
Secure Sharing Between Untrusted Users in a Transparent
Source/Binary Deployment Model

Eelco Dolstra
Utrecht University, P.O. Box 80089
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

ABSTRACT
The Nix software deployment system is based on the paradigm of
transparent source/binary deployment: distributors deploy descrip-
tors that build components from source, while client machines can
transparently optimise such source builds by downloading pre-built
binaries from remote repositories. This model combines the sim-
plicity and flexibility of source deployment with the efficiency of
binary deployment. A desirable property is sharing of components:
if multiple users install from the same source descriptors, ideally
only one remotely built binary should be installed. The problem is
that users must trust that remotely downloaded binaries were built
from the sources they are claimed to have been built from, while
users in general do not have a trust relation with each other or with
the same remote repositories.

This paper presents three models that enable sharing: the exten-
sional model that requires that all users on a system have the same
remote trust relations, the intensional model that does not have this
requirement but may be suboptimal in terms of space use, and the
mixed model that merges the best properties of both. The latter two
models are achieved through a novel technique of hash rewriting in
content-addressable component stores, and were implemented in
the context of the Nix system.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Algorithms, Experimentation, Languages, Management

Keywords
Software deployment, security, configuration management, source
deployment, secure sharing, hash rewriting

1. INTRODUCTION
Secure deployment of software is a difficult problem due to trust

issues. For instance, how can we trust that binaries that we have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

downloaded and installed from some remote server are not mali-
cious? Such issues are exacerbated in multi-user environments. If
we allow users to install software components on their own, under
what circumstances is it safe for other users to use those very same
components?

Consider a typical Unix system where components are installed
in (say) the directory /usr on Unix or C:\Program Files on Win-
dows. Only the site administrator has the appropriate permissions
to do so. This is a highly monolithic security model: the admin-
istrator globally makes component selections for all users, along
with a determination of whether these components can be trusted.
In many environments, this is too inflexible. Consider for instance
remote shell servers, shared machines at a web hosting provider,
and machines in computational grids. Here there may be many
users who need to be able to install software.

Alternatively, individual users can install components in some
location where they do have write permission, e.g., /home/alice.
But in this case there is no sharing: if another user installs the same
software (say, to /home/bob), duplication will occur. This is bad
because it increases resource consumption in terms of disk space,
disk cache, and network bandwidth.

Also, user-installed software is typically outside of the control
of the deployment system (e.g., RPM in the Linux world [3]). This
is an important restriction because deployment tools are supposed
to track dependencies between installed components. For instance,
if Alice installs a component X in her local account that depends
on some globally installed component Y , then Y should not be re-
moved while X is still present.

A better and more flexible model is one where both administra-
tors and users can just install software from some trusted source —
such as an operating system distributor, a site-local “channel”, or
some third-party software vendor — and all such components will
end up in a shared component pool, such that components will be
shared between users if and only if they are “equal”, under some
notion of component equality.

That is, users should be logically distinct with regard to the de-
ployment system, i.e., they have the ability to install software them-
selves; but if a user installs a component previously installed by
another user, there will be automatic sharing.

In this paper we explore such a deployment model in the context
of the Nix deployment system [2, 1]. We have previously argued
that Nix has many advantages for software deployment:

• Reliable dependencies: we store components in isolation
from each other to enable reliable detection of the depen-
dency graph between components, which allows us to pre-
vent missing dependencies.

• Side-by-side deployment of versions and variants: if two
components differ in any way (in terms of their build inputs),

they do not overwrite each other, and therefore the installa-
tion of a component can never interfere with the operation of
previously installed components.

• Transparent source/binary deployment. Nix is at its heart a
source deployment system, like the FreeBSD Ports Collec-
tion [4] and Gentoo Linux [5]. Components are deployed
through Nix expressions that describe how to automatically
build components from source, which is a convenient and
flexible deployment model. Source builds are slow, however,
but Nix can regain the efficiency of binary deployment in a
transparent way by downloading pre-built binaries from re-
mote repositories automatically.

• Safe and automatic garbage collection of unused compo-
nents.

• Separation of installation and activation: users can have dif-
ferent views on the set of installed components.

The latter point appears to make Nix ideal for multi-user environ-
ments, except that until now it lacked a security model. In partic-
ular, transparent source/binary deployment requires that when we
download a binary from a remote server instead of building from
source, we must trust that that binary has actually been built from
the same source and has not been tampered with. However, the Nix
model assumes that all binaries resulting from a source build action
are interchangeable, and allows only one such binary to be present
in the system at the same time. Thus, the trust relation with remote
servers must be the same for all users, which is not the case in gen-
eral. (Indeed, some local users themselves might not be trustable.)
That is, all users with installation rights must trust each other not
to install Trojan horses (malicious components masquerading as le-
gitimate software) or other “malware”.

In this paper we improve the Nix system by developing a security
model that allows users to safely share installed components. The
contributions of this model are the following:

• A transparent source/binary model that supports secure and
automatic sharing between users if they are installing the
same binaries, or if they have a mutual trust relation. Sharing
is enabled through the use of a content-addressable compo-
nent store, which stores each component under a file name
that is a cryptographic hash of the contents of the compo-
nent.

• We show how content-addressable stores can deal with self-
referential components (components that contain their own
file name) through the technique of hash rewriting.

• The resulting model liberates us from the monolithic secu-
rity assumptions implicit in most deployment systems (e.g.,
RPM). At the same time, it enables sharing which is absent
from non-monolithic models (e.g., Mac OS X application
bundles).

