_outer);
    2203        8242 :     pathnode->parallel_aware = false;
    2204        8242 :     pathnode->parallel_safe = rel->consider_parallel;
    2205        8242 :     pathnode->parallel_workers = 0;
    2206        8242 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2207             : 
    2208        8242 :     cost_valuesscan(pathnode, root, rel, pathnode->param_info);
    2209             : 
    2210        8242 :     return pathnode;
    2211             : }
    2212             : 
    2213             : /*
    2214             :  * create_ctescan_path
    2215             :  *    Creates a path corresponding to a scan of a non-self-reference CTE,
    2216             :  *    returning the pathnode.
    2217             :  */
    2218             : Path *
    2219        4090 : create_ctescan_path(PlannerInfo *root, RelOptInfo *rel,
    2220             :                     List *pathkeys, Relids required_outer)
    2221             : {
    2222        4090 :     Path       *pathnode = makeNode(Path);
    2223             : 
    2224        4090 :     pathnode->pathtype = T_CteScan;
    2225        4090 :     pathnode->parent = rel;
    2226        4090 :     pathnode->pathtarget = rel->reltarget;
    2227        4090 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2228             :                                                      required_outer);
    2229        4090 :     pathnode->parallel_aware = false;
    2230        4090 :     pathnode->parallel_safe = rel->consider_parallel;
    2231        4090 :     pathnode->parallel_workers = 0;
    2232        4090 :     pathnode->pathkeys = pathkeys;
    2233             : 
    2234        4090 :     cost_ctescan(pathnode, root, rel, pathnode->param_info);
    2235             : 
    2236        4090 :     return pathnode;
    2237             : }
    2238             : 
    2239             : /*
    2240             :  * create_namedtuplestorescan_path
    2241             :  *    Creates a path corresponding to a scan of a named tuplestore, returning
    2242             :  *    the pathnode.
    2243             :  */
    2244             : Path *
    2245         466 : create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
    2246             :                                 Relids required_outer)
    2247             : {
    2248         466 :     Path       *pathnode = makeNode(Path);
    2249             : 
    2250         466 :     pathnode->pathtype = T_NamedTuplestoreScan;
    2251         466 :     pathnode->parent = rel;
    2252         466 :     pathnode->pathtarget = rel->reltarget;
    2253         466 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2254             :                                                      required_outer);
    2255         466 :     pathnode->parallel_aware = false;
    2256         466 :     pathnode->parallel_safe = rel->consider_parallel;
    2257         466 :     pathnode->parallel_workers = 0;
    2258         466 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2259             : 
    2260         466 :     cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
    2261             : 
    2262         466 :     return pathnode;
    2263             : }
    2264             : 
    2265             : /*
    2266             :  * create_resultscan_path
    2267             :  *    Creates a path corresponding to a scan of an RTE_RESULT relation,
    2268             :  *    returning the pathnode.
    2269             :  */
    2270             : Path *
    2271        4286 : create_resultscan_path(PlannerInfo *root, RelOptInfo *rel,
    2272             :                        Relids required_outer)
    2273             : {
    2274        4286 :     Path       *pathnode = makeNode(Path);
    2275             : 
    2276        4286 :     pathnode->pathtype = T_Result;
    2277        4286 :     pathnode->parent = rel;
    2278        4286 :     pathnode->pathtarget = rel->reltarget;
    2279        4286 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2280             :                                                      required_outer);
    2281        4286 :     pathnode->parallel_aware = false;
    2282        4286 :     pathnode->parallel_safe = rel->consider_parallel;
    2283        4286 :     pathnode->parallel_workers = 0;
    2284        4286 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2285             : 
    2286        4286 :     cost_resultscan(pathnode, root, rel, pathnode->param_info);
    2287             : 
    2288        4286 :     return pathnode;
    2289             : }
    2290             : 
    2291             : /*
    2292             :  * create_worktablescan_path
    2293             :  *    Creates a path corresponding to a scan of a self-reference CTE,
    2294             :  *    returning the pathnode.
    2295             :  */
    2296             : Path *
    2297        1010 : create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
    2298             :                           Relids required_outer)
    2299             : {
    2300        1010 :     Path       *pathnode = makeNode(Path);
    2301             : 
    2302        1010 :     pathnode->pathtype = T_WorkTableScan;
    2303        1010 :     pathnode->parent = rel;
    2304        1010 :     pathnode->pathtarget = rel->reltarget;
    2305        1010 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2306             :                                                      required_outer);
    2307        1010 :     pathnode->parallel_aware = false;
    2308        1010 :     pathnode->parallel_safe = rel->consider_parallel;
    2309        1010 :     pathnode->parallel_workers = 0;
    2310        1010 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2311             : 
    2312             :     /* Cost is the same as for a regular CTE scan */
    2313        1010 :     cost_ctescan(pathnode, root, rel, pathnode->param_info);
    2314             : 
    2315        1010 :     return pathnode;
    2316             : }
    2317             : 
    2318             : /*
    2319             :  * create_foreignscan_path
    2320             :  *    Creates a path corresponding to a scan of a foreign base table,
    2321             :  *    returning the pathnode.
    2322             :  *
    2323             :  * This function is never called from core Postgres; rather, it's expected
    2324             :  * to be called by the GetForeignPaths function of a foreign data wrapper.
    2325             :  * We make the FDW supply all fields of the path, since we do not have any way
    2326             :  * to calculate them in core.  However, there is a usually-sane default for
    2327             :  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
    2328             :  */
    2329             : ForeignPath *
    2330        3648 : create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
    2331             :                         PathTarget *target,
    2332             :                         double rows, int disabled_nodes,
    2333             :                         Cost startup_cost, Cost total_cost,
    2334             :                         List *pathkeys,
    2335             :                         Relids required_outer,
    2336             :                         Path *fdw_outerpath,
    2337             :                         List *fdw_restrictinfo,
    2338             :                         List *fdw_private)
    2339             : {
    2340        3648 :     ForeignPath *pathnode = makeNode(ForeignPath);
    2341             : 
    2342             :     /* Historically some FDWs were confused about when to use this */
    2343             :     Assert(IS_SIMPLE_REL(rel));
    2344             : 
    2345        3648 :     pathnode->path.pathtype = T_ForeignScan;
    2346        3648 :     pathnode->path.parent = rel;
    2347        3648 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2348        3648 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    2349             :                                                           required_outer);
    2350        3648 :     pathnode->path.parallel_aware = false;
    2351        3648 :     pathnode->path.parallel_safe = rel->consider_parallel;
    2352        3648 :     pathnode->path.parallel_workers = 0;
    2353        3648 :     pathnode->path.rows = rows;
    2354        3648 :     pathnode->path.disabled_nodes = disabled_nodes;
    2355        3648 :     pathnode->path.startup_cost = startup_cost;
    2356        3648 :     pathnode->path.total_cost = total_cost;
    2357        3648 :     pathnode->path.pathkeys = pathkeys;
    2358             : 
    2359        3648 :     pathnode->fdw_outerpath = fdw_outerpath;
    2360        3648 :     pathnode->fdw_restrictinfo = fdw_restrictinfo;
    2361        3648 :     pathnode->fdw_private = fdw_private;
    2362             : 
    2363        3648 :     return pathnode;
    2364             : }
    2365             : 
    2366             : /*
    2367             :  * create_foreign_join_path
    2368             :  *    Creates a path corresponding to a scan of a foreign join,
    2369             :  *    returning the pathnode.
    2370             :  *
    2371             :  * This function is never called from core Postgres; rather, it's expected
    2372             :  * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
    2373             :  * We make the FDW supply all fields of the path, since we do not have any way
    2374             :  * to calculate them in core.  However, there is a usually-sane default for
    2375             :  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
    2376             :  */
    2377             : ForeignPath *
    2378        1200 : create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel,
    2379             :                          PathTarget *target,
    2380             :                          double rows, int disabled_nodes,
    2381             :                          Cost startup_cost, Cost total_cost,
    2382             :                          List *pathkeys,
    2383             :                          Relids required_outer,
    2384             :                          Path *fdw_outerpath,
    2385             :                          List *fdw_restrictinfo,
    2386             :                          List *fdw_private)
    2387             : {
    2388        1200 :     ForeignPath *pathnode = makeNode(ForeignPath);
    2389             : 
    2390             :     /*
    2391             :      * We should use get_joinrel_parampathinfo to handle parameterized paths,
    2392             :      * but the API of this function doesn't support it, and existing
    2393             :      * extensions aren't yet trying to build such paths anyway.  For the
    2394             :      * moment just throw an error if someone tries it; eventually we should
    2395             :      * revisit this.
    2396             :      */
    2397        1200 :     if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
    2398           0 :         elog(ERROR, "parameterized foreign joins are not supported yet");
    2399             : 
    2400        1200 :     pathnode->path.pathtype = T_ForeignScan;
    2401        1200 :     pathnode->path.parent = rel;
    2402        1200 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2403        1200 :     pathnode->path.param_info = NULL;    /* XXX see above */
    2404        1200 :     pathnode->path.parallel_aware = false;
    2405        1200 :     pathnode->path.parallel_safe = rel->consider_parallel;
    2406        1200 :     pathnode->path.parallel_workers = 0;
    2407        1200 :     pathnode->path.rows = rows;
    2408        1200 :     pathnode->path.disabled_nodes = disabled_nodes;
    2409        1200 :     pathnode->path.startup_cost = startup_cost;
    2410        1200 :     pathnode->path.total_cost = total_cost;
    2411        1200 :     pathnode->path.pathkeys = pathkeys;
    2412             : 
    2413        1200 :     pathnode->fdw_outerpath = fdw_outerpath;
    2414        1200 :     pathnode->fdw_restrictinfo = fdw_restrictinfo;
    2415        1200 :     pathnode->fdw_private = fdw_private;
    2416             : 
    2417        1200 :     return pathnode;
    2418             : }
    2419             : 
    2420             : /*
    2421             :  * create_foreign_upper_path
    2422             :  *    Creates a path corresponding to an upper relation that's computed
    2423             :  *    directly by an FDW, returning the pathnode.
    2424             :  *
    2425             :  * This function is never called from core Postgres; rather, it's expected to
    2426             :  * be called by the GetForeignUpperPaths function of a foreign data wrapper.
    2427             :  * We make the FDW supply all fields of the path, since we do not have any way
    2428             :  * to calculate them in core.  However, there is a usually-sane default for
    2429             :  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
    2430             :  */
    2431             : ForeignPath *
    2432         586 : create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel,
    2433             :                           PathTarget *target,
    2434             :                           double rows, int disabled_nodes,
    2435             :                           Cost startup_cost, Cost total_cost,
    2436             :                           List *pathkeys,
    2437             :                           Path *fdw_outerpath,
    2438             :                           List *fdw_restrictinfo,
    2439             :                           List *fdw_private)
    2440             : {
    2441         586 :     ForeignPath *pathnode = makeNode(ForeignPath);
    2442             : 
    2443             :     /*
    2444             :      * Upper relations should never have any lateral references, since joining
    2445             :      * is complete.
    2446             :      */
    2447             :     Assert(bms_is_empty(rel->lateral_relids));
    2448             : 
    2449         586 :     pathnode->path.pathtype = T_ForeignScan;
    2450         586 :     pathnode->path.parent = rel;
    2451         586 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2452         586 :     pathnode->path.param_info = NULL;
    2453         586 :     pathnode->path.parallel_aware = false;
    2454         586 :     pathnode->path.parallel_safe = rel->consider_parallel;
    2455         586 :     pathnode->path.parallel_workers = 0;
    2456         586 :     pathnode->path.rows = rows;
    2457         586 :     pathnode->path.disabled_nodes = disabled_nodes;
    2458         586 :     pathnode->path.startup_cost = startup_cost;
    2459         586 :     pathnode->path.total_cost = total_cost;
    2460         586 :     pathnode->path.pathkeys = pathkeys;
    2461             : 
    2462         586 :     pathnode->fdw_outerpath = fdw_outerpath;
    2463         586 :     pathnode->fdw_restrictinfo = fdw_restrictinfo;
    2464         586 :     pathnode->fdw_private = fdw_private;
    2465             : 
    2466         586 :     return pathnode;
    2467             : }
    2468             : 
    2469             : /*
    2470             :  * calc_nestloop_required_outer
    2471             :  *    Compute the required_outer set for a nestloop join path
    2472             :  *
    2473             :  * Note: when considering a child join, the inputs nonetheless use top-level
    2474             :  * parent relids
    2475             :  *
    2476             :  * Note: result must not share storage with either input
    2477             :  */
    2478             : Relids
    2479     3175696 : calc_nestloop_required_outer(Relids outerrelids,
    2480             :                              Relids outer_paramrels,
    2481             :                              Relids innerrelids,
    2482             :                              Relids inner_paramrels)
    2483             : {
    2484             :     Relids      required_outer;
    2485             : 
    2486             :     /* inner_path can require rels from outer path, but not vice versa */
    2487             :     Assert(!bms_overlap(outer_paramrels, innerrelids));
    2488             :     /* easy case if inner path is not parameterized */
    2489     3175696 :     if (!inner_paramrels)
    2490     2141036 :         return bms_copy(outer_paramrels);
    2491             :     /* else, form the union ... */
    2492     1034660 :     required_outer = bms_union(outer_paramrels, inner_paramrels);
    2493             :     /* ... and remove any mention of now-satisfied outer rels */
    2494     1034660 :     required_outer = bms_del_members(required_outer,
    2495             :                                      outerrelids);
    2496     1034660 :     return required_outer;
    2497             : }
    2498             : 
    2499             : /*
    2500             :  * calc_non_nestloop_required_outer
    2501             :  *    Compute the required_outer set for a merge or hash join path
    2502             :  *
    2503             :  * Note: result must not share storage with either input
    2504             :  */
    2505             : Relids
    2506     2099624 : calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
    2507             : {
    2508     2099624 :     Relids      outer_paramrels = PATH_REQ_OUTER(outer_path);
    2509     2099624 :     Relids      inner_paramrels = PATH_REQ_OUTER(inner_path);
    2510             :     Relids      innerrelids PG_USED_FOR_ASSERTS_ONLY;
    2511             :     Relids      outerrelids PG_USED_FOR_ASSERTS_ONLY;
    2512             :     Relids      required_outer;
    2513             : 
    2514             :     /*
    2515             :      * Any parameterization of the input paths refers to topmost parents of
    2516             :      * the relevant relations, because reparameterize_path_by_child() hasn't
    2517             :      * been called yet.  So we must consider topmost parents of the relations
    2518             :      * being joined, too, while checking for disallowed parameterization
    2519             :      * cases.
    2520             :      */
    2521     2099624 :     if (inner_path->parent->top_parent_relids)
    2522       37598 :         innerrelids = inner_path->parent->top_parent_relids;
    2523             :     else
    2524     2062026 :         innerrelids = inner_path->parent->relids;
    2525             : 
    2526     2099624 :     if (outer_path->parent->top_parent_relids)
    2527       37598 :         outerrelids = outer_path->parent->top_parent_relids;
    2528             :     else
    2529     2062026 :         outerrelids = outer_path->parent->relids;
    2530             : 
    2531             :     /* neither path can require rels from the other */
    2532             :     Assert(!bms_overlap(outer_paramrels, innerrelids));
    2533             :     Assert(!bms_overlap(inner_paramrels, outerrelids));
    2534             :     /* form the union ... */
    2535     2099624 :     required_outer = bms_union(outer_paramrels, inner_paramrels);
    2536             :     /* we do not need an explicit test for empty; bms_union gets it right */
    2537     2099624 :     return required_outer;
    2538             : }
    2539             : 
    2540             : /*
    2541             :  * create_nestloop_path
    2542             :  *    Creates a pathnode corresponding to a nestloop join between two
    2543             :  *    relations.
    2544             :  *
    2545             :  * 'joinrel' is the join relation.
    2546             :  * 'jointype' is the type of join required
    2547             :  * 'workspace' is the result from initial_cost_nestloop
    2548             :  * 'extra' contains various information about the join
    2549             :  * 'outer_path' is the outer path
    2550             :  * 'inner_path' is the inner path
    2551             :  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
    2552             :  * 'pathkeys' are the path keys of the new join path
    2553             :  * 'required_outer' is the set of required outer rels
    2554             :  *
    2555             :  * Returns the resulting path node.
    2556             :  */
    2557             : NestPath *
    2558     1411836 : create_nestloop_path(PlannerInfo *root,
    2559             :                      RelOptInfo *joinrel,
    2560             :                      JoinType jointype,
    2561             :                      JoinCostWorkspace *workspace,
    2562             :                      JoinPathExtraData *extra,
    2563             :                      Path *outer_path,
    2564             :                      Path *inner_path,
    2565             :                      List *restrict_clauses,
    2566             :                      List *pathkeys,
    2567             :                      Relids required_outer)
    2568             : {
    2569     1411836 :     NestPath   *pathnode = makeNode(NestPath);
    2570     1411836 :     Relids      inner_req_outer = PATH_REQ_OUTER(inner_path);
    2571             :     Relids      outerrelids;
    2572             : 
    2573             :     /*
    2574             :      * Paths are parameterized by top-level parents, so run parameterization
    2575             :      * tests on the parent relids.
    2576             :      */
    2577     1411836 :     if (outer_path->parent->top_parent_relids)
    2578       18820 :         outerrelids = outer_path->parent->top_parent_relids;
    2579             :     else
    2580     1393016 :         outerrelids = outer_path->parent->relids;
    2581             : 
    2582             :     /*
    2583             :      * If the inner path is parameterized by the outer, we must drop any
    2584             :      * restrict_clauses that are due to be moved into the inner path.  We have
    2585             :      * to do this now, rather than postpone the work till createplan time,
    2586             :      * because the restrict_clauses list can affect the size and cost
    2587             :      * estimates for this path.  We detect such clauses by checking for serial
    2588             :      * number match to clauses already enforced in the inner path.
    2589             :      */
    2590     1411836 :     if (bms_overlap(inner_req_outer, outerrelids))
    2591             :     {
    2592      402030 :         Bitmapset  *enforced_serials = get_param_path_clause_serials(inner_path);
    2593      402030 :         List       *jclauses = NIL;
    2594             :         ListCell   *lc;
    2595             : 
    2596      899458 :         foreach(lc, restrict_clauses)
    2597             :         {
    2598      497428 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    2599             : 
    2600      497428 :             if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
    2601       64312 :                 jclauses = lappend(jclauses, rinfo);
    2602             :         }
    2603      402030 :         restrict_clauses = jclauses;
    2604             :     }
    2605             : 
    2606     1411836 :     pathnode->jpath.path.pathtype = T_NestLoop;
    2607     1411836 :     pathnode->jpath.path.parent = joinrel;
    2608     1411836 :     pathnode->jpath.path.pathtarget = joinrel->reltarget;
    2609     1411836 :     pathnode->jpath.path.param_info =
    2610     1411836 :         get_joinrel_parampathinfo(root,
    2611             :                                   joinrel,
    2612             :                                   outer_path,
    2613             :                                   inner_path,
    2614             :                                   extra->sjinfo,
    2615             :                                   required_outer,
    2616             :                                   &restrict_clauses);
    2617     1411836 :     pathnode->jpath.path.parallel_aware = false;
    2618     4112232 :     pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
    2619     1411836 :         outer_path->parallel_safe && inner_path->parallel_safe;
    2620             :     /* This is a foolish way to estimate parallel_workers, but for now... */
    2621     1411836 :     pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
    2622     1411836 :     pathnode->jpath.path.pathkeys = pathkeys;
    2623     1411836 :     pathnode->jpath.jointype = jointype;
    2624     1411836 :     pathnode->jpath.inner_unique = extra->inner_unique;
    2625     1411836 :     pathnode->jpath.outerjoinpath = outer_path;
    2626     1411836 :     pathnode->jpath.innerjoinpath = inner_path;
    2627     1411836 :     pathnode->jpath.joinrestrictinfo = restrict_clauses;
    2628             : 
    2629     1411836 :     final_cost_nestloop(root, pathnode, workspace, extra);
    2630             : 
    2631     1411836 :     return pathnode;
    2632             : }
    2633             : 
    2634             : /*
    2635             :  * create_mergejoin_path
    2636             :  *    Creates a pathnode corresponding to a mergejoin join between
    2637             :  *    two relations
    2638             :  *
    2639             :  * 'joinrel' is the join relation
    2640             :  * 'jointype' is the type of join required
    2641             :  * 'workspace' is the result from initial_cost_mergejoin
    2642             :  * 'extra' contains various information about the join
    2643             :  * 'outer_path' is the outer path
    2644             :  * 'inner_path' is the inner path
    2645             :  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
    2646             :  * 'pathkeys' are the path keys of the new join path
    2647             :  * 'required_outer' is the set of required outer rels
    2648             :  * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
    2649             :  *      (this should be a subset of the restrict_clauses list)
    2650             :  * 'outersortkeys' are the sort varkeys for the outer relation
    2651             :  * 'innersortkeys' are the sort varkeys for the inner relation
    2652             :  * 'outer_presorted_keys' is the number of presorted keys of the outer path
    2653             :  */
    2654             : MergePath *
    2655      329560 : create_mergejoin_path(PlannerInfo *root,
    2656             :                       RelOptInfo *joinrel,
    2657             :                       JoinType jointype,
    2658             :                       JoinCostWorkspace *workspace,
    2659             :                       JoinPathExtraData *extra,
    2660             :                       Path *outer_path,
    2661             :                       Path *inner_path,
    2662             :                       List *restrict_clauses,
    2663             :                       List *pathkeys,
    2664             :                       Relids required_outer,
    2665             :                       List *mergeclauses,
    2666             :                       List *outersortkeys,
    2667             :                       List *innersortkeys,
    2668             :                       int outer_presorted_keys)
    2669             : {
    2670      329560 :     MergePath  *pathnode = makeNode(MergePath);
    2671             : 
    2672      329560 :     pathnode->jpath.path.pathtype = T_MergeJoin;
    2673      329560 :     pathnode->jpath.path.parent = joinrel;
    2674      329560 :     pathnode->jpath.path.pathtarget = joinrel->reltarget;
    2675      329560 :     pathnode->jpath.path.param_info =
    2676      329560 :         get_joinrel_parampathinfo(root,
    2677             :                                   joinrel,
    2678             :                                   outer_path,
    2679             :                                   inner_path,
    2680             :                                   extra->sjinfo,
    2681             :                                   required_outer,
    2682             :                                   &restrict_clauses);
    2683      329560 :     pathnode->jpath.path.parallel_aware = false;
    2684      952830 :     pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
    2685      329560 :         outer_path->parallel_safe && inner_path->parallel_safe;
    2686             :     /* This is a foolish way to estimate parallel_workers, but for now... */
    2687      329560 :     pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
    2688      329560 :     pathnode->jpath.path.pathkeys = pathkeys;
    2689      329560 :     pathnode->jpath.jointype = jointype;
    2690      329560 :     pathnode->jpath.inner_unique = extra->inner_unique;
    2691      329560 :     pathnode->jpath.outerjoinpath = outer_path;
    2692      329560 :     pathnode->jpath.innerjoinpath = inner_path;
    2693      329560 :     pathnode->jpath.joinrestrictinfo = restrict_clauses;
    2694      329560 :     pathnode->path_mergeclauses = mergeclauses;
    2695      329560 :     pathnode->outersortkeys = outersortkeys;
    2696      329560 :     pathnode->innersortkeys = innersortkeys;
    2697      329560 :     pathnode->outer_presorted_keys = outer_presorted_keys;
    2698             :     /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
    2699             :     /* pathnode->materialize_inner will be set by final_cost_mergejoin */
    2700             : 
    2701      329560 :     final_cost_mergejoin(root, pathnode, workspace, extra);
    2702             : 
    2703      329560 :     return pathnode;
    2704             : }
    2705             : 
    2706             : /*
    2707             :  * create_hashjoin_path
    2708             :  *    Creates a pathnode corresponding to a hash join between two relations.
    2709             :  *
    2710             :  * 'joinrel' is the join relation
    2711             :  * 'jointype' is the type of join required
    2712             :  * 'workspace' is the result from initial_cost_hashjoin
    2713             :  * 'extra' contains various information about the join
    2714             :  * 'outer_path' is the cheapest outer path
    2715             :  * 'inner_path' is the cheapest inner path
    2716             :  * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
    2717             :  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
    2718             :  * 'required_outer' is the set of required outer rels
    2719             :  * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
    2720             :  *      (this should be a subset of the restrict_clauses list)
    2721             :  */
    2722             : HashPath *
    2723      298676 : create_hashjoin_path(PlannerInfo *root,
    2724             :                      RelOptInfo *joinrel,
    2725             :                      JoinType jointype,
    2726             :                      JoinCostWorkspace *workspace,
    2727             :                      JoinPathExtraData *extra,
    2728             :                      Path *outer_path,
    2729             :                      Path *inner_path,
    2730             :                      bool parallel_hash,
    2731             :                      List *restrict_clauses,
    2732             :                      Relids required_outer,
    2733             :                      List *hashclauses)
    2734             : {
    2735      298676 :     HashPath   *pathnode = makeNode(HashPath);
    2736             : 
    2737      298676 :     pathnode->jpath.path.pathtype = T_HashJoin;
    2738      298676 :     pathnode->jpath.path.parent = joinrel;
    2739      298676 :     pathnode->jpath.path.pathtarget = joinrel->reltarget;
    2740      298676 :     pathnode->jpath.path.param_info =
    2741      298676 :         get_joinrel_parampathinfo(root,
    2742             :                                   joinrel,
    2743             :                                   outer_path,
    2744             :                                   inner_path,
    2745             :                                   extra->sjinfo,
    2746             :                                   required_outer,
    2747             :                                   &restrict_clauses);
    2748      298676 :     pathnode->jpath.path.parallel_aware =
    2749      298676 :         joinrel->consider_parallel && parallel_hash;
    2750      860920 :     pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
    2751      298676 :         outer_path->parallel_safe && inner_path->parallel_safe;
    2752             :     /* This is a foolish way to estimate parallel_workers, but for now... */
    2753      298676 :     pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
    2754             : 
    2755             :     /*
    2756             :      * A hashjoin never has pathkeys, since its output ordering is
    2757             :      * unpredictable due to possible batching.  XXX If the inner relation is
    2758             :      * small enough, we could instruct the executor that it must not batch,
    2759             :      * and then we could assume that the output inherits the outer relation's
    2760             :      * ordering, which might save a sort step.  However there is considerable
    2761             :      * downside if our estimate of the inner relation size is badly off. For
    2762             :      * the moment we don't risk it.  (Note also that if we wanted to take this
    2763             :      * seriously, joinpath.c would have to consider many more paths for the
    2764             :      * outer rel than it does now.)
    2765             :      */
    2766      298676 :     pathnode->jpath.path.pathkeys = NIL;
    2767      298676 :     pathnode->jpath.jointype = jointype;
    2768      298676 :     pathnode->jpath.inner_unique = extra->inner_unique;
    2769      298676 :     pathnode->jpath.outerjoinpath = outer_path;
    2770      298676 :     pathnode->jpath.innerjoinpath = inner_path;
    2771      298676 :     pathnode->jpath.joinrestrictinfo = restrict_clauses;
    2772      298676 :     pathnode->path_hashclauses = hashclauses;
    2773             :     /* final_cost_hashjoin will fill in pathnode->num_batches */
    2774             : 
    2775      298676 :     final_cost_hashjoin(root, pathnode, workspace, extra);
    2776             : 
    2777      298676 :     return pathnode;
    2778             : }
    2779             : 
    2780             : /*
    2781             :  * create_projection_path
    2782             :  *    Creates a pathnode that represents performing a projection.
    2783             :  *
    2784             :  * 'rel' is the parent relation associated with the result
    2785             :  * 'subpath' is the path representing the source of data
    2786             :  * 'target' is the PathTarget to be computed
    2787             :  */
    2788             : ProjectionPath *
    2789      380842 : create_projection_path(PlannerInfo *root,
    2790             :                        RelOptInfo *rel,
    2791             :                        Path *subpath,
    2792             :                        PathTarget *target)
    2793             : {
    2794      380842 :     ProjectionPath *pathnode = makeNode(ProjectionPath);
    2795             :     PathTarget *oldtarget;
    2796             : 
    2797             :     /*
    2798             :      * We mustn't put a ProjectionPath directly above another; it's useless
    2799             :      * and will confuse create_projection_plan.  Rather than making sure all
    2800             :      * callers handle that, let's implement it here, by stripping off any
    2801             :      * ProjectionPath in what we're given.  Given this rule, there won't be
    2802             :      * more than one.
    2803             :      */
    2804      380842 :     if (IsA(subpath, ProjectionPath))
    2805             :     {
    2806          12 :         ProjectionPath *subpp = (ProjectionPath *) subpath;
    2807             : 
    2808             :         Assert(subpp->path.parent == rel);
    2809          12 :         subpath = subpp->subpath;
    2810             :         Assert(!IsA(subpath, ProjectionPath));
    2811             :     }
    2812             : 
    2813      380842 :     pathnode->path.pathtype = T_Result;
    2814      380842 :     pathnode->path.parent = rel;
    2815      380842 :     pathnode->path.pathtarget = target;
    2816             :     /* For now, assume we are above any joins, so no parameterization */
    2817      380842 :     pathnode->path.param_info = NULL;
    2818      380842 :     pathnode->path.parallel_aware = false;
    2819      868312 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2820      487076 :         subpath->parallel_safe &&
    2821      106234 :         is_parallel_safe(root, (Node *) target->exprs);
    2822      380842 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2823             :     /* Projection does not change the sort order */
    2824      380842 :     pathnode->path.pathkeys = subpath->pathkeys;
    2825             : 
    2826      380842 :     pathnode->subpath = subpath;
    2827             : 
    2828             :     /*
    2829             :      * We might not need a separate Result node.  If the input plan node type
    2830             :      * can project, we can just tell it to project something else.  Or, if it
    2831             :      * can't project but the desired target has the same expression list as
    2832             :      * what the input will produce anyway, we can still give it the desired
    2833             :      * tlist (possibly changing its ressortgroupref labels, but nothing else).