• We show how we can have unconditional sharing in a purely
source-based deployment model.

This paper is organised as follows. In Section 2 we give an
overview of the previous Nix model, and give its semantics. We
show in Section 3 that in that model we can at least obtain secure
sharing of locally built components. The main contribution is in
Section 4, where we describe the new content-addressable model
that allows sharing between untrusted users. We extend it in Sec-
tion 5 by improving sharing between mutually trusted users. We
discuss further advantages of the new model in Section 6, and re-
lated work in Section 7.

/store

m0ghbai02cd8...-glibc-2.3.4

lib

8yzprq56x5fa...-gtk+-2.6.6

lib

libgtk-x11-2.0.so.0

mkmpxqr8d7f7...-firefox-1.0

bin

firefox

libc.so.6

Figure 1: Nix store

2. THE EXTENSIONAL MODEL

2.1 Overview
In this section we describe a simplified and more powerful ver-

sion of the model described in [2]1, which we here refer to as the
extensional model for reasons explained below.

Nix obtains its main advantages — reliable dependencies, side-
by-side deployment of versions and variants, and separated com-
ponent installation and activation — by storing components in iso-
lation from each other in a Nix store, which is simply a direc-
tory in the file system that contains components. Figure 1 shows
an instance of the Mozilla Firefox component (a web browser)
with some of its runtime dependencies (the GUI library GTK, and
the C library Glibc). Each component, which can be a single file
or a whole directory tree, has a name — its store path — that
uniquely identifies the component, e.g., mkmpxqr8d7f7...-firefox-
1.0. The prefix is a base-32 representation of a 160-bit crypto-
graphic hash [10] of all inputs involved in building the component,
such as sources and dependencies. Thus, any change to the inputs
yields a new component with a new store path.

The use of hashes in paths enables reliable identification of de-
pendencies in two ways. First, it prevents undeclared build-time
dependencies, for if a store path is not explicitly declared as an in-
put to the build process, tools such as compilers and linkers will not
find it (in contrast to “global” directories such as /usr/lib).

Second, it allows us to discover runtime dependencies by scan-
ning for the hash parts of store paths inside components [2]. For
instance, Unix executables contain a dynamic library search path
(the RPATH [13]) by which the dynamic linker can find libraries.
E.g., the Firefox executable in /store/mkmpxqr8d7f7...-firefox-
1.0/bin/firefox contains in its RPATH the path to its GTK runtime
dependency, /store/8yzprq56x5fa...-gtk+-2.6.6/lib. By scanning
for the hash part 8yzprq56x5fa... inside files of the Firefox com-
ponent, we discover that it has a dependency on a specific instance
of GTK 2.6.6. This technique is generic; Nix knows nothing about
the format of Unix executables specifically.

Full information about the runtime dependency graph allows safe
deployment by always deploying closures of paths under the depen-
dency relation discovered by scanning. For instance, if we deploy
our Firefox instance, we must also deploy the instances of GTK
and Glibc (the C library) thus found.

Users can have different views on the set of installed applications

1The main difference is the removal of explicit closure represen-
tations from the Nix store; the references graph is now maintained
per path in a database.

{ stdenv, fetchurl, pkgconfig

, gtk, libIDL, ... }:

stdenv.mkDerivation {

name = "firefox-1.0";

builder = ./builder.sh;

src = fetchurl {

url = ftp://.../firefox-1.0-src.tar.bz2;

md5 = "49c16a71f4de...";

};

inherit pkgconfig gtk ...;

}

Figure 2: firefox.nix: Nix expression for Firefox

PATH=$pkgconfig/bin:...

tar xvfj $src

cd mozilla

./configure --prefix=$out --with-gtk=$gtk ...

make

make install

Figure 3: builder.sh: Builder for Firefox

through user environments, which are simply sets of symbolic links
[11] to the programs of the components that each user has selected.

2.2 Nix expressions
Nix is at heart a source deployment system, meaning that com-

ponent deployers distribute to client machines Nix expressions that
specify how to automatically build components and their depen-
dencies from source. The Nix expression language is a simple
functional language that is used to define how to build components
and how to compose them. The basic values of the language are
strings, paths such as ./builder.sh, and attribute sets of the form
{x1=e1; . . .xn=en;}, binding the value of expressions ei to fields
xi. The form {x1, . . . ,xn}: e defines a function with body e that
takes as argument an attribute set with fields named x1, ..., xn. A
function call e1 e2 calls the function e1 with arguments specified in
the attribute set e2.

An example of a Nix expression to build Firefox is shown in Fig-
ure 2, which is a function that specifies how to build Firefox if cer-
tain arguments are supplied, namely, Firefox’s dependencies. The
function arguments are specified at the top, i.e., stdenv, gtk, and so
on; these all represent dependencies. (The dependency stdenv pro-
vides a standard Unix build environment, i.e., a C compiler, com-
mon Unix tools, and so on.) When the function is called with con-
crete arguments for these dependencies, a derivation is returned,
which represents a component build action. The derivation is pro-
duced by the call stdenv.mkDerivation. The arguments of this call
are the inputs to the build process. The construct inherit causes
an argument to be inherited from the surrounding lexical scope, so,
e.g., the gtk function argument is passed verbatim as a derivation
input. The function fetchurl downloads the source of Firefox from
the Internet and checks that the downloaded content matches the
specified cryptographic hash.

The special argument builder identifies a script that performs the
actual build. Figure 3 shows the builder for Firefox, which is a
fairly standard command sequence to build a Unix component. All
derivation arguments specified in the call to stdenv.mkDerivation

rec {

firefox = (import ./firefox.nix) {

inherit fetchurl stdenv

pkgconfig gtk libIDL ...;

};

gtk = (import ./gtk.nix) {

inherit fetchurl stdenv glib atk ...;

};

libIDL = ...;

fetchurl = ...;

stdenv = ...;

}

Figure 4: composition.nix: Nix expression composing Firefox,
GTK, etc.

are passed as environment variables. In the case of arguments that
denote dependencies, such as gtk, these environment variables hold
the paths of those dependencies in the Nix store. For instance,
the environment variable gtk will hold the path of the GTK in-
stance (e.g. /store/8yzprq56x5fa...-gtk+-2.6.6). Also, the spe-
cial variable out contains the store path where the builder is to in-
stall its output (e.g., /store/mkmpxqr8d7f7...-firefox-1.0). How
these paths are computed is described below.

Since the Firefox expression in Figure 2 is a function, to build
a concrete Firefox instance we have to call the function, passing
in values for the expected arguments. An example of such a call
is shown in Figure 4. The Firefox expression in Figure 2 is im-
ported from firefox.nix and called with arguments that are inher-
ited from the lexical scope. Like Firefox, these values (e.g., gtk)
are computed by importing Nix functions and calling them with the
appropriate arguments. So a value like gtk also evaluates to a call
to stdenv.mkDerivation that builds the component using its own
particular builder, sources, dependencies, etc. The rec construct
causes attributes to be mutually recursive, e.g., firefox can refer to
gtk.

To automatically install a component from source, users obtain
Nix expressions, and run a command such as

$ nix-env -f composition.nix -i firefox

The command nix-env evaluates the firefox value in Figure 4, recur-
sively builds all components, and makes sure that the programs of
the resulting top-level component (e.g., /store/mkmpxqr8d7f7...-
firefox-1.0/bin/firefox) are added to the user’s PATH environment
variable.

2.3 Store derivations
Nix expressions are not built directly; rather, they are translated

to the more primitive language of store derivations, which encode
single component build actions. Store derivations are placed in the
Nix store, and as such have a store path too. The advantage of this
two-level build process is that the paths of store derivations give
us a way to uniquely identify objects of source deployment, just as
paths of binary components allow us to uniquely identify objects of
binary deployment.

A store derivation specifies the output path that it builds, the
paths of its input derivations (build time dependencies), the paths
of its immediate sources (which are copied to the Nix store by the
translation process), the path of the builder, and the shell environ-
ment to be passed to the builder. For example, the store derivation

resulting from translating the firefox variable in Figure 2 resides in
a store path /store/rax19fjg9691-firefox.drv containing:

{ output = ”/store/mkmpxqr8d7f7...-firefox-1.0”
, inputDrvs = {

”/store/0qcsmdjk9xmd...-stdenv.drv”,
”/store/27fv8qak30hk...-gtk.drv”, . . .}

, inputSrcs = {”/store/m6brsfpmpa31...-builder.sh”}
, builder = ”/store/m6brsfpmpa31...-builder.sh”
, envVars = {

(”out”,”/store/mkmpxqr8d7f7...-firefox-1.0”),
(”stdenv”,”/store/vq5r7adr687p...-stdenv”),
(”gtk”,”/store/8yzprq56x5fa...-gtk+-2.6.6”),
. . .}

}

Note that the environment variables refer to paths produced by the
input derivations. For instance, the path /store/8yzprq56x5fa...-
gtk+-2.6.6 is the output of the derivation /store/27fv8qak30hk...-
gtk.drv.

How are the hash parts of store paths computed? For sources and
store derivations, they are the hash of the content of the file. That
is, when copying a source file at path p to the Nix store, the hash is

hash(”src:”+contents(p))

where the function contents(p) computes a canonical serialisation
of the file system contents at path p (i.e., a dump of p), hash(s)
returns a base-32 representation of a 160-bit cryptographic hash
of string s, and + denotes string concatenation. In effect, those
parts of the Nix store representing copied sources can be said to be
content-addressable: if we know the content of a file, we also know
its path.

On the other hand, for output paths (the results of derivations),
we do not know the contents of a component until after it has been
built — but we have to assign it a path before it is built! This is
because Unix components for instance typically store references
to their own installation path into executables, libraries, and other
files. Therefore we compute the hash part of the output of a deriva-
tion d as a hash of the input derivations:

hash(”out:”+show(d′))

where d′ equals d with output set to the empty string, and show(d)
yields a string representation of the derivation d. The prefixes
”src:” and ”out:” are used to prevent sources and output paths from
accidentally hashing to the same path.

2.4 Transparent Source/Binary Deployment
The model as described above is a source deployment model:

component distributors deploy to clients Nix expressions that de-
scribe how to automatically build the components from source by
running build actions. That is, Nix expressions essentially form
a high-level Makefile for components. This is the model used by
source-based deployment systems such as the FreeBSD Ports Col-
lection [4] and Gentoo Linux [5]. Such a model is convenient and
flexible for developers and component distributors, because it obvi-
ates the need to explicitly make binary packages, and because Nix
expressions can express component variability, allowing customi-
sation of components. On the other hand, source deployment is bad
for end-users, because it is slow: installing Firefox from Figure 4
entails building not only Firefox but also all its dependencies, e.g.,
the C compiler and library, GUI libraries, and so on.