    2834             :      * Note: in the latter case, create_projection_plan has to recheck our
    2835             :      * conclusion; see comments therein.
    2836             :      */
    2837      380842 :     oldtarget = subpath->pathtarget;
    2838      383148 :     if (is_projection_capable_path(subpath) ||
    2839        2306 :         equal(oldtarget->exprs, target->exprs))
    2840             :     {
    2841             :         /* No separate Result node needed */
    2842      378662 :         pathnode->dummypp = true;
    2843             : 
    2844             :         /*
    2845             :          * Set cost of plan as subpath's cost, adjusted for tlist replacement.
    2846             :          */
    2847      378662 :         pathnode->path.rows = subpath->rows;
    2848      378662 :         pathnode->path.disabled_nodes = subpath->disabled_nodes;
    2849      378662 :         pathnode->path.startup_cost = subpath->startup_cost +
    2850      378662 :             (target->cost.startup - oldtarget->cost.startup);
    2851      378662 :         pathnode->path.total_cost = subpath->total_cost +
    2852      378662 :             (target->cost.startup - oldtarget->cost.startup) +
    2853      378662 :             (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
    2854             :     }
    2855             :     else
    2856             :     {
    2857             :         /* We really do need the Result node */
    2858        2180 :         pathnode->dummypp = false;
    2859             : 
    2860             :         /*
    2861             :          * The Result node's cost is cpu_tuple_cost per row, plus the cost of
    2862             :          * evaluating the tlist.  There is no qual to worry about.
    2863             :          */
    2864        2180 :         pathnode->path.rows = subpath->rows;
    2865        2180 :         pathnode->path.disabled_nodes = subpath->disabled_nodes;
    2866        2180 :         pathnode->path.startup_cost = subpath->startup_cost +
    2867        2180 :             target->cost.startup;
    2868        2180 :         pathnode->path.total_cost = subpath->total_cost +
    2869        2180 :             target->cost.startup +
    2870        2180 :             (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
    2871             :     }
    2872             : 
    2873      380842 :     return pathnode;
    2874             : }
    2875             : 
    2876             : /*
    2877             :  * apply_projection_to_path
    2878             :  *    Add a projection step, or just apply the target directly to given path.
    2879             :  *
    2880             :  * This has the same net effect as create_projection_path(), except that if
    2881             :  * a separate Result plan node isn't needed, we just replace the given path's
    2882             :  * pathtarget with the desired one.  This must be used only when the caller
    2883             :  * knows that the given path isn't referenced elsewhere and so can be modified
    2884             :  * in-place.
    2885             :  *
    2886             :  * If the input path is a GatherPath or GatherMergePath, we try to push the
    2887             :  * new target down to its input as well; this is a yet more invasive
    2888             :  * modification of the input path, which create_projection_path() can't do.
    2889             :  *
    2890             :  * Note that we mustn't change the source path's parent link; so when it is
    2891             :  * add_path'd to "rel" things will be a bit inconsistent.  So far that has
    2892             :  * not caused any trouble.
    2893             :  *
    2894             :  * 'rel' is the parent relation associated with the result
    2895             :  * 'path' is the path representing the source of data
    2896             :  * 'target' is the PathTarget to be computed
    2897             :  */
    2898             : Path *
    2899       13948 : apply_projection_to_path(PlannerInfo *root,
    2900             :                          RelOptInfo *rel,
    2901             :                          Path *path,
    2902             :                          PathTarget *target)
    2903             : {
    2904             :     QualCost    oldcost;
    2905             : 
    2906             :     /*
    2907             :      * If given path can't project, we might need a Result node, so make a
    2908             :      * separate ProjectionPath.
    2909             :      */
    2910       13948 :     if (!is_projection_capable_path(path))
    2911        1466 :         return (Path *) create_projection_path(root, rel, path, target);
    2912             : 
    2913             :     /*
    2914             :      * We can just jam the desired tlist into the existing path, being sure to
    2915             :      * update its cost estimates appropriately.
    2916             :      */
    2917       12482 :     oldcost = path->pathtarget->cost;
    2918       12482 :     path->pathtarget = target;
    2919             : 
    2920       12482 :     path->startup_cost += target->cost.startup - oldcost.startup;
    2921       12482 :     path->total_cost += target->cost.startup - oldcost.startup +
    2922       12482 :         (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
    2923             : 
    2924             :     /*
    2925             :      * If the path happens to be a Gather or GatherMerge path, we'd like to
    2926             :      * arrange for the subpath to return the required target list so that
    2927             :      * workers can help project.  But if there is something that is not
    2928             :      * parallel-safe in the target expressions, then we can't.
    2929             :      */
    2930       12506 :     if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
    2931          24 :         is_parallel_safe(root, (Node *) target->exprs))
    2932             :     {
    2933             :         /*
    2934             :          * We always use create_projection_path here, even if the subpath is
    2935             :          * projection-capable, so as to avoid modifying the subpath in place.
    2936             :          * It seems unlikely at present that there could be any other
    2937             :          * references to the subpath, but better safe than sorry.
    2938             :          *
    2939             :          * Note that we don't change the parallel path's cost estimates; it
    2940             :          * might be appropriate to do so, to reflect the fact that the bulk of
    2941             :          * the target evaluation will happen in workers.
    2942             :          */
    2943          24 :         if (IsA(path, GatherPath))
    2944             :         {
    2945           0 :             GatherPath *gpath = (GatherPath *) path;
    2946             : 
    2947           0 :             gpath->subpath = (Path *)
    2948           0 :                 create_projection_path(root,
    2949           0 :                                        gpath->subpath->parent,
    2950             :                                        gpath->subpath,
    2951             :                                        target);
    2952             :         }
    2953             :         else
    2954             :         {
    2955          24 :             GatherMergePath *gmpath = (GatherMergePath *) path;
    2956             : 
    2957          24 :             gmpath->subpath = (Path *)
    2958          24 :                 create_projection_path(root,
    2959          24 :                                        gmpath->subpath->parent,
    2960             :                                        gmpath->subpath,
    2961             :                                        target);
    2962             :         }
    2963             :     }
    2964       12458 :     else if (path->parallel_safe &&
    2965        4980 :              !is_parallel_safe(root, (Node *) target->exprs))
    2966             :     {
    2967             :         /*
    2968             :          * We're inserting a parallel-restricted target list into a path
    2969             :          * currently marked parallel-safe, so we have to mark it as no longer
    2970             :          * safe.
    2971             :          */
    2972          12 :         path->parallel_safe = false;
    2973             :     }
    2974             : 
    2975       12482 :     return path;
    2976             : }
    2977             : 
    2978             : /*
    2979             :  * create_set_projection_path
    2980             :  *    Creates a pathnode that represents performing a projection that
    2981             :  *    includes set-returning functions.
    2982             :  *
    2983             :  * 'rel' is the parent relation associated with the result
    2984             :  * 'subpath' is the path representing the source of data
    2985             :  * 'target' is the PathTarget to be computed
    2986             :  */
    2987             : ProjectSetPath *
    2988       12138 : create_set_projection_path(PlannerInfo *root,
    2989             :                            RelOptInfo *rel,
    2990             :                            Path *subpath,
    2991             :                            PathTarget *target)
    2992             : {
    2993       12138 :     ProjectSetPath *pathnode = makeNode(ProjectSetPath);
    2994             :     double      tlist_rows;
    2995             :     ListCell   *lc;
    2996             : 
    2997       12138 :     pathnode->path.pathtype = T_ProjectSet;
    2998       12138 :     pathnode->path.parent = rel;
    2999       12138 :     pathnode->path.pathtarget = target;
    3000             :     /* For now, assume we are above any joins, so no parameterization */
    3001       12138 :     pathnode->path.param_info = NULL;
    3002       12138 :     pathnode->path.parallel_aware = false;
    3003       29088 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3004       16914 :         subpath->parallel_safe &&
    3005        4776 :         is_parallel_safe(root, (Node *) target->exprs);
    3006       12138 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3007             :     /* Projection does not change the sort order XXX? */
    3008       12138 :     pathnode->path.pathkeys = subpath->pathkeys;
    3009             : 
    3010       12138 :     pathnode->subpath = subpath;
    3011             : 
    3012             :     /*
    3013             :      * Estimate number of rows produced by SRFs for each row of input; if
    3014             :      * there's more than one in this node, use the maximum.
    3015             :      */
    3016       12138 :     tlist_rows = 1;
    3017       26356 :     foreach(lc, target->exprs)
    3018             :     {
    3019       14218 :         Node       *node = (Node *) lfirst(lc);
    3020             :         double      itemrows;
    3021             : 
    3022       14218 :         itemrows = expression_returns_set_rows(root, node);
    3023       14218 :         if (tlist_rows < itemrows)
    3024       11818 :             tlist_rows = itemrows;
    3025             :     }
    3026             : 
    3027             :     /*
    3028             :      * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
    3029             :      * per input row, and half of cpu_tuple_cost for each added output row.
    3030             :      * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
    3031             :      * this estimate later.
    3032             :      */
    3033       12138 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3034       12138 :     pathnode->path.rows = subpath->rows * tlist_rows;
    3035       12138 :     pathnode->path.startup_cost = subpath->startup_cost +
    3036       12138 :         target->cost.startup;
    3037       12138 :     pathnode->path.total_cost = subpath->total_cost +
    3038       12138 :         target->cost.startup +
    3039       12138 :         (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
    3040       12138 :         (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
    3041             : 
    3042       12138 :     return pathnode;
    3043             : }
    3044             : 
    3045             : /*
    3046             :  * create_incremental_sort_path
    3047             :  *    Creates a pathnode that represents performing an incremental sort.
    3048             :  *
    3049             :  * 'rel' is the parent relation associated with the result
    3050             :  * 'subpath' is the path representing the source of data
    3051             :  * 'pathkeys' represents the desired sort order
    3052             :  * 'presorted_keys' is the number of keys by which the input path is
    3053             :  *      already sorted
    3054             :  * 'limit_tuples' is the estimated bound on the number of output tuples,
    3055             :  *      or -1 if no LIMIT or couldn't estimate
    3056             :  */
    3057             : IncrementalSortPath *
    3058        9704 : create_incremental_sort_path(PlannerInfo *root,
    3059             :                              RelOptInfo *rel,
    3060             :                              Path *subpath,
    3061             :                              List *pathkeys,
    3062             :                              int presorted_keys,
    3063             :                              double limit_tuples)
    3064             : {
    3065        9704 :     IncrementalSortPath *sort = makeNode(IncrementalSortPath);
    3066        9704 :     SortPath   *pathnode = &sort->spath;
    3067             : 
    3068        9704 :     pathnode->path.pathtype = T_IncrementalSort;
    3069        9704 :     pathnode->path.parent = rel;
    3070             :     /* Sort doesn't project, so use source path's pathtarget */
    3071        9704 :     pathnode->path.pathtarget = subpath->pathtarget;
    3072             :     /* For now, assume we are above any joins, so no parameterization */
    3073        9704 :     pathnode->path.param_info = NULL;
    3074        9704 :     pathnode->path.parallel_aware = false;
    3075       14472 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3076        4768 :         subpath->parallel_safe;
    3077        9704 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3078        9704 :     pathnode->path.pathkeys = pathkeys;
    3079             : 
    3080        9704 :     pathnode->subpath = subpath;
    3081             : 
    3082        9704 :     cost_incremental_sort(&pathnode->path,
    3083             :                           root, pathkeys, presorted_keys,
    3084             :                           subpath->disabled_nodes,
    3085             :                           subpath->startup_cost,
    3086             :                           subpath->total_cost,
    3087             :                           subpath->rows,
    3088        9704 :                           subpath->pathtarget->width,
    3089             :                           0.0,  /* XXX comparison_cost shouldn't be 0? */
    3090             :                           work_mem, limit_tuples);
    3091             : 
    3092        9704 :     sort->nPresortedCols = presorted_keys;
    3093             : 
    3094        9704 :     return sort;
    3095             : }
    3096             : 
    3097             : /*
    3098             :  * create_sort_path
    3099             :  *    Creates a pathnode that represents performing an explicit sort.