For this reason Nix has the notion of transparent source/binary
deployment through its substitute mechanism. Distributors can pre-
build specific instances of Nix expressions and make them centrally

available, e.g., on a web server. Clients can then register the fact
that such pre-built components are available, i.e., that if we subse-
quently wish to build a store path p, we can do so by downloading
a binary from URL u instead of building. Thus, source deployment
transparently optimises into binary deployment. Moreover, if the
user locally modifies Nix expressions or sources (say, to optimise
for a specific environment), this might cause the output paths of the
derivations to change, in which case binary deployment automati-
cally falls back to source deployment.

2.5 Semantics
Here we formalise some aspects of the semantics of the exten-

sional model, as a basis for the discussion of the intensional model
in Section 4.

Nix maintains some meta-information about store paths in a few
database tables. The set valid : {Path} (where Path in the uni-
verse of store paths) lists the paths that have been successfully built,
added as a source, or obtained through a substitute. It does not in-
clude paths that are currently being built, or that have been left over
from failed operations. (We write valid[p] to denote that a path is
valid.)

The mapping references : Path→ {Path} maintains the depen-
dency graph, i.e., the set of store paths referenced by the contents
of each store path as discovered by scanning for hashes. At any
time Nix maintains the closure invariant:

∀p : valid[p]→∀p′ ∈ references[p] : valid[p′] (1)

This means that the set of valid paths is closed under the references
relation. The closure of a path p is the set of all paths that might be
accessed due to the execution of the component p:

closure(p) = {p}∪
⋃

p′∈references[p]

closure(p′)

The mapping substitutes : Path → (Path, [String]) stores the
substitutes that have been registered by users. The right-hand side
is the name of a program with its command-line arguments that
should be executed to obtain the contents for the path denoted in
the left-hand side, e.g., (”download-url.sh”, [”http://. . . ”, . . .]).

The following invariant states that references must be known for
valid paths, as well as for paths that are invalid but have substitutes.

∀p : (valid[p]∨ substitutes[p] 6= ε)→ references[p] 6= ε

(The special value ε indicates that no entry occurs for a value in the
given mapping.) It is necessary to know the references of substi-
tutable paths in order to maintain the closure invariant on deploy-
ment. That is, prior to installing a path through a substitute, we
must first build or download its references. For instance, from Fig-
ure 1 it follows that prior to downloading Firefox we must down-
load Glibc and GTK (in that order).

Figure 5 shows the build algorithm for derivations in pseudo-
code. The operator← denotes assignment, and x ∪← y is shorthand
for x ← x∪ y. Locking of output paths to prevent simultaneous
builds of a derivation is omitted in this paper (though not in our
implementation). Given a store derivation d, the algorithm builds
the output by running the builder, but only if the output was not
already valid and could not be made valid through a substitute. If
we do build, we subsequently scan for references to input paths
(that is, the union of closures of input sources and of output paths
of input derivations), and set the path to valid. Not shown here
is that the implementation maintains the invariants at all times by
wrapping database operations in transactions as appropriate.

build(d) :
if substitute(d.output) : return
// Recursively build the inputs, then d itself.
inputs← /0
for each p ∈ d.inputsDrvs :

d′← readAndParseDrv(p)
build(d′)
inputs ∪← closure(d′.output)

for each p ∈ d.inputsSrcs :
inputs ∪← closure(p)

Run d.builder in an environment d.envVars
// Assuming the build succeeded:
references[d.output]←

the subset of inputs referenced in contents(d.output)
found by scanning for the hash parts of inputs

valid
∪←{d.output}

substitute(p) :
if valid[p] : return true
if substitutes[p] = ε : return false
for each p′ ∈ references[p] :

if ¬ substitute(p′) : return false
for each (p′,args) ∈ substitutes[p] :

if execution of program p′ with arguments args succeeds :
valid

∪←{p}
return true

return false

Figure 5: Build algorithm in the extensional model

2.6 Extensionality
So why do we call this model extensional? The reason is that we

make an assumption of extensional equality. Build operations in
general are not pure: the contents that a builder stores in the output
path can depend on impure factors such as the system time. For
instance, linkers often store a timestamp inside the binary contents
of libraries. Thus, each build of a derivation could produce a subtly
different output.

However, the model is that such impure influences, if they ex-
ist, do not matter in any significant way. For instance, timestamps
stored in files generally do not affect their operation. Hence exten-
sional equality: two mathematical objects (such as software com-
ponents) are considered extensionally equal if they behave in the
same way for any operation on them. That is, we do not care about
their internal structure.

Thus, while any derivation can have a potentially infinite set of
output path contents that can be produced by an execution of its
builder, we view the elements of that set as interchangeable.

But this is a model — an assumption about builders. For in-
stance, if a builder yields a completely different component when
invoked at a certain time of day, it is beyond the scope of the model.
In reality, also, we can always observe inequality by observing the
internal encoding of the component, since that is a permissible op-
eration. But the model is that such observations do not take place
or do not have an observable effect.