    3100             :  *
    3101             :  * 'rel' is the parent relation associated with the result
    3102             :  * 'subpath' is the path representing the source of data
    3103             :  * 'pathkeys' represents the desired sort order
    3104             :  * 'limit_tuples' is the estimated bound on the number of output tuples,
    3105             :  *      or -1 if no LIMIT or couldn't estimate
    3106             :  */
    3107             : SortPath *
    3108      102062 : create_sort_path(PlannerInfo *root,
    3109             :                  RelOptInfo *rel,
    3110             :                  Path *subpath,
    3111             :                  List *pathkeys,
    3112             :                  double limit_tuples)
    3113             : {
    3114      102062 :     SortPath   *pathnode = makeNode(SortPath);
    3115             : 
    3116      102062 :     pathnode->path.pathtype = T_Sort;
    3117      102062 :     pathnode->path.parent = rel;
    3118             :     /* Sort doesn't project, so use source path's pathtarget */
    3119      102062 :     pathnode->path.pathtarget = subpath->pathtarget;
    3120             :     /* For now, assume we are above any joins, so no parameterization */
    3121      102062 :     pathnode->path.param_info = NULL;
    3122      102062 :     pathnode->path.parallel_aware = false;
    3123      174982 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3124       72920 :         subpath->parallel_safe;
    3125      102062 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3126      102062 :     pathnode->path.pathkeys = pathkeys;
    3127             : 
    3128      102062 :     pathnode->subpath = subpath;
    3129             : 
    3130      102062 :     cost_sort(&pathnode->path, root, pathkeys,
    3131             :               subpath->disabled_nodes,
    3132             :               subpath->total_cost,
    3133             :               subpath->rows,
    3134      102062 :               subpath->pathtarget->width,
    3135             :               0.0,              /* XXX comparison_cost shouldn't be 0? */
    3136             :               work_mem, limit_tuples);
    3137             : 
    3138      102062 :     return pathnode;
    3139             : }
    3140             : 
    3141             : /*
    3142             :  * create_group_path
    3143             :  *    Creates a pathnode that represents performing grouping of presorted input
    3144             :  *
    3145             :  * 'rel' is the parent relation associated with the result
    3146             :  * 'subpath' is the path representing the source of data
    3147             :  * 'target' is the PathTarget to be computed
    3148             :  * 'groupClause' is a list of SortGroupClause's representing the grouping
    3149             :  * 'qual' is the HAVING quals if any
    3150             :  * 'numGroups' is the estimated number of groups
    3151             :  */
    3152             : GroupPath *
    3153        1214 : create_group_path(PlannerInfo *root,
    3154             :                   RelOptInfo *rel,
    3155             :                   Path *subpath,
    3156             :                   List *groupClause,
    3157             :                   List *qual,
    3158             :                   double numGroups)
    3159             : {
    3160        1214 :     GroupPath  *pathnode = makeNode(GroupPath);
    3161        1214 :     PathTarget *target = rel->reltarget;
    3162             : 
    3163        1214 :     pathnode->path.pathtype = T_Group;
    3164        1214 :     pathnode->path.parent = rel;
    3165        1214 :     pathnode->path.pathtarget = target;
    3166             :     /* For now, assume we are above any joins, so no parameterization */
    3167        1214 :     pathnode->path.param_info = NULL;
    3168        1214 :     pathnode->path.parallel_aware = false;
    3169        1958 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3170         744 :         subpath->parallel_safe;
    3171        1214 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3172             :     /* Group doesn't change sort ordering */
    3173        1214 :     pathnode->path.pathkeys = subpath->pathkeys;
    3174             : 
    3175        1214 :     pathnode->subpath = subpath;
    3176             : 
    3177        1214 :     pathnode->groupClause = groupClause;
    3178        1214 :     pathnode->qual = qual;
    3179             : 
    3180        1214 :     cost_group(&pathnode->path, root,
    3181             :                list_length(groupClause),
    3182             :                numGroups,
    3183             :                qual,
    3184             :                subpath->disabled_nodes,
    3185             :                subpath->startup_cost, subpath->total_cost,
    3186             :                subpath->rows);
    3187             : 
    3188             :     /* add tlist eval cost for each output row */
    3189        1214 :     pathnode->path.startup_cost += target->cost.startup;
    3190        1214 :     pathnode->path.total_cost += target->cost.startup +
    3191        1214 :         target->cost.per_tuple * pathnode->path.rows;
    3192             : 
    3193        1214 :     return pathnode;
    3194             : }
    3195             : 
    3196             : /*
    3197             :  * create_upper_unique_path
    3198             :  *    Creates a pathnode that represents performing an explicit Unique step
    3199             :  *    on presorted input.
    3200             :  *
    3201             :  * This produces a Unique plan node, but the use-case is so different from
    3202             :  * create_unique_path that it doesn't seem worth trying to merge the two.
    3203             :  *
    3204             :  * 'rel' is the parent relation associated with the result
    3205             :  * 'subpath' is the path representing the source of data
    3206             :  * 'numCols' is the number of grouping columns
    3207             :  * 'numGroups' is the estimated number of groups
    3208             :  *
    3209             :  * The input path must be sorted on the grouping columns, plus possibly
    3210             :  * additional columns; so the first numCols pathkeys are the grouping columns
    3211             :  */
    3212             : UpperUniquePath *
    3213        8292 : create_upper_unique_path(PlannerInfo *root,
    3214             :                          RelOptInfo *rel,
    3215             :                          Path *subpath,
    3216             :                          int numCols,
    3217             :                          double numGroups)
    3218             : {
    3219        8292 :     UpperUniquePath *pathnode = makeNode(UpperUniquePath);
    3220             : 
    3221        8292 :     pathnode->path.pathtype = T_Unique;
    3222        8292 :     pathnode->path.parent = rel;
    3223             :     /* Unique doesn't project, so use source path's pathtarget */
    3224        8292 :     pathnode->path.pathtarget = subpath->pathtarget;
    3225             :     /* For now, assume we are above any joins, so no parameterization */
    3226        8292 :     pathnode->path.param_info = NULL;
    3227        8292 :     pathnode->path.parallel_aware = false;
    3228       13104 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3229        4812 :         subpath->parallel_safe;
    3230        8292 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3231             :     /* Unique doesn't change the input ordering */
    3232        8292 :     pathnode->path.pathkeys = subpath->pathkeys;
    3233             : 
    3234        8292 :     pathnode->subpath = subpath;
    3235        8292 :     pathnode->numkeys = numCols;
    3236             : 
    3237             :     /*
    3238             :      * Charge one cpu_operator_cost per comparison per input tuple. We assume
    3239             :      * all columns get compared at most of the tuples.  (XXX probably this is
    3240             :      * an overestimate.)
    3241             :      */
    3242        8292 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3243        8292 :     pathnode->path.startup_cost = subpath->startup_cost;
    3244        8292 :     pathnode->path.total_cost = subpath->total_cost +
    3245        8292 :         cpu_operator_cost * subpath->rows * numCols;
    3246        8292 :     pathnode->path.rows = numGroups;
    3247             : 
    3248        8292 :     return pathnode;
    3249             : }
    3250             : 
    3251             : /*
    3252             :  * create_agg_path
    3253             :  *    Creates a pathnode that represents performing aggregation/grouping
    3254             :  *
    3255             :  * 'rel' is the parent relation associated with the result
    3256             :  * 'subpath' is the path representing the source of data
    3257             :  * 'target' is the PathTarget to be computed
    3258             :  * 'aggstrategy' is the Agg node's basic implementation strategy
    3259             :  * 'aggsplit' is the Agg node's aggregate-splitting mode
    3260             :  * 'groupClause' is a list of SortGroupClause's representing the grouping
    3261             :  * 'qual' is the HAVING quals if any
    3262             :  * 'aggcosts' contains cost info about the aggregate functions to be computed
    3263             :  * 'numGroups' is the estimated number of groups (1 if not grouping)
    3264             :  */
    3265             : AggPath *
    3266       57818 : create_agg_path(PlannerInfo *root,
    3267             :                 RelOptInfo *rel,
    3268             :                 Path *subpath,
    3269             :                 PathTarget *target,
    3270             :                 AggStrategy aggstrategy,
    3271             :                 AggSplit aggsplit,
    3272             :                 List *groupClause,
    3273             :                 List *qual,
    3274             :                 const AggClauseCosts *aggcosts,
    3275             :                 double numGroups)
    3276             : {
    3277       57818 :     AggPath    *pathnode = makeNode(AggPath);
    3278             : 
    3279       57818 :     pathnode->path.pathtype = T_Agg;
    3280       57818 :     pathnode->path.parent = rel;
    3281       57818 :     pathnode->path.pathtarget = target;
    3282             :     /* For now, assume we are above any joins, so no parameterization */
    3283       57818 :     pathnode->path.param_info = NULL;
    3284       57818 :     pathnode->path.parallel_aware = false;
    3285       96738 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3286       38920 :         subpath->parallel_safe;
    3287       57818 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3288             : 
    3289       57818 :     if (aggstrategy == AGG_SORTED)
    3290             :     {
    3291             :         /*
    3292             :          * Attempt to preserve the order of the subpath.  Additional pathkeys
    3293             :          * may have been added in adjust_group_pathkeys_for_groupagg() to
    3294             :          * support ORDER BY / DISTINCT aggregates.  Pathkeys added there
    3295             :          * belong to columns within the aggregate function, so we must strip
    3296             :          * these additional pathkeys off as those columns are unavailable
    3297             :          * above the aggregate node.
    3298             :          */
    3299        7826 :         if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
    3300         328 :             pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
    3301             :                                                      root->num_groupby_pathkeys);
    3302             :         else
    3303        7498 :             pathnode->path.pathkeys = subpath->pathkeys;  /* preserves order */
    3304             :     }
    3305             :     else
    3306       49992 :         pathnode->path.pathkeys = NIL;   /* output is unordered */
    3307             : 
    3308       57818 :     pathnode->subpath = subpath;
    3309             : 
    3310       57818 :     pathnode->aggstrategy = aggstrategy;
    3311       57818 :     pathnode->aggsplit = aggsplit;
    3312       57818 :     pathnode->numGroups = numGroups;
    3313       57818 :     pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
    3314       57818 :     pathnode->groupClause = groupClause;
    3315       57818 :     pathnode->qual = qual;
    3316             : 
    3317       57818 :     cost_agg(&pathnode->path, root,
    3318             :              aggstrategy, aggcosts,
    3319             :              list_length(groupClause), numGroups,
    3320             :              qual,
    3321             :              subpath->disabled_nodes,
    3322             :              subpath->startup_cost, subpath->total_cost,
    3323       57818 :              subpath->rows, subpath->pathtarget->width);
    3324             : 
    3325             :     /* add tlist eval cost for each output row */
    3326       57818 :     pathnode->path.startup_cost += target->cost.startup;
    3327       57818 :     pathnode->path.total_cost += target->cost.startup +
    3328       57818 :         target->cost.per_tuple * pathnode->path.rows;
    3329             : 
    3330       57818 :     return pathnode;
    3331             : }
    3332             : 
    3333             : /*
    3334             :  * create_groupingsets_path
    3335             :  *    Creates a pathnode that represents performing GROUPING SETS aggregation
    3336             :  *
    3337             :  * GroupingSetsPath represents sorted grouping with one or more grouping sets.
    3338             :  * The input path's result must be sorted to match the last entry in
    3339             :  * rollup_groupclauses.
    3340             :  *
    3341             :  * 'rel' is the parent relation associated with the result
    3342             :  * 'subpath' is the path representing the source of data
    3343             :  * 'target' is the PathTarget to be computed
    3344             :  * 'having_qual' is the HAVING quals if any
    3345             :  * 'rollups' is a list of RollupData nodes
    3346             :  * 'agg_costs' contains cost info about the aggregate functions to be computed
    3347             :  */
    3348             : GroupingSetsPath *
    3349        2128 : create_groupingsets_path(PlannerInfo *root,
    3350             :                          RelOptInfo *rel,
    3351             :                          Path *subpath,
    3352             :                          List *having_qual,
    3353             :                          AggStrategy aggstrategy,
    3354             :                          List *rollups,
    3355             :                          const AggClauseCosts *agg_costs)
    3356             : {
    3357        2128 :     GroupingSetsPath *pathnode = makeNode(GroupingSetsPath);
    3358        2128 :     PathTarget *target = rel->reltarget;
    3359             :     ListCell   *lc;
    3360        2128 :     bool        is_first = true;
    3361        2128 :     bool        is_first_sort = true;
    3362             : 
    3363             :     /* The topmost generated Plan node will be an Agg */
    3364        2128 :     pathnode->path.pathtype = T_Agg;
    3365        2128 :     pathnode->path.parent = rel;
    3366        2128 :     pathnode->path.pathtarget = target;
    3367        2128 :     pathnode->path.param_info = subpath->param_info;
    3368        2128 :     pathnode->path.parallel_aware = false;
    3369        3118 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3370         990 :         subpath->parallel_safe;
    3371        2128 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3372        2128 :     pathnode->subpath = subpath;
    3373             : 
    3374             :     /*
    3375             :      * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
    3376             :      * to AGG_HASHED, here if possible.
    3377             :      */
    3378        3036 :     if (aggstrategy == AGG_SORTED &&
    3379         908 :         list_length(rollups) == 1 &&
    3380         458 :         ((RollupData *) linitial(rollups))->groupClause == NIL)
    3381          42 :         aggstrategy = AGG_PLAIN;
    3382             : 
    3383        3044 :     if (aggstrategy == AGG_MIXED &&
    3384         916 :         list_length(rollups) == 1)
    3385           0 :         aggstrategy = AGG_HASHED;
    3386             : 
    3387             :     /*
    3388             :      * Output will be in sorted order by group_pathkeys if, and only if, there
    3389             :      * is a single rollup operation on a non-empty list of grouping
    3390             :      * expressions.
    3391             :      */
    3392        2128 :     if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
    3393         416 :         pathnode->path.pathkeys = root->group_pathkeys;
    3394             :     else
    3395        1712 :         pathnode->path.pathkeys = NIL;
    3396             : 
    3397        2128 :     pathnode->aggstrategy = aggstrategy;
    3398        2128 :     pathnode->rollups = rollups;
    3399        2128 :     pathnode->qual = having_qual;
    3400        2128 :     pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
    3401             : 
    3402             :     Assert(rollups != NIL);
    3403             :     Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
    3404             :     Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
    3405             : 
    3406        7416 :     foreach(lc, rollups)
    3407             :     {
    3408        5288 :         RollupData *rollup = lfirst(lc);
    3409        5288 :         List       *gsets = rollup->gsets;
    3410        5288 :         int         numGroupCols = list_length(linitial(gsets));
    3411             : 
    3412             :         /*
    3413             :          * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
    3414             :          * (already-sorted) input, and following ones do their own sort.
    3415             :          *
    3416             :          * In AGG_HASHED mode, there is one rollup for each grouping set.
    3417             :          *
    3418             :          * In AGG_MIXED mode, the first rollups are hashed, the first
    3419             :          * non-hashed one takes the (already-sorted) input, and following ones
    3420             :          * do their own sort.
    3421             :          */
    3422        5288 :         if (is_first)
    3423             :         {
    3424        2128 :             cost_agg(&pathnode->path, root,
    3425             :                      aggstrategy,
    3426             :                      agg_costs,
    3427             :                      numGroupCols,
    3428             :                      rollup->numGroups,
    3429             :                      having_qual,
    3430             :                      subpath->disabled_nodes,
    3431             :                      subpath->startup_cost,
    3432             :                      subpath->total_cost,
    3433             :                      subpath->rows,
    3434        2128 :                      subpath->pathtarget->width);
    3435        2128 :             is_first = false;
    3436        2128 :             if (!rollup->is_hashed)
    3437         908 :                 is_first_sort = false;
    3438             :         }
    3439             :         else
    3440             :         {
    3441             :             Path        sort_path;  /* dummy for result of cost_sort */
    3442             :             Path        agg_path;   /* dummy for result of cost_agg */
    3443             : 
    3444        3160 :             if (rollup->is_hashed || is_first_sort)
    3445             :             {
    3446             :                 /*
    3447             :                  * Account for cost of aggregation, but don't charge input
    3448             :                  * cost again
    3449             :                  */
    3450        2422 :                 cost_agg(&agg_path, root,
    3451        2422 :                          rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
    3452             :                          agg_costs,
    3453             :                          numGroupCols,
    3454             :                          rollup->numGroups,
    3455             :                          having_qual,
    3456             :                          0, 0.0, 0.0,
    3457             :                          subpath->rows,
    3458        2422 :                          subpath->pathtarget->width);
    3459        2422 :                 if (!rollup->is_hashed)
    3460         916 :                     is_first_sort = false;
    3461             :             }
    3462             :             else
    3463             :             {
    3464             :                 /* Account for cost of sort, but don't charge input cost again */
    3465         738 :                 cost_sort(&sort_path, root, NIL, 0,
    3466             :                           0.0,
    3467             :                           subpath->rows,
    3468         738 :                           subpath->pathtarget->width,
    3469             :                           0.0,
    3470             :                           work_mem,
    3471             :                           -1.0);
    3472             : 
    3473             :                 /* Account for cost of aggregation */
    3474             : 
    3475         738 :                 cost_agg(&agg_path, root,
    3476             :                          AGG_SORTED,
    3477             :                          agg_costs,
    3478             :                          numGroupCols,
    3479             :                          rollup->numGroups,
    3480             :                          having_qual,
    3481             :                          sort_path.disabled_nodes,
    3482             :                          sort_path.startup_cost,
    3483             :                          sort_path.total_cost,
    3484             :                          sort_path.rows,
    3485         738 :                          subpath->pathtarget->width);
    3486             :             }
    3487             : 
    3488        3160 :             pathnode->path.disabled_nodes += agg_path.disabled_nodes;
    3489        3160 :             pathnode->path.total_cost += agg_path.total_cost;
    3490        3160 :             pathnode->path.rows += agg_path.rows;
    3491             :         }
    3492             :     }
    3493             : 
    3494             :     /* add tlist eval cost for each output row */
    3495        2128 :     pathnode->path.startup_cost += target->cost.startup;
    3496        2128 :     pathnode->path.total_cost += target->cost.startup +
    3497        2128 :         target->cost.per_tuple * pathnode->path.rows;
    3498             : 
    3499        2128 :     return pathnode;
    3500             : }
    3501             : 
    3502             : /*
    3503             :  * create_minmaxagg_path
    3504             :  *    Creates a pathnode that represents computation of MIN/MAX aggregates
    3505             :  *
    3506             :  * 'rel' is the parent relation associated with the result
    3507             :  * 'target' is the PathTarget to be computed
    3508             :  * 'mmaggregates' is a list of MinMaxAggInfo structs
    3509             :  * 'quals' is the HAVING quals if any
    3510             :  */
    3511             : MinMaxAggPath *
    3512         410 : create_minmaxagg_path(PlannerInfo *root,
    3513             :                       RelOptInfo *rel,
    3514             :                       PathTarget *target,
    3515             :                       List *mmaggregates,
    3516             :                       List *quals)
    3517             : {
    3518         410 :     MinMaxAggPath *pathnode = makeNode(MinMaxAggPath);
    3519             :     Cost        initplan_cost;
    3520         410 :     int         initplan_disabled_nodes = 0;
    3521             :     ListCell   *lc;
    3522             : 
    3523             :     /* The topmost generated Plan node will be a Result */
    3524         410 :     pathnode->path.pathtype = T_Result;
    3525         410 :     pathnode->path.parent = rel;
    3526         410 :     pathnode->path.pathtarget = target;
    3527             :     /* For now, assume we are above any joins, so no parameterization */
    3528         410 :     pathnode->path.param_info = NULL;
    3529         410 :     pathnode->path.parallel_aware = false;
    3530         410 :     pathnode->path.parallel_safe = true; /* might change below */
    3531         410 :     pathnode->path.parallel_workers = 0;
    3532             :     /* Result is one unordered row */
    3533         410 :     pathnode->path.rows = 1;
    3534         410 :     pathnode->path.pathkeys = NIL;
    3535             : 
    3536         410 :     pathnode->mmaggregates = mmaggregates;
    3537         410 :     pathnode->quals = quals;
    3538             : 
    3539             :     /* Calculate cost of all the initplans, and check parallel safety */
    3540         410 :     initplan_cost = 0;
    3541         856 :     foreach(lc, mmaggregates)
    3542             :     {
    3543         446 :         MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
    3544             : 
    3545         446 :         initplan_disabled_nodes += mminfo->path->disabled_nodes;
    3546         446 :         initplan_cost += mminfo->pathcost;
    3547         446 :         if (!mminfo->path->parallel_safe)
    3548         110 :             pathnode->path.parallel_safe = false;
    3549             :     }
    3550             : 
    3551             :     /* add tlist eval cost for each output row, plus cpu_tuple_cost */
    3552         410 :     pathnode->path.disabled_nodes = initplan_disabled_nodes;
    3553         410 :     pathnode->path.startup_cost = initplan_cost + target->cost.startup;
    3554         410 :     pathnode->path.total_cost = initplan_cost + target->cost.startup +
    3555         410 :         target->cost.per_tuple + cpu_tuple_cost;
    3556             : 
    3557             :     /*
    3558             :      * Add cost of qual, if any --- but we ignore its selectivity, since our
    3559             :      * rowcount estimate should be 1 no matter what the qual is.
    3560             :      */
    3561         410 :     if (quals)
    3562             :     {
    3563             :         QualCost    qual_cost;
    3564             : 
    3565           0 :         cost_qual_eval(&qual_cost, quals, root);
    3566           0 :         pathnode->path.startup_cost += qual_cost.startup;
    3567           0 :         pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
    3568             :     }
    3569             : 
    3570             :     /*
    3571             :      * If the initplans were all parallel-safe, also check safety of the
    3572             :      * target and quals.  (The Result node itself isn't parallelizable, but if
    3573             :      * we are in a subquery then it can be useful for the outer query to know
    3574             :      * that this one is parallel-safe.)
    3575             :      */
    3576         410 :     if (pathnode->path.parallel_safe)
    3577         300 :         pathnode->path.parallel_safe =
    3578         600 :             is_parallel_safe(root, (Node *) target->exprs) &&
    3579         300 :             is_parallel_safe(root, (Node *) quals);
    3580             : 
    3581         410 :     return pathnode;
    3582             : }
    3583             : 
    3584             : /*
    3585             :  * create_windowagg_path
    3586             :  *    Creates a pathnode that represents computation of window functions
    3587             :  *
    3588             :  * 'rel' is the parent relation associated with the result
    3589             :  * 'subpath' is the path representing the source of data
    3590             :  * 'target' is the PathTarget to be computed
    3591             :  * 'windowFuncs' is a list of WindowFunc structs
    3592             :  * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
    3593             :  * 'winclause' is a WindowClause that is common to all the WindowFuncs
    3594             :  * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
    3595             :  *      Must always be NIL when topwindow == false
    3596             :  * 'topwindow' pass as true only for the top-level WindowAgg. False for all
    3597             :  *      intermediate WindowAggs.
    3598             :  *
    3599             :  * The input must be sorted according to the WindowClause's PARTITION keys
    3600             :  * plus ORDER BY keys.
    3601             :  */
    3602             : WindowAggPath *
    3603        2754 : create_windowagg_path(PlannerInfo *root,
    3604             :                       RelOptInfo *rel,
    3605             :                       Path *subpath,
    3606             :                       PathTarget *target,
    3607             :                       List *windowFuncs,
    3608             :                       List *runCondition,
    3609             :                       WindowClause *winclause,
    3610             :                       List *qual,
    3611             :                       bool topwindow)
    3612             : {
    3613        2754 :     WindowAggPath *pathnode = makeNode(WindowAggPath);
    3614             : 
    3615             :     /* qual can only be set for the topwindow */
    3616             :     Assert(qual == NIL || topwindow);
    3617             : 
    3618        2754 :     pathnode->path.pathtype = T_WindowAgg;
    3619        2754 :     pathnode->path.parent = rel;
    3620        2754 :     pathnode->path.pathtarget = target;
    3621             :     /* For now, assume we are above any joins, so no parameterization */
    3622        2754 :     pathnode->path.param_info = NULL;
    3623        2754 :     pathnode->path.parallel_aware = false;
    3624        2754 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3625           0 :         subpath->parallel_safe;
    3626        2754 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3627             :     /* WindowAgg preserves the input sort order */
    3628        2754 :     pathnode->path.pathkeys = subpath->pathkeys;
    3629             : 
    3630        2754 :     pathnode->subpath = subpath;
    3631        2754 :     pathnode->winclause = winclause;
    3632        2754 :     pathnode->qual = qual;
    3633        2754 :     pathnode->runCondition = runCondition;
    3634        2754 :     pathnode->topwindow = topwindow;
    3635             : 
    3636             :     /*
    3637             :      * For costing purposes, assume that there are no redundant partitioning
    3638             :      * or ordering columns; it's not worth the trouble to deal with that
    3639             :      * corner case here.  So we just pass the unmodified list lengths to
    3640             :      * cost_windowagg.
    3641             :      */
    3642        2754 :     cost_windowagg(&pathnode->path, root,
    3643             :                    windowFuncs,
    3644             :                    winclause,
    3645             :                    subpath->disabled_nodes,
    3646             :                    subpath->startup_cost,
    3647             :                    subpath->total_cost,
    3648             :                    subpath->rows);
    3649             : 
    3650             :     /* add tlist eval cost for each output row */
    3651        2754 :     pathnode->path.startup_cost += target->cost.startup;
    3652        2754 :     pathnode->path.total_cost += target->cost.startup +
    3653        2754 :         target->cost.per_tuple * pathnode->path.rows;
    3654             : 
    3655        2754 :     return pathnode;
    3656             : }
    3657             : 
    3658             : /*
    3659             :  * create_setop_path
    3660             :  *    Creates a pathnode that represents computation of INTERSECT or EXCEPT
    3661             :  *
    3662             :  * 'rel' is the parent relation associated with the result
    3663             :  * 'leftpath' is the path representing the left-hand source of data
    3664             :  * 'rightpath' is the path representing the right-hand source of data
    3665             :  * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
    3666             :  * 'strategy' is the implementation strategy (sorted or hashed)
    3667             :  * 'groupList' is a list of SortGroupClause's representing the grouping
    3668             :  * 'numGroups' is the estimated number of distinct groups in left-hand input
    3669             :  * 'outputRows' is the estimated number of output rows
    3670             :  *
    3671             :  * leftpath and rightpath must produce the same columns.  Moreover, if
    3672             :  * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
    3673             :  * by all the grouping columns.
    3674             :  */
    3675             : SetOpPath *
    3676        1264 : create_setop_path(PlannerInfo *root,
    3677             :                   RelOptInfo *rel,
    3678             :                   Path *leftpath,
    3679             :                   Path *rightpath,
    3680             :                   SetOpCmd cmd,
    3681             :                   SetOpStrategy strategy,
    3682             :                   List *groupList,
    3683             :                   double numGroups,
    3684             :                   double outputRows)
    3685             : {
    3686        1264 :     SetOpPath  *pathnode = makeNode(SetOpPath);
    3687             : 
    3688        1264 :     pathnode->path.pathtype = T_SetOp;
    3689        1264 :     pathnode->path.parent = rel;
    3690        1264 :     pathnode->path.pathtarget = rel->reltarget;
    3691             :     /* For now, assume we are above any joins, so no parameterization */
    3692        1264 :     pathnode->path.param_info = NULL;
    3693        1264 :     pathnode->path.parallel_aware = false;
    3694        2528 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3695        1264 :         leftpath->parallel_safe && rightpath->parallel_safe;
    3696        1264 :     pathnode->path.parallel_workers =
    3697        1264 :         leftpath->parallel_workers + rightpath->parallel_workers;
    3698             :     /* SetOp preserves the input sort order if in sort mode */
    3699        1264 :     pathnode->path.pathkeys =
    3700        1264 :         (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
    3701             : 
    3702        1264 :     pathnode->leftpath = leftpath;
    3703        1264 :     pathnode->rightpath = rightpath;
    3704        1264 :     pathnode->cmd = cmd;
    3705        1264 :     pathnode->strategy = strategy;
    3706        1264 :     pathnode->groupList = groupList;
    3707        1264 :     pathnode->numGroups = numGroups;
    3708             : 
    3709             :     /*
    3710             :      * Compute cost estimates.  As things stand, we end up with the same total
    3711             :      * cost in this node for sort and hash methods, but different startup
    3712             :      * costs.  This could be refined perhaps, but it'll do for now.
    3713             :      */
    3714        1264 :     pathnode->path.disabled_nodes =
    3715        1264 :         leftpath->disabled_nodes + rightpath->disabled_nodes;
    3716        1264 :     if (strategy == SETOP_SORTED)
    3717             :     {
    3718             :         /*
    3719             :          * In sorted mode, we can emit output incrementally.  Charge one
    3720             :          * cpu_operator_cost per comparison per input tuple.  Like cost_group,
    3721             :          * we assume all columns get compared at most of the tuples.
    3722             :          */
    3723         662 :         pathnode->path.startup_cost =
    3724         662 :             leftpath->startup_cost + rightpath->startup_cost;
    3725         662 :         pathnode->path.total_cost =
    3726        1324 :             leftpath->total_cost + rightpath->total_cost +
    3727         662 :             cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
    3728             : 
    3729             :         /*
    3730             :          * Also charge a small amount per extracted tuple.  Like cost_sort,
    3731             :          * charge only operator cost not cpu_tuple_cost, since SetOp does no
    3732             :          * qual-checking or projection.
    3733             :          */
    3734         662 :         pathnode->path.total_cost += cpu_operator_cost * outputRows;
    3735             :     }
    3736             :     else
    3737             :     {
    3738             :         Size        hashentrysize;
    3739             : 
    3740             :         /*
    3741             :          * In hashed mode, we must read all the input before we can emit
    3742             :          * anything.  Also charge comparison costs to represent the cost of
    3743             :          * hash table lookups.
    3744             :          */
    3745         602 :         pathnode->path.startup_cost =
    3746        1204 :             leftpath->total_cost + rightpath->total_cost +
    3747         602 :             cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
    3748         602 :         pathnode->path.total_cost = pathnode->path.startup_cost;
    3749             : 
    3750             :         /*
    3751             :          * Also charge a small amount per extracted tuple.  Like cost_sort,
    3752             :          * charge only operator cost not cpu_tuple_cost, since SetOp does no
    3753             :          * qual-checking or projection.
    3754             :          */
    3755         602 :         pathnode->path.total_cost += cpu_operator_cost * outputRows;
    3756             : 
    3757             :         /*
    3758             :          * Mark the path as disabled if enable_hashagg is off.  While this
    3759             :          * isn't exactly a HashAgg node, it seems close enough to justify
    3760             :          * letting that switch control it.
    3761             :          */
    3762         602 :         if (!enable_hashagg)
    3763         114 :             pathnode->path.disabled_nodes++;
    3764             : 
    3765             :         /*
    3766             :          * Also disable if it doesn't look like the hashtable will fit into
    3767             :          * hash_mem.