2.7 Sharing
Sharing a Nix store in the extensional model is only possible if

all users of the Nix store trust each other. For instance, suppose
that Alice has obtained a Nix expression E from a trusted source,
and pulls substitutes from machine X , where X is a malicious ma-

chine that provides Trojaned binaries for the output paths of the
derivation produced by E. This may cause Alice’s account to be
compromised. If subsequently Bob installs the same expression E,
but pulls from trusted machine Y , he will still obtain the Trojaned
binary pulled by Alice. This is because both binaries occupy the
same location in the file system, and Nix will not install another
substitute if the output path is already valid.

The problem here is that machine X claims that its substitute is an
output of some derivation d, but it isn’t. However, since we have no
way to verify such a claim, we cannot discover this fact. We have
to trust such a claim, and hence we must have a trust relation with
machine X .

3. LOCAL SHARING
In Section 2.7 we saw that sharing between machines is only

possible in the extensional model if all users have the same remote
trust relations. For locally-built derivations on the other hand (i.e.,
when not using substitutes), we can allow mutually untrusted users.
The trick is in preventing a user from influencing the build for some
derivation d in such a way that the result is no longer a legitimate
output of d.

For instance, if Alice has direct write access to the Nix store, she
can start a build of derivation d, then overwrite the output path with
a Trojan horse. Similarly, even if builds are done through a server
process that executes builds on behalf of users but running under a
different user ID (uid), Alice can interfere with the build of d by
starting a build of a specially crafted derivation d′, the builder of
which writes a Trojan horse to the output path of d.

We can prevent this as follows. First, users no longer have direct
write access to the Nix store. All builds are performed by a Nix
server process on behalf of users. The server runs builders under
uids that are distinct from those of ordinary user or system pro-
cesses (e.g., nix-build-{1,2, . . .}). Also, no two concurrent builds
can have the same uid. This prevents one builder from interfering
with the output of another, as illustrated above. Thus, the server
maintains a “pool” of free and in-use uids that can be used for
building.

When a build finishes, prior to marking the output path as valid,
we do the following:

• Ensure that there are no processes left running under the uid
selected for the builder. On modern Unix systems this can
be done by performing a kill(-1, SIGKILL) operation while
executing under that uid, which has the effect of sending the
KILL signal to all processes executing under uid.

• Change ownership of the output to the global Nix user.

• Remove write permission and any set-user-ID and set-group-
ID bits (which are special permission bits on files that cause
them to be executed with the rights of a different user or
group — a potential security risk).

Note that the latter two steps have a subtle race condition. For
instance, if we change ownership first, we have the risk of inad-
vertently creating a setuid binary owned by the global Nix user. If
however we remove write and setuid permission first, a left-over
process spawned by the builder could restore those permissions be-
fore the ownership is changed. This is why the first step is impor-
tant. Also, on Unix, if a left-over process opened a file before the
ownership changes, it can still write to it after the change, since
permissions are only checked when a file is opened.

In conclusion, we can securely do source deployment in the ex-
tensional model with sharing. Of course, that is not enough: we

also want to have transparent binary deployment through the sub-
stitute mechanism.

Note that none of this ensures that binary components can be
trusted. What it does is ensure that if any user builds a Nix expres-
sion, the result will be a binary built by that Nix expression with-
out outside interference. This implies that if the Nix expression is
trusted, any locally built binary produced by it is also trusted.

4. THE INTENSIONAL MODEL
As we saw in Section 3, we can have secure sharing of locally

built derivation outputs, but not of remotely built outputs obtained
through the substitute mechanism. All users have to trust that the
contents produced on another machine purportedly from some deri-
vation d is indeed from derivation d. As stated above, such a trust
relation must be global for a Nix installation. In this section we
develop a substantially more powerful model in which this is not
the case. We do this by moving to a fully content-addressable Nix
store for all store objects, including derivation outputs. As we shall
see, this is not trivial due to self-referential components.

In the example in Section 2.7, Alice and Bob had different trust
relations mapping different outputs onto the same store paths. This
problem does not exist in a content-addressable store, where the
hash component of the store path is equal to the hash of the contents
of that path. In such a system content equality implies path equality.

If we have this property, then different users can have differ-
ent trust relations: for each user we can have a different derivation
to output path mapping. This is the intensional model — equal-
ity is defined by internal contents, not observable behaviour. This
model is much stronger than the extensional model, since it doesn’t
make the simplifying but unenforcible assumption of builder purity.
Rather, intensionality is an inherent property of the system.

4.1 Content-addressability
The crucial property of the intensional model is that the Nix store

is now content-addressable: if we know (the hash of) the contents
of a store object, we know its store path. Formally, this means that
the following hash invariant holds:

∀p : valid[p]→ hashPart(p) = hash(contents(p))

where hashPart(p) returns the hash component of path p, e.g.,
for /store/mg12dly8...-firefox-1.0 it returns mg12dly8.... This in-
variant says that for all valid paths, the hash part of the store path
equals the hash of the contents of that store path. For instance, the
store path /store/mg12dly8...-firefox-1.0 implies that its content
has cryptographic hash mg12dly8....

So how does content-addressability help us to achieve secure
sharing in multi-user Nix stores? The answer is that users can now
independently install software, i.e., build derivations. If the results
of those independent builds are the same, we get sharing; if they
differ due to impurity, we do not get sharing. This applies not just
to local builds but more significantly to substitutes.

In the example of Section 2.7, when Alice installs a derivation
for Firefox using a Trojaned substitute from a malicious machine,
the result will end up in some path, say /store/x1cpydjlgxbw...-
firefox-1.0. If Bob installs the same derivation but using a legiti-
mate substitute, the content will differ and so the result will neces-
sarily be in a different store path, e.g., /store/mg12dly8...-firefox-
1.0. His user environment will include the latter path. Thus, he is
insulated from Alice’s bad remote trust relation.