    3768             :          */
    3769         602 :         hashentrysize = MAXALIGN(leftpath->pathtarget->width) +
    3770             :             MAXALIGN(SizeofMinimalTupleHeader);
    3771         602 :         if (hashentrysize * numGroups > get_hash_memory_limit())
    3772           0 :             pathnode->path.disabled_nodes++;
    3773             :     }
    3774        1264 :     pathnode->path.rows = outputRows;
    3775             : 
    3776        1264 :     return pathnode;
    3777             : }
    3778             : 
    3779             : /*
    3780             :  * create_recursiveunion_path
    3781             :  *    Creates a pathnode that represents a recursive UNION node
    3782             :  *
    3783             :  * 'rel' is the parent relation associated with the result
    3784             :  * 'leftpath' is the source of data for the non-recursive term
    3785             :  * 'rightpath' is the source of data for the recursive term
    3786             :  * 'target' is the PathTarget to be computed
    3787             :  * 'distinctList' is a list of SortGroupClause's representing the grouping
    3788             :  * 'wtParam' is the ID of Param representing work table
    3789             :  * 'numGroups' is the estimated number of groups
    3790             :  *
    3791             :  * For recursive UNION ALL, distinctList is empty and numGroups is zero
    3792             :  */
    3793             : RecursiveUnionPath *
    3794        1004 : create_recursiveunion_path(PlannerInfo *root,
    3795             :                            RelOptInfo *rel,
    3796             :                            Path *leftpath,
    3797             :                            Path *rightpath,
    3798             :                            PathTarget *target,
    3799             :                            List *distinctList,
    3800             :                            int wtParam,
    3801             :                            double numGroups)
    3802             : {
    3803        1004 :     RecursiveUnionPath *pathnode = makeNode(RecursiveUnionPath);
    3804             : 
    3805        1004 :     pathnode->path.pathtype = T_RecursiveUnion;
    3806        1004 :     pathnode->path.parent = rel;
    3807        1004 :     pathnode->path.pathtarget = target;
    3808             :     /* For now, assume we are above any joins, so no parameterization */
    3809        1004 :     pathnode->path.param_info = NULL;
    3810        1004 :     pathnode->path.parallel_aware = false;
    3811        2008 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3812        1004 :         leftpath->parallel_safe && rightpath->parallel_safe;
    3813             :     /* Foolish, but we'll do it like joins for now: */
    3814        1004 :     pathnode->path.parallel_workers = leftpath->parallel_workers;
    3815             :     /* RecursiveUnion result is always unsorted */
    3816        1004 :     pathnode->path.pathkeys = NIL;
    3817             : 
    3818        1004 :     pathnode->leftpath = leftpath;
    3819        1004 :     pathnode->rightpath = rightpath;
    3820        1004 :     pathnode->distinctList = distinctList;
    3821        1004 :     pathnode->wtParam = wtParam;
    3822        1004 :     pathnode->numGroups = numGroups;
    3823             : 
    3824        1004 :     cost_recursive_union(&pathnode->path, leftpath, rightpath);
    3825             : 
    3826        1004 :     return pathnode;
    3827             : }
    3828             : 
    3829             : /*
    3830             :  * create_lockrows_path
    3831             :  *    Creates a pathnode that represents acquiring row locks
    3832             :  *
    3833             :  * 'rel' is the parent relation associated with the result
    3834             :  * 'subpath' is the path representing the source of data
    3835             :  * 'rowMarks' is a list of PlanRowMark's
    3836             :  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
    3837             :  */
    3838             : LockRowsPath *
    3839        8256 : create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
    3840             :                      Path *subpath, List *rowMarks, int epqParam)
    3841             : {
    3842        8256 :     LockRowsPath *pathnode = makeNode(LockRowsPath);
    3843             : 
    3844        8256 :     pathnode->path.pathtype = T_LockRows;
    3845        8256 :     pathnode->path.parent = rel;
    3846             :     /* LockRows doesn't project, so use source path's pathtarget */
    3847        8256 :     pathnode->path.pathtarget = subpath->pathtarget;
    3848             :     /* For now, assume we are above any joins, so no parameterization */
    3849        8256 :     pathnode->path.param_info = NULL;
    3850        8256 :     pathnode->path.parallel_aware = false;
    3851        8256 :     pathnode->path.parallel_safe = false;
    3852        8256 :     pathnode->path.parallel_workers = 0;
    3853        8256 :     pathnode->path.rows = subpath->rows;
    3854             : 
    3855             :     /*
    3856             :      * The result cannot be assumed sorted, since locking might cause the sort
    3857             :      * key columns to be replaced with new values.
    3858             :      */
    3859        8256 :     pathnode->path.pathkeys = NIL;
    3860             : 
    3861        8256 :     pathnode->subpath = subpath;
    3862        8256 :     pathnode->rowMarks = rowMarks;
    3863        8256 :     pathnode->epqParam = epqParam;
    3864             : 
    3865             :     /*
    3866             :      * We should charge something extra for the costs of row locking and
    3867             :      * possible refetches, but it's hard to say how much.  For now, use
    3868             :      * cpu_tuple_cost per row.
    3869             :      */
    3870        8256 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3871        8256 :     pathnode->path.startup_cost = subpath->startup_cost;
    3872        8256 :     pathnode->path.total_cost = subpath->total_cost +
    3873        8256 :         cpu_tuple_cost * subpath->rows;
    3874             : 
    3875        8256 :     return pathnode;
    3876             : }
    3877             : 
    3878             : /*
    3879             :  * create_modifytable_path
    3880             :  *    Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
    3881             :  *    mods
    3882             :  *
    3883             :  * 'rel' is the parent relation associated with the result
    3884             :  * 'subpath' is a Path producing source data
    3885             :  * 'operation' is the operation type
    3886             :  * 'canSetTag' is true if we set the command tag/es_processed
    3887             :  * 'nominalRelation' is the parent RT index for use of EXPLAIN
    3888             :  * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
    3889             :  * 'partColsUpdated' is true if any partitioning columns are being updated,
    3890             :  *      either from the target relation or a descendent partitioned table.
    3891             :  * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
    3892             :  * 'updateColnosLists' is a list of UPDATE target column number lists
    3893             :  *      (one sublist per rel); or NIL if not an UPDATE
    3894             :  * 'withCheckOptionLists' is a list of WCO lists (one per rel)
    3895             :  * 'returningLists' is a list of RETURNING tlists (one per rel)
    3896             :  * 'rowMarks' is a list of PlanRowMarks (non-locking only)
    3897             :  * 'onconflict' is the ON CONFLICT clause, or NULL
    3898             :  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
    3899             :  * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
    3900             :  * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
    3901             :  */
    3902             : ModifyTablePath *
    3903       88816 : create_modifytable_path(PlannerInfo *root, RelOptInfo *rel,
    3904             :                         Path *subpath,
    3905             :                         CmdType operation, bool canSetTag,
    3906             :                         Index nominalRelation, Index rootRelation,
    3907             :                         bool partColsUpdated,
    3908             :                         List *resultRelations,
    3909             :                         List *updateColnosLists,
    3910             :                         List *withCheckOptionLists, List *returningLists,
    3911             :                         List *rowMarks, OnConflictExpr *onconflict,
    3912             :                         List *mergeActionLists, List *mergeJoinConditions,
    3913             :                         int epqParam)
    3914             : {
    3915       88816 :     ModifyTablePath *pathnode = makeNode(ModifyTablePath);
    3916             : 
    3917             :     Assert(operation == CMD_MERGE ||
    3918             :            (operation == CMD_UPDATE ?
    3919             :             list_length(resultRelations) == list_length(updateColnosLists) :
    3920             :             updateColnosLists == NIL));
    3921             :     Assert(withCheckOptionLists == NIL ||
    3922             :            list_length(resultRelations) == list_length(withCheckOptionLists));
    3923             :     Assert(returningLists == NIL ||
    3924             :            list_length(resultRelations) == list_length(returningLists));
    3925             : 
    3926       88816 :     pathnode->path.pathtype = T_ModifyTable;
    3927       88816 :     pathnode->path.parent = rel;
    3928             :     /* pathtarget is not interesting, just make it minimally valid */
    3929       88816 :     pathnode->path.pathtarget = rel->reltarget;
    3930             :     /* For now, assume we are above any joins, so no parameterization */
    3931       88816 :     pathnode->path.param_info = NULL;
    3932       88816 :     pathnode->path.parallel_aware = false;
    3933       88816 :     pathnode->path.parallel_safe = false;
    3934       88816 :     pathnode->path.parallel_workers = 0;
    3935       88816 :     pathnode->path.pathkeys = NIL;
    3936             : 
    3937             :     /*
    3938             :      * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
    3939             :      *
    3940             :      * Currently, we don't charge anything extra for the actual table
    3941             :      * modification work, nor for the WITH CHECK OPTIONS or RETURNING
    3942             :      * expressions if any.  It would only be window dressing, since
    3943             :      * ModifyTable is always a top-level node and there is no way for the
    3944             :      * costs to change any higher-level planning choices.  But we might want
    3945             :      * to make it look better sometime.
    3946             :      */
    3947       88816 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3948       88816 :     pathnode->path.startup_cost = subpath->startup_cost;
    3949       88816 :     pathnode->path.total_cost = subpath->total_cost;
    3950       88816 :     if (returningLists != NIL)
    3951             :     {
    3952        2888 :         pathnode->path.rows = subpath->rows;
    3953             : 
    3954             :         /*
    3955             :          * Set width to match the subpath output.  XXX this is totally wrong:
    3956             :          * we should return an average of the RETURNING tlist widths.  But
    3957             :          * it's what happened historically, and improving it is a task for
    3958             :          * another day.  (Again, it's mostly window dressing.)
    3959             :          */
    3960        2888 :         pathnode->path.pathtarget->width = subpath->pathtarget->width;
    3961             :     }
    3962             :     else
    3963             :     {
    3964       85928 :         pathnode->path.rows = 0;
    3965       85928 :         pathnode->path.pathtarget->width = 0;
    3966             :     }
    3967             : 
    3968       88816 :     pathnode->subpath = subpath;
    3969       88816 :     pathnode->operation = operation;
    3970       88816 :     pathnode->canSetTag = canSetTag;
    3971       88816 :     pathnode->nominalRelation = nominalRelation;
    3972       88816 :     pathnode->rootRelation = rootRelation;
    3973       88816 :     pathnode->partColsUpdated = partColsUpdated;
    3974       88816 :     pathnode->resultRelations = resultRelations;
    3975       88816 :     pathnode->updateColnosLists = updateColnosLists;
    3976       88816 :     pathnode->withCheckOptionLists = withCheckOptionLists;
    3977       88816 :     pathnode->returningLists = returningLists;
    3978       88816 :     pathnode->rowMarks = rowMarks;
    3979       88816 :     pathnode->onconflict = onconflict;
    3980       88816 :     pathnode->epqParam = epqParam;
    3981       88816 :     pathnode->mergeActionLists = mergeActionLists;
    3982       88816 :     pathnode->mergeJoinConditions = mergeJoinConditions;
    3983             : 
    3984       88816 :     return pathnode;
    3985             : }
    3986             : 
    3987             : /*
    3988             :  * create_limit_path
    3989             :  *    Creates a pathnode that represents performing LIMIT/OFFSET
    3990             :  *
    3991             :  * In addition to providing the actual OFFSET and LIMIT expressions,
    3992             :  * the caller must provide estimates of their values for costing purposes.
    3993             :  * The estimates are as computed by preprocess_limit(), ie, 0 represents
    3994             :  * the clause not being present, and -1 means it's present but we could
    3995             :  * not estimate its value.
    3996             :  *
    3997             :  * 'rel' is the parent relation associated with the result
    3998             :  * 'subpath' is the path representing the source of data
    3999             :  * 'limitOffset' is the actual OFFSET expression, or NULL
    4000             :  * 'limitCount' is the actual LIMIT expression, or NULL
    4001             :  * 'offset_est' is the estimated value of the OFFSET expression
    4002             :  * 'count_est' is the estimated value of the LIMIT expression
    4003             :  */
    4004             : LimitPath *
    4005        6036 : create_limit_path(PlannerInfo *root, RelOptInfo *rel,
    4006             :                   Path *subpath,
    4007             :                   Node *limitOffset, Node *limitCount,
    4008             :                   LimitOption limitOption,
    4009             :                   int64 offset_est, int64 count_est)
    4010             : {
    4011        6036 :     LimitPath  *pathnode = makeNode(LimitPath);
    4012             : 
    4013        6036 :     pathnode->path.pathtype = T_Limit;
    4014        6036 :     pathnode->path.parent = rel;
    4015             :     /* Limit doesn't project, so use source path's pathtarget */
    4016        6036 :     pathnode->path.pathtarget = subpath->pathtarget;
    4017             :     /* For now, assume we are above any joins, so no parameterization */
    4018        6036 :     pathnode->path.param_info = NULL;
    4019        6036 :     pathnode->path.parallel_aware = false;
    4020        8448 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    4021        2412 :         subpath->parallel_safe;
    4022        6036 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    4023        6036 :     pathnode->path.rows = subpath->rows;
    4024        6036 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    4025        6036 :     pathnode->path.startup_cost = subpath->startup_cost;
    4026        6036 :     pathnode->path.total_cost = subpath->total_cost;
    4027        6036 :     pathnode->path.pathkeys = subpath->pathkeys;
    4028        6036 :     pathnode->subpath = subpath;
    4029        6036 :     pathnode->limitOffset = limitOffset;
    4030        6036 :     pathnode->limitCount = limitCount;
    4031        6036 :     pathnode->limitOption = limitOption;
    4032             : 
    4033             :     /*
    4034             :      * Adjust the output rows count and costs according to the offset/limit.
    4035             :      */
    4036        6036 :     adjust_limit_rows_costs(&pathnode->path.rows,
    4037             :                             &pathnode->path.startup_cost,
    4038             :                             &pathnode->path.total_cost,
    4039             :                             offset_est, count_est);
    4040             : 
    4041        6036 :     return pathnode;
    4042             : }
    4043             : 
    4044             : /*
    4045             :  * adjust_limit_rows_costs
    4046             :  *    Adjust the size and cost estimates for a LimitPath node according to the
    4047             :  *    offset/limit.
    4048             :  *
    4049             :  * This is only a cosmetic issue if we are at top level, but if we are
    4050             :  * building a subquery then it's important to report correct info to the outer
    4051             :  * planner.
    4052             :  *
    4053             :  * When the offset or count couldn't be estimated, use 10% of the estimated
    4054             :  * number of rows emitted from the subpath.
    4055             :  *
    4056             :  * XXX we don't bother to add eval costs of the offset/limit expressions
    4057             :  * themselves to the path costs.  In theory we should, but in most cases those
    4058             :  * expressions are trivial and it's just not worth the trouble.