4.2 Hash rewriting
The property of content-addressability is easily stated but not so

easily achieved. This is because we do not know the content hash

of a component until after we have built it, but we need to supply
an output path to the builder through the out environment variable
beforehand, so that it knows where to store the component.

We solve this problem through hash rewriting. The idea is that
we perform a build in a store path p with a randomly generated
hash part. Afterwards, we compute the content hash, and rename
p to

p′ = subst(p, {hashPart(p) hash(contents(p))})

(where subst(s,r) is a function that applies a set of substitutions r
to the string s; substitutions are denoted as x y). That is, the tem-
porary path is changed to one that obeys the hash invariant. Note
that the replacement string has exactly the same length in order not
to break binary components (see Section 6.1 for a further discus-
sion of the risks of hash rewriting).

There is a snag, however: simply renaming the temporary path
doesn’t work in the case of self-references, i.e., if the binary image
of a file refers to its own store path. This is quite common. For in-
stance, the RPATH of a Unix executable (mentioned in Section 2.1)
frequently points to its own directory so that related library com-
ponents can be found. If we rename the temporary path p to p′ in
such a case, the references to p will become dangling references,
and the component probably will not work anymore.

We might be tempted to replace all occurrences of the string
hashPart(p) in the content of the component with hashPart(p′).
However, since this changes the content of the component, it also
invalidates the hash! And with cryptographic hashes it is not feasi-
ble to compute a “fixed point”, i.e., a string containing the hash to
which the string hashes.

We fix this problem by computing hashes modulo self-references.
Essentially, this means that we ignore self-references when com-
puting the hash. First, when computing the hash of contents(p),
we zero out all occurrences of the string hashPart(p). That is,

p′ = subst(p, {hashPart(p)
hashModulo(contents(p), hashPart(p))}) (2)

where hashModulo(s, h) is defined as

hash(∑
i∈find(s, h)

(i+”:”)+”:”+subst(s, {h 0}))

The function find(s, h) yields the offsets of the occurrences of the
substring h in the string s, and 0 denotes a string consisting of bi-
nary 0s of the same length as h. It is necessary to encode the offsets
of the occurrences of h into the hash to prevent hash collisions for
strings that are equal except for having either h or 0-strings at the
same location. The colons simply act as disambiguators, separating
the offsets and the contents.

Second, we copy p to p′, while rewriting all occurrences of
hashPart(p) in the contents of p with hashPart(p′):

contents(p′) = subst(contents(p),
{hashPart(p) hashPart(p′)})

Note that

hashModulo(contents(p), hashPart(p))
= hashModulo(contents(p′), hashPart(p′))

even though

hash(contents(p)) 6= hash(contents(p′))

in case of self-references. That is, the hash modulo the randomly
generated hash part does not change after rewriting.

We can now formulate the hash invariant as follows:

∀p : valid(p)→ hashPart(p) =
hashModulo(contents(p), hashPart(p)) (3)

4.3 Semantics
We can now formalise the intensional model. The main differ-

ence with the extensional model is that output paths are no longer
known a priori. But because of this, we cannot prevent re-building
a derivation by checking (as was done in Figure 5) whether its out-
put path is already valid. The same applies to checking for substi-
tutes, which are also keyed on output paths.

Also, in the intensional model, due to impurity a single deriva-
tion can result in several distinct components residing at different
store paths, if the derivation is built multiple times (e.g., by dif-
ferent users). That is, a derivation actually defines an equivalence
class of store paths within the Nix store, the members of each class
all having been produced by the same derivation. Thus, we add to
store derivations a field eqClass : EqClass and remove the field
output.

So what is an equivalence class (i.e, what is the type EqClass)?
In fact, the equivalence class eqClass is exactly the same as the
original output field! It is computed in the same way that the out-
put field was computed in the extensional model: by hashing the
derivation with its eqClass field set to the empty string. For in-
stance, the Firefox derivation might have d.eqClass = ”/store/-
mkmpxqr8d7f7...-firefox-1.0”.

So we have really just renamed the field output to eqClass.
However, there is an important difference in the meaning of eq-
Class. The equivalence class path is “virtual”: it is never built. The
reason for using store paths for equivalence classes is that it gives us
an easy way to refer to the output of a derivation from other deriva-
tions. For instance, the envVars field of a derivation that depends
on Firefox must in some way refer to the path of the Firefox com-
ponent, even though this path is not known in advance anymore.
When we build a derivation d depending on derivation d′, we sim-
ply rewrite in d.envVars all occurrences of hashPart(d′.eqClass)
to a trusted member of the equivalence class denoted by d′.eqClass.
Equivalence classes are computed in exactly the same way

Since we must remember for each derivation what output paths
were produced by it and who built or substituted them, we define a
database mapping eqClassMembers : EqClass→{(UserId,Path)}
meaning that an equivalence class maps to a set of store paths along
with the name of the user that built or substituted the store path. A
store path can occur multiple times for different users.