    4059             :  */
    4060             : void
    4061        6220 : adjust_limit_rows_costs(double *rows,   /* in/out parameter */
    4062             :                         Cost *startup_cost, /* in/out parameter */
    4063             :                         Cost *total_cost,   /* in/out parameter */
    4064             :                         int64 offset_est,
    4065             :                         int64 count_est)
    4066             : {
    4067        6220 :     double      input_rows = *rows;
    4068        6220 :     Cost        input_startup_cost = *startup_cost;
    4069        6220 :     Cost        input_total_cost = *total_cost;
    4070             : 
    4071        6220 :     if (offset_est != 0)
    4072             :     {
    4073             :         double      offset_rows;
    4074             : 
    4075         694 :         if (offset_est > 0)
    4076         670 :             offset_rows = (double) offset_est;
    4077             :         else
    4078          24 :             offset_rows = clamp_row_est(input_rows * 0.10);
    4079         694 :         if (offset_rows > *rows)
    4080          42 :             offset_rows = *rows;
    4081         694 :         if (input_rows > 0)
    4082         694 :             *startup_cost +=
    4083         694 :                 (input_total_cost - input_startup_cost)
    4084         694 :                 * offset_rows / input_rows;
    4085         694 :         *rows -= offset_rows;
    4086         694 :         if (*rows < 1)
    4087          50 :             *rows = 1;
    4088             :     }
    4089             : 
    4090        6220 :     if (count_est != 0)
    4091             :     {
    4092             :         double      count_rows;
    4093             : 
    4094        6162 :         if (count_est > 0)
    4095        6156 :             count_rows = (double) count_est;
    4096             :         else
    4097           6 :             count_rows = clamp_row_est(input_rows * 0.10);
    4098        6162 :         if (count_rows > *rows)
    4099         260 :             count_rows = *rows;
    4100        6162 :         if (input_rows > 0)
    4101        6162 :             *total_cost = *startup_cost +
    4102        6162 :                 (input_total_cost - input_startup_cost)
    4103        6162 :                 * count_rows / input_rows;
    4104        6162 :         *rows = count_rows;
    4105        6162 :         if (*rows < 1)
    4106           0 :             *rows = 1;
    4107             :     }
    4108        6220 : }
    4109             : 
    4110             : 
    4111             : /*
    4112             :  * reparameterize_path
    4113             :  *      Attempt to modify a Path to have greater parameterization
    4114             :  *
    4115             :  * We use this to attempt to bring all child paths of an appendrel to the
    4116             :  * same parameterization level, ensuring that they all enforce the same set
    4117             :  * of join quals (and thus that that parameterization can be attributed to
    4118             :  * an append path built from such paths).  Currently, only a few path types
    4119             :  * are supported here, though more could be added at need.  We return NULL
    4120             :  * if we can't reparameterize the given path.
    4121             :  *
    4122             :  * Note: we intentionally do not pass created paths to add_path(); it would
    4123             :  * possibly try to delete them on the grounds of being cost-inferior to the
    4124             :  * paths they were made from, and we don't want that.  Paths made here are
    4125             :  * not necessarily of general-purpose usefulness, but they can be useful
    4126             :  * as members of an append path.
    4127             :  */
    4128             : Path *
    4129         356 : reparameterize_path(PlannerInfo *root, Path *path,
    4130             :                     Relids required_outer,
    4131             :                     double loop_count)
    4132             : {
    4133         356 :     RelOptInfo *rel = path->parent;
    4134             : 
    4135             :     /* Can only increase, not decrease, path's parameterization */
    4136         356 :     if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
    4137           0 :         return NULL;
    4138         356 :     switch (path->pathtype)
    4139             :     {
    4140         264 :         case T_SeqScan:
    4141         264 :             return create_seqscan_path(root, rel, required_outer, 0);
    4142           0 :         case T_SampleScan:
    4143           0 :             return (Path *) create_samplescan_path(root, rel, required_outer);
    4144           0 :         case T_IndexScan:
    4145             :         case T_IndexOnlyScan:
    4146             :             {
    4147           0 :                 IndexPath  *ipath = (IndexPath *) path;
    4148           0 :                 IndexPath  *newpath = makeNode(IndexPath);
    4149             : 
    4150             :                 /*
    4151             :                  * We can't use create_index_path directly, and would not want
    4152             :                  * to because it would re-compute the indexqual conditions
    4153             :                  * which is wasted effort.  Instead we hack things a bit:
    4154             :                  * flat-copy the path node, revise its param_info, and redo
    4155             :                  * the cost estimate.
    4156             :                  */
    4157           0 :                 memcpy(newpath, ipath, sizeof(IndexPath));
    4158           0 :                 newpath->path.param_info =
    4159           0 :                     get_baserel_parampathinfo(root, rel, required_outer);
    4160           0 :                 cost_index(newpath, root, loop_count, false);
    4161           0 :                 return (Path *) newpath;
    4162             :             }
    4163           0 :         case T_BitmapHeapScan:
    4164             :             {
    4165           0 :                 BitmapHeapPath *bpath = (BitmapHeapPath *) path;
    4166             : 
    4167           0 :                 return (Path *) create_bitmap_heap_path(root,
    4168             :                                                         rel,
    4169             :                                                         bpath->bitmapqual,
    4170             :                                                         required_outer,
    4171             :                                                         loop_count, 0);
    4172             :             }
    4173           0 :         case T_SubqueryScan:
    4174             :             {
    4175           0 :                 SubqueryScanPath *spath = (SubqueryScanPath *) path;
    4176           0 :                 Path       *subpath = spath->subpath;
    4177             :                 bool        trivial_pathtarget;
    4178             : 
    4179             :                 /*
    4180             :                  * If existing node has zero extra cost, we must have decided
    4181             :                  * its target is trivial.  (The converse is not true, because
    4182             :                  * it might have a trivial target but quals to enforce; but in
    4183             :                  * that case the new node will too, so it doesn't matter
    4184             :                  * whether we get the right answer here.)
    4185             :                  */
    4186           0 :                 trivial_pathtarget =
    4187           0 :                     (subpath->total_cost == spath->path.total_cost);
    4188             : 
    4189           0 :                 return (Path *) create_subqueryscan_path(root,
    4190             :                                                          rel,
    4191             :                                                          subpath,
    4192             :                                                          trivial_pathtarget,
    4193             :                                                          spath->path.pathkeys,
    4194             :                                                          required_outer);
    4195             :             }
    4196          60 :         case T_Result:
    4197             :             /* Supported only for RTE_RESULT scan paths */
    4198          60 :             if (IsA(path, Path))
    4199          60 :                 return create_resultscan_path(root, rel, required_outer);
    4200           0 :             break;
    4201           0 :         case T_Append:
    4202             :             {
    4203           0 :                 AppendPath *apath = (AppendPath *) path;
    4204           0 :                 List       *childpaths = NIL;
    4205           0 :                 List       *partialpaths = NIL;
    4206             :                 int         i;
    4207             :                 ListCell   *lc;
    4208             : 
    4209             :                 /* Reparameterize the children */
    4210           0 :                 i = 0;
    4211           0 :                 foreach(lc, apath->subpaths)
    4212             :                 {
    4213           0 :                     Path       *spath = (Path *) lfirst(lc);
    4214             : 
    4215           0 :                     spath = reparameterize_path(root, spath,
    4216             :                                                 required_outer,
    4217             :                                                 loop_count);
    4218           0 :                     if (spath == NULL)
    4219           0 :                         return NULL;
    4220             :                     /* We have to re-split the regular and partial paths */
    4221           0 :                     if (i < apath->first_partial_path)
    4222           0 :                         childpaths = lappend(childpaths, spath);
    4223             :                     else
    4224           0 :                         partialpaths = lappend(partialpaths, spath);
    4225           0 :                     i++;
    4226             :                 }
    4227           0 :                 return (Path *)
    4228           0 :                     create_append_path(root, rel, childpaths, partialpaths,
    4229             :                                        apath->path.pathkeys, required_outer,
    4230             :                                        apath->path.parallel_workers,
    4231           0 :                                        apath->path.parallel_aware,
    4232             :                                        -1);
    4233             :             }
    4234           0 :         case T_Material:
    4235             :             {
    4236           0 :                 MaterialPath *mpath = (MaterialPath *) path;
    4237           0 :                 Path       *spath = mpath->subpath;
    4238             : 
    4239           0 :                 spath = reparameterize_path(root, spath,
    4240             :                                             required_outer,
    4241             :                                             loop_count);
    4242           0 :                 if (spath == NULL)
    4243           0 :                     return NULL;
    4244           0 :                 return (Path *) create_material_path(rel, spath);
    4245             :             }
    4246           0 :         case T_Memoize:
    4247             :             {
    4248           0 :                 MemoizePath *mpath = (MemoizePath *) path;
    4249           0 :                 Path       *spath = mpath->subpath;
    4250             : 
    4251           0 :                 spath = reparameterize_path(root, spath,
    4252             :                                             required_outer,
    4253             :                                             loop_count);
    4254           0 :                 if (spath == NULL)
    4255           0 :                     return NULL;
    4256           0 :                 return (Path *) create_memoize_path(root, rel,
    4257             :                                                     spath,
    4258             :                                                     mpath->param_exprs,
    4259             :                                                     mpath->hash_operators,
    4260           0 :                                                     mpath->singlerow,
    4261           0 :                                                     mpath->binary_mode,
    4262             :                                                     mpath->calls);
    4263             :             }
    4264          32 :         default:
    4265          32 :             break;
    4266             :     }
    4267          32 :     return NULL;
    4268             : }
    4269             : 
    4270             : /*
    4271             :  * reparameterize_path_by_child
    4272             :  *      Given a path parameterized by the parent of the given child relation,
    4273             :  *      translate the path to be parameterized by the given child relation.
    4274             :  *
    4275             :  * Most fields in the path are not changed, but any expressions must be
    4276             :  * adjusted to refer to the correct varnos, and any subpaths must be
    4277             :  * recursively reparameterized.  Other fields that refer to specific relids
    4278             :  * also need adjustment.
    4279             :  *
    4280             :  * The cost, number of rows, width and parallel path properties depend upon
    4281             :  * path->parent, which does not change during the translation.  So we need
    4282             :  * not change those.
    4283             :  *
    4284             :  * Currently, only a few path types are supported here, though more could be
    4285             :  * added at need.  We return NULL if we can't reparameterize the given path.
    4286             :  *
    4287             :  * Note that this function can change referenced RangeTblEntries, RelOptInfos
    4288             :  * and IndexOptInfos as well as the Path structures.  Therefore, it's only safe
    4289             :  * to call during create_plan(), when we have made a final choice of which Path
    4290             :  * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
    4291             :  *
    4292             :  * Keep this code in sync with path_is_reparameterizable_by_child()!
    4293             :  */
    4294             : Path *
    4295       94418 : reparameterize_path_by_child(PlannerInfo *root, Path *path,
    4296             :                              RelOptInfo *child_rel)
    4297             : {
    4298             :     Path       *new_path;
    4299             :     ParamPathInfo *new_ppi;
    4300             :     ParamPathInfo *old_ppi;
    4301             :     Relids      required_outer;
    4302             : 
    4303             : #define ADJUST_CHILD_ATTRS(node) \
    4304             :     ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
    4305             :                                                          (Node *) (node), \
    4306             :                                                          child_rel, \
    4307             :                                                          child_rel->top_parent))
    4308             : 
    4309             : #define REPARAMETERIZE_CHILD_PATH(path) \
    4310             : do { \
    4311             :     (path) = reparameterize_path_by_child(root, (path), child_rel); \
    4312             :     if ((path) == NULL) \
    4313             :         return NULL; \
    4314             : } while(0)
    4315             : 
    4316             : #define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
    4317             : do { \
    4318             :     if ((pathlist) != NIL) \
    4319             :     { \
    4320             :         (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
    4321             :                                                       child_rel); \
    4322             :         if ((pathlist) == NIL) \
    4323             :             return NULL; \
    4324             :     } \
    4325             : } while(0)
    4326             : 
    4327             :     /*
    4328             :      * If the path is not parameterized by the parent of the given relation,
    4329             :      * it doesn't need reparameterization.
    4330             :      */
    4331       94418 :     if (!path->param_info ||
    4332       47532 :         !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
    4333       93446 :         return path;
    4334             : 
    4335             :     /*
    4336             :      * If possible, reparameterize the given path.
    4337             :      *
    4338             :      * This function is currently only applied to the inner side of a nestloop
    4339             :      * join that is being partitioned by the partitionwise-join code.  Hence,
    4340             :      * we need only support path types that plausibly arise in that context.
    4341             :      * (In particular, supporting sorted path types would be a waste of code
    4342             :      * and cycles: even if we translated them here, they'd just lose in
    4343             :      * subsequent cost comparisons.)  If we do see an unsupported path type,
    4344             :      * that just means we won't be able to generate a partitionwise-join plan
    4345             :      * using that path type.