The set of trusted paths in the equivalence class of a derivation
output is simply the set of valid or substitutable paths for some user:

trustedPaths(eqClass, user) =
{p | (user, p) ∈ eqClassMembers[eqClass]}

4.3.1 Equivalence classes and closures
A path can be a member of multiple equivalence classes. This is

easy to see: we can conceive of any number of different derivations
that produce the output ”Hello World” in various ways. So we
cannot unambiguously say to what equivalence class such a path
belongs. However, as we shall see below, there are times when we
need to know this. In particular, when we compute the closure of
a path p, we would like to know to what equivalence class each
reference belongs. Such a query is only meaningful given a cer-
tain context, i.e., when we compute the closure of a path p in an
equivalence class e.

To this end, we maintain a database mapping refClasses : (Path,
Path)→{(EqClass, EqClass)}. This table allows us to determine

equivalence classes when we are following the references graph.
It has the following meaning: if (e,e′) ∈ refClasses[(p, p′)], then
there is an edge in the references graph from path p in equivalence
class e to path p′ in equivalence class e′.

The function closure′(p, e) computes the closure of a path p
in equivalence class e, yielding not just the paths in the closure
but also their equivalence classes; thus, it returns a set of pairs
(p,e) : (Path,EqClass).

closure′(p, e) = {(p,e)}∪
⋃

p′∈references[p]

followRef(p,e, p′)

The auxiliary function followRef(p,e, p′) yields the closure of p′

coming from path p in equivalence class e:

followRef(p,e, p′) =

{
closure′(p′, ε) if es′ = /0⋃

e′∈es′ closure′(p′, e′) otherwise

where

es′ = {e′ | (e,e′) ∈ refClasses[(p, p′)]}

The condition es′ = /0 is to handle paths that are not in any equiv-
alence class. This is quite normal: paths that are not outputs of
derivations (such as sources) need not be in equivalence classes.
For such paths, the special value ε is used to denote the absence of
an actual equivalence class.

4.3.2 Equivalence class collisions
The fact that a derivation can resolve to any number of output

paths due to impurity, leads to the problem that we might end up
with a closure that contains more than one element from the output
equivalence class of a derivation.

Figure 6 shows an example of this problem. Suppose that Alice
has locally built gtk and pkgconfig (which both depend on glibc).
She has also registered Bob’s remotely built libIDL as a substitute
(which also depends on glibc). However, though Bob’s glibc was
built from the same derivation, due to impurities the build result
is different. Thus, eqClassMembers[glibceq] = {(”alice”, glibcA),
(”alice”, glibcB)}. (For brevity, we use variables glibcA, glibceq
and so to represent concrete paths and equivalence classes.) This
is in itself not a problem. However, suppose that Alice next tries
to build firefox, which depends on gtk, pkgconfig, and libIDL. We
then end up with a Firefox binary that links against two glibcs. This
might work, or it might not — depending on the exact semantics
of dynamic linking. In any case, it is an observable effect — it
influences whether a build succeeds and whether the build result
works properly.

Thus, we need to prevent that any closure ever contains more
than one path from an equivalence class. This is the equivalence
class uniqueness invariant:

∀p ∈ Path : valid[p]→∀e ∈ EqClass :

∀(p1,e1) ∈ closure′(p, e) : ∀(p2,e2) ∈ closure′(p, e) :
(e1 6= ε ∧ e1 = e2)→ p1 = p2

That is, for any two elements (p1,e1) and (p2,e2) in any closure
of a valid path p, if the equivalence classes are the same (e1 = e2),
then the paths must also be the same (p1 = p2). The condition
e1 = ε is to handle paths that are not in any equivalence class (such
as sources).

So when we build a derivation, we must select from the paths in
the union of input closures one from each equivalence class. How-
ever, we must still maintain the closure invariant. For instance, in
Figure 6, we cannot just select the set {glibcA, gtkA, pkgconfigA,
libIDLB}, since libIDLB depends on glibcB which is not in this set.

Equivalence class glibc

glibc
A

pkgconfig
A

gtk
A

glibc
B

libIDLB

firefox

Figure 6: An equivalence class collision

Equivalence class glibc

glibc
A

pkgconfig
A

gtk
A

libIDLB′

glibc
B

libIDLB

firefox

Figure 7: Resolution of the equivalence class collision

Once again, hash rewriting comes to the rescue. We can rewrite
libIDLB so that it refers to glibcA instead of glibcB. That is, we
compute a new path libIDL′B with contents

subst(contents(libIDLB),
{hashPart(glibcB) hashPart(glibcA)})

(Of course, self-references in libIDLB must also be rewritten as de-
scribed in Section 4.2.) This is shown in Figure 7. The dotted edge
denotes a copy-with-rewriting action.

An interesting problem is which paths to select from each equiv-
alence class such that the number of rewrites is minimised. For
instance, if we select glibcA, then we have to rewrite one path
(namely libIDLB), while if we select glibcB, we have to rewrite
two paths (gtkA and pkgconfigA). I do not currently know whether
there exists an efficient algorithm to find an optimal solution. A
heuristic that works fine in practice is to do a bottom-up traversal
of the equivalence class dependency graph, picking from each class
the path that induces the least number of rewrites.

However, picking an optimal solution with respect to the current
derivation is not particularly useful in any case, since it ignores
both the state of the Nix store as a whole, and future derivations.
For instance, in our example Alice might in the future install many
additional components from Bob’s remote repository (e.g., because
Bob is a primary distribution site). Thus, globally there are many
more paths referring to glibcB than to glibcA. In this case it is bet-
ter to select glibcB and rewrite Alice’s locally built components.
Good heuristics include selecting the path that has the largest num-
ber of references to it, or the path that is also trusted by the system
administrator (e.g., a special user named root).