    4346             :      */
    4347         972 :     switch (nodeTag(path))
    4348             :     {
    4349         228 :         case T_Path:
    4350         228 :             new_path = path;
    4351         228 :             ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
    4352         228 :             if (path->pathtype == T_SampleScan)
    4353             :             {
    4354          48 :                 Index       scan_relid = path->parent->relid;
    4355             :                 RangeTblEntry *rte;
    4356             : 
    4357             :                 /* it should be a base rel with a tablesample clause... */
    4358             :                 Assert(scan_relid > 0);
    4359          48 :                 rte = planner_rt_fetch(scan_relid, root);
    4360             :                 Assert(rte->rtekind == RTE_RELATION);
    4361             :                 Assert(rte->tablesample != NULL);
    4362             : 
    4363          48 :                 ADJUST_CHILD_ATTRS(rte->tablesample);
    4364             :             }
    4365         228 :             break;
    4366             : 
    4367         492 :         case T_IndexPath:
    4368             :             {
    4369         492 :                 IndexPath  *ipath = (IndexPath *) path;
    4370             : 
    4371         492 :                 ADJUST_CHILD_ATTRS(ipath->indexinfo->indrestrictinfo);
    4372         492 :                 ADJUST_CHILD_ATTRS(ipath->indexclauses);
    4373         492 :                 new_path = (Path *) ipath;
    4374             :             }
    4375         492 :             break;
    4376             : 
    4377          48 :         case T_BitmapHeapPath:
    4378             :             {
    4379          48 :                 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
    4380             : 
    4381          48 :                 ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
    4382          48 :                 REPARAMETERIZE_CHILD_PATH(bhpath->bitmapqual);
    4383          48 :                 new_path = (Path *) bhpath;
    4384             :             }
    4385          48 :             break;
    4386             : 
    4387          24 :         case T_BitmapAndPath:
    4388             :             {
    4389          24 :                 BitmapAndPath *bapath = (BitmapAndPath *) path;
    4390             : 
    4391          24 :                 REPARAMETERIZE_CHILD_PATH_LIST(bapath->bitmapquals);
    4392          24 :                 new_path = (Path *) bapath;
    4393             :             }
    4394          24 :             break;
    4395             : 
    4396          24 :         case T_BitmapOrPath:
    4397             :             {
    4398          24 :                 BitmapOrPath *bopath = (BitmapOrPath *) path;
    4399             : 
    4400          24 :                 REPARAMETERIZE_CHILD_PATH_LIST(bopath->bitmapquals);
    4401          24 :                 new_path = (Path *) bopath;
    4402             :             }
    4403          24 :             break;
    4404             : 
    4405           0 :         case T_ForeignPath:
    4406             :             {
    4407           0 :                 ForeignPath *fpath = (ForeignPath *) path;
    4408             :                 ReparameterizeForeignPathByChild_function rfpc_func;
    4409             : 
    4410           0 :                 ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
    4411           0 :                 if (fpath->fdw_outerpath)
    4412           0 :                     REPARAMETERIZE_CHILD_PATH(fpath->fdw_outerpath);
    4413           0 :                 if (fpath->fdw_restrictinfo)
    4414           0 :                     ADJUST_CHILD_ATTRS(fpath->fdw_restrictinfo);
    4415             : 
    4416             :                 /* Hand over to FDW if needed. */
    4417           0 :                 rfpc_func =
    4418           0 :                     path->parent->fdwroutine->ReparameterizeForeignPathByChild;
    4419           0 :                 if (rfpc_func)
    4420           0 :                     fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
    4421             :                                                    child_rel);
    4422           0 :                 new_path = (Path *) fpath;
    4423             :             }
    4424           0 :             break;
    4425             : 
    4426           0 :         case T_CustomPath:
    4427             :             {
    4428           0 :                 CustomPath *cpath = (CustomPath *) path;
    4429             : 
    4430           0 :                 ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
    4431           0 :                 REPARAMETERIZE_CHILD_PATH_LIST(cpath->custom_paths);
    4432           0 :                 if (cpath->custom_restrictinfo)
    4433           0 :                     ADJUST_CHILD_ATTRS(cpath->custom_restrictinfo);
    4434           0 :                 if (cpath->methods &&
    4435           0 :                     cpath->methods->ReparameterizeCustomPathByChild)
    4436           0 :                     cpath->custom_private =
    4437           0 :                         cpath->methods->ReparameterizeCustomPathByChild(root,
    4438             :                                                                         cpath->custom_private,
    4439             :                                                                         child_rel);
    4440           0 :                 new_path = (Path *) cpath;
    4441             :             }
    4442           0 :             break;
    4443             : 
    4444          36 :         case T_NestPath:
    4445             :             {
    4446          36 :                 NestPath   *npath = (NestPath *) path;
    4447          36 :                 JoinPath   *jpath = (JoinPath *) npath;
    4448             : 
    4449          36 :                 REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
    4450          36 :                 REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
    4451          36 :                 ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
    4452          36 :                 new_path = (Path *) npath;
    4453             :             }
    4454          36 :             break;
    4455             : 
    4456           0 :         case T_MergePath:
    4457             :             {
    4458           0 :                 MergePath  *mpath = (MergePath *) path;
    4459           0 :                 JoinPath   *jpath = (JoinPath *) mpath;
    4460             : 
    4461           0 :                 REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
    4462           0 :                 REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
    4463           0 :                 ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
    4464           0 :                 ADJUST_CHILD_ATTRS(mpath->path_mergeclauses);
    4465           0 :                 new_path = (Path *) mpath;
    4466             :             }
    4467           0 :             break;
    4468             : 
    4469          48 :         case T_HashPath:
    4470             :             {
    4471          48 :                 HashPath   *hpath = (HashPath *) path;
    4472          48 :                 JoinPath   *jpath = (JoinPath *) hpath;
    4473             : 
    4474          48 :                 REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
    4475          48 :                 REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
    4476          48 :                 ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
    4477          48 :                 ADJUST_CHILD_ATTRS(hpath->path_hashclauses);
    4478          48 :                 new_path = (Path *) hpath;
    4479             :             }
    4480          48 :             break;
    4481             : 
    4482          24 :         case T_AppendPath:
    4483             :             {
    4484          24 :                 AppendPath *apath = (AppendPath *) path;
    4485             : 
    4486          24 :                 REPARAMETERIZE_CHILD_PATH_LIST(apath->subpaths);
    4487          24 :                 new_path = (Path *) apath;
    4488             :             }
    4489          24 :             break;
    4490             : 
    4491           0 :         case T_MaterialPath:
    4492             :             {
    4493           0 :                 MaterialPath *mpath = (MaterialPath *) path;
    4494             : 
    4495           0 :                 REPARAMETERIZE_CHILD_PATH(mpath->subpath);
    4496           0 :                 new_path = (Path *) mpath;
    4497             :             }
    4498           0 :             break;
    4499             : 
    4500          48 :         case T_MemoizePath:
    4501             :             {
    4502          48 :                 MemoizePath *mpath = (MemoizePath *) path;
    4503             : 
    4504          48 :                 REPARAMETERIZE_CHILD_PATH(mpath->subpath);
    4505          48 :                 ADJUST_CHILD_ATTRS(mpath->param_exprs);
    4506          48 :                 new_path = (Path *) mpath;
    4507             :             }
    4508          48 :             break;
    4509             : 
    4510           0 :         case T_GatherPath:
    4511             :             {
    4512           0 :                 GatherPath *gpath = (GatherPath *) path;
    4513             : 
    4514           0 :                 REPARAMETERIZE_CHILD_PATH(gpath->subpath);
    4515           0 :                 new_path = (Path *) gpath;
    4516             :             }
    4517           0 :             break;
    4518             : 
    4519           0 :         default:
    4520             :             /* We don't know how to reparameterize this path. */
    4521           0 :             return NULL;
    4522             :     }
    4523             : 
    4524             :     /*
    4525             :      * Adjust the parameterization information, which refers to the topmost
    4526             :      * parent. The topmost parent can be multiple levels away from the given
    4527             :      * child, hence use multi-level expression adjustment routines.
    4528             :      */
    4529         972 :     old_ppi = new_path->param_info;
    4530             :     required_outer =
    4531         972 :         adjust_child_relids_multilevel(root, old_ppi->ppi_req_outer,
    4532             :                                        child_rel,
    4533         972 :                                        child_rel->top_parent);
    4534             : 
    4535             :     /* If we already have a PPI for this parameterization, just return it */
    4536         972 :     new_ppi = find_param_path_info(new_path->parent, required_outer);
    4537             : 
    4538             :     /*
    4539             :      * If not, build a new one and link it to the list of PPIs. For the same
    4540             :      * reason as explained in mark_dummy_rel(), allocate new PPI in the same
    4541             :      * context the given RelOptInfo is in.
    4542             :      */
    4543         972 :     if (new_ppi == NULL)
    4544             :     {
    4545             :         MemoryContext oldcontext;
    4546         828 :         RelOptInfo *rel = path->parent;
    4547             : 
    4548         828 :         oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
    4549             : 
    4550         828 :         new_ppi = makeNode(ParamPathInfo);
    4551         828 :         new_ppi->ppi_req_outer = bms_copy(required_outer);
    4552         828 :         new_ppi->ppi_rows = old_ppi->ppi_rows;
    4553         828 :         new_ppi->ppi_clauses = old_ppi->ppi_clauses;
    4554         828 :         ADJUST_CHILD_ATTRS(new_ppi->ppi_clauses);
    4555         828 :         new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
    4556         828 :         rel->ppilist = lappend(rel->ppilist, new_ppi);
    4557             : 
    4558         828 :         MemoryContextSwitchTo(oldcontext);
    4559             :     }
    4560         972 :     bms_free(required_outer);
    4561             : 
    4562         972 :     new_path->param_info = new_ppi;
    4563             : 
    4564             :     /*
    4565             :      * Adjust the path target if the parent of the outer relation is
    4566             :      * referenced in the targetlist. This can happen when only the parent of
    4567             :      * outer relation is laterally referenced in this relation.
    4568             :      */
    4569         972 :     if (bms_overlap(path->parent->lateral_relids,
    4570         972 :                     child_rel->top_parent_relids))
    4571             :     {
    4572         480 :         new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
    4573         480 :         ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
    4574             :     }
    4575             : 
    4576         972 :     return new_path;
    4577             : }
    4578             : 
    4579             : /*
    4580             :  * path_is_reparameterizable_by_child
    4581             :  *      Given a path parameterized by the parent of the given child relation,
    4582             :  *      see if it can be translated to be parameterized by the child relation.
    4583             :  *
    4584             :  * This must return true if and only if reparameterize_path_by_child()
    4585             :  * would succeed on this path.  Currently it's sufficient to verify that
    4586             :  * the path and all of its subpaths (if any) are of the types handled by
    4587             :  * that function.  However, subpaths that are not parameterized can be
    4588             :  * disregarded since they won't require translation.
    4589             :  */
    4590             : bool
    4591       34752 : path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
    4592             : {
    4593             : #define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
    4594             : do { \
    4595             :     if (!path_is_reparameterizable_by_child(path, child_rel)) \
    4596             :         return false; \
    4597             : } while(0)
    4598             : 
    4599             : #define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
    4600             : do { \
    4601             :     if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
    4602             :         return false; \
    4603             : } while(0)
    4604             : 
    4605             :     /*
    4606             :      * If the path is not parameterized by the parent of the given relation,
    4607             :      * it doesn't need reparameterization.
    4608             :      */
    4609       34752 :     if (!path->param_info ||
    4610       34344 :         !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
    4611         984 :         return true;
    4612             : 
    4613             :     /*
    4614             :      * Check that the path type is one that reparameterize_path_by_child() can
    4615             :      * handle, and recursively check subpaths.
    4616             :      */
    4617       33768 :     switch (nodeTag(path))
    4618             :     {
    4619       22632 :         case T_Path:
    4620             :         case T_IndexPath:
    4621       22632 :             break;
    4622             : 
    4623          48 :         case T_BitmapHeapPath:
    4624             :             {
    4625          48 :                 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
    4626             : 
    4627          48 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(bhpath->bitmapqual);
    4628             :             }
    4629          48 :             break;
    4630             : 
    4631          24 :         case T_BitmapAndPath:
    4632             :             {
    4633          24 :                 BitmapAndPath *bapath = (BitmapAndPath *) path;
    4634             : 
    4635          24 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(bapath->bitmapquals);
    4636             :             }
    4637          24 :             break;
    4638             : 
    4639          24 :         case T_BitmapOrPath:
    4640             :             {
    4641          24 :                 BitmapOrPath *bopath = (BitmapOrPath *) path;
    4642             : 
    4643          24 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(bopath->bitmapquals);
    4644             :             }
    4645          24 :             break;
    4646             : 
    4647         148 :         case T_ForeignPath:
    4648             :             {
    4649         148 :                 ForeignPath *fpath = (ForeignPath *) path;
    4650             : 
    4651         148 :                 if (fpath->fdw_outerpath)
    4652           0 :                     REJECT_IF_PATH_NOT_REPARAMETERIZABLE(fpath->fdw_outerpath);
    4653             :             }
    4654         148 :             break;
    4655             : 
    4656           0 :         case T_CustomPath:
    4657             :             {
    4658           0 :                 CustomPath *cpath = (CustomPath *) path;
    4659             : 
    4660           0 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(cpath->custom_paths);
    4661             :             }
    4662           0 :             break;
    4663             : 
    4664        1248 :         case T_NestPath:
    4665             :         case T_MergePath:
    4666             :         case T_HashPath:
    4667             :             {
    4668        1248 :                 JoinPath   *jpath = (JoinPath *) path;
    4669             : 
    4670        1248 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(jpath->outerjoinpath);
    4671        1248 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(jpath->innerjoinpath);
    4672             :             }
    4673        1248 :             break;
    4674             : 
    4675         192 :         case T_AppendPath:
    4676             :             {
    4677         192 :                 AppendPath *apath = (AppendPath *) path;
    4678             : 
    4679         192 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(apath->subpaths);
    4680             :             }
    4681         192 :             break;
    4682             : 
    4683           0 :         case T_MaterialPath:
    4684             :             {
    4685           0 :                 MaterialPath *mpath = (MaterialPath *) path;
    4686             : 
    4687           0 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(mpath->subpath);
    4688             :             }
    4689           0 :             break;
    4690             : 
    4691        9452 :         case T_MemoizePath:
    4692             :             {
    4693        9452 :                 MemoizePath *mpath = (MemoizePath *) path;
    4694             : 
    4695        9452 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(mpath->subpath);
    4696             :             }
    4697        9452 :             break;
    4698             : 
    4699           0 :         case T_GatherPath:
    4700             :             {
    4701           0 :                 GatherPath *gpath = (GatherPath *) path;
    4702             : 
    4703           0 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(gpath->subpath);
    4704             :             }
    4705           0 :             break;
    4706             : 
    4707           0 :         default:
    4708             :             /* We don't know how to reparameterize this path. */
    4709           0 :             return false;
    4710             :     }
    4711             : 
    4712       33768 :     return true;
    4713             : }
    4714             : 
    4715             : /*
    4716             :  * reparameterize_pathlist_by_child
    4717             :  *      Helper function to reparameterize a list of paths by given child rel.
    4718             :  *
    4719             :  * Returns NIL to indicate failure, so pathlist had better not be NIL.
    4720             :  */
    4721             : static List *
    4722          72 : reparameterize_pathlist_by_child(PlannerInfo *root,
    4723             :                                  List *pathlist,
    4724             :                                  RelOptInfo *child_rel)
    4725             : {
    4726             :     ListCell   *lc;
    4727          72 :     List       *result = NIL;
    4728             : 
    4729         216 :     foreach(lc, pathlist)
    4730             :     {
    4731         144 :         Path       *path = reparameterize_path_by_child(root, lfirst(lc),
    4732             :                                                         child_rel);
    4733             : 
    4734         144 :         if (path == NULL)
    4735             :         {
    4736           0 :             list_free(result);
    4737           0 :             return NIL;
    4738             :         }
    4739             : 
    4740         144 :         result = lappend(result, path);
    4741             :     }
    4742             : 
    4743          72 :     return result;
    4744             : }
    4745             : 
    4746             : /*
    4747             :  * pathlist_is_reparameterizable_by_child
    4748             :  *      Helper function to check if a list of paths can be reparameterized.
    4749             :  */
    4750             : static bool
    4751         240 : pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
    4752             : {
    4753             :     ListCell   *lc;
    4754             : 
    4755         720 :     foreach(lc, pathlist)
    4756             :     {
    4757         480 :         Path       *path = (Path *) lfirst(lc);
    4758             : 
    4759         480 :         if (!path_is_reparameterizable_by_child(path, child_rel))
    4760           0 :             return false;
    4761             :     }
    4762             : 
    4763         240 :     return true;
    4764             : }

Generated by: LCOV version 1.16