Figure 8 shows the resolution algorithm. The function resolve
accepts a set of pairs (p,e) each denoting a path p in an equiva-
lence class e. This set is closed under the references relation but
possibly violates the uniqueness invariant. The function yields a
set of paths that does obey the invariant. The function selectPaths
must implement some policy of selecting a path from each equiva-
lence class, as discussed above. It returns a map from equivalence
classes to paths, e.g., selected[glibceq] = glibcA for the example in
Figure 7. By definition, the paths in this set meet the uniqueness

resolve(paths) :
// For each path determine its equivalence class.
for each (p,e) ∈ paths :

conflicts[e] ∪←{p}
// Select one path for each equivalence class.
selected← selectPaths(conflicts)
paths′← /0
for each (p,e) ∈ selected :

paths′ ∪←{maybeRewrite(p, e, selected)}
return paths′

maybeRewrite(p, e, selected) :
newRefs← /0
eqRefs← /0
rewrites← /0
for each pre f ∈ references[p] :

Set ere f such that (e,ere f) ∈ refClasses[(p, pre f)]
prepl ← selected[ere f]
(p′repl ,e

′
repl)←maybeRewrite(prepl , ere f , selected)

newRefs ∪←{p′repl}
eqRefs ∪←{(p′repl ,e,ere f)}
rewrites ∪←{hashPart(pre f) hashPart(p′repl)}

if newRefs = references[p] : return (p,e)
pnew← copy(p, rewrites, newRefs, eqRefs)
eqClassMembers[e] ∪←{(curUser, pnew)}
return (pnew,e)

copy(p, rewrites, refs, eqRefs) :
c← subst(contents(p), rewrites)
// Compute the new path according to Eq. 2.
h← hashModulo(c, hashPart(p))
p′← subst(p, {hashPart(p) h})
if ¬ valid[p′] :

c′← subst(c, {hashPart(p) h})
Store contents c′ at path p′

valid
∪←{p′}

references[p′]← refs
for each (pre f ,e,ere f) ∈ eqRefs :

refClasses[(p, pre f)]
∪←{(e,ere f)}

return p′

Figure 8: Collision resolution algorithm

invariant, since only one path for each equivalence class is selected.
However, they are not necessarily closed, so paths referring to paths
outside of the set must be rewritten to refer only to paths in the set.
This is done by maybeRewrite, which inspects each reference pre f
of path p, maps it onto the equivalent path prepl in the selected
set, and recursively rewrites it into p′repl . Then, if any of the refer-
ences changed, p itself is rewritten. (For brevity, memoisation of
maybeRewrite is omitted. Also, we do not show how sources, i.e.,
pairs (p,ε) in paths are treated. These are simply left untouched by
resolve, i.e., copied to the resulting set paths′.)

The auxiliary function copy copies a store path after applying a
set of hash rewrites to the contents. This is the only function that
adds valid paths to the store in the intensional model. It also set
the references and refClasses mapping for the newly created path.
The latter are provided by maybeRewrite through the set eqRefs
that contains triples (pre f ,e,ere f) denoting that the reference link
between p and pre f corresponds to equivalence classes e and ere f .

build(d) :
// Note: curUser is the invoking user.
trusted← trustedPaths(d.eqClass, curUser)
for each p ∈ trusted :

if substitute(p) : return

// Gather all trusted input closures, then resolve.
inputs← /0
for each p ∈ d.inputsDrvs :

d′← readAndParseDrv(p)
build(d′)
for each p′ ∈ trustedPaths(d′.eqClass, curUser) :

inputs ∪← closure′(p′, d′.eqClass)
for each p ∈ d.inputsSrcs :

inputs ∪← closure′(p, ε)
inputs← resolve(inputs)

// Rewrite equivalence classes to real paths.
mapping← /0
for each (p,e) ∈ inputs :

mapping ∪←{hashPart(e) hashPart(p)}
Apply rewrites mapping to d.envVars and d.builder

// Build in a temporary path.
output← subst(d.eqClass,
{hashPart(d.eqClass) randomHash()})

d.envVars[”out”]← output
Run d.builder in an environment d.envVars
refs← the subset of inputs referenced in content(output)
output′← copy(output, refs, /0,
{(pr,d.eqClass,er) | (pr,er) ∈ inputs∧ pr ∈ refs})

eqClassMembers[d.eqClass] ∪←{(curUser,output′)}

Figure 9: Build algorithm in the intensional model

4.3.3 Build algorithm
Figure 9 shows the build algorithm for the intensional model. We

assume that all operations on the Nix store are done by a privileged
user on behalf of the actual users, who do not have write access
themselves. The main differences with the build algorithm for the
extensional model (Figure 5) are as follows. All trusted members
of d.eqClass can be used as substitutes. Likewise, the closures
of all trusted outputs are added to the set of inputs. Equivalence
class collisions in that set are resolved. We rewrite occurrences of
equivalence classes in the environment variables and builder loca-
tion to the actual paths selected by trustedPaths and resolve. For
the output path, we construct a temporary path equal to d.eqClass
but with a random hash part. After the build, we copy and rewrite
this temporary path to its final, content-addressable location in the
Nix store. The temporary path can then be garbage collected.

The omitted function substitute(p) is similar to the one in the
extensional model, except that the substitute program produces a
temporary path which we then copy to its final location. Also, sub-
stitutes are now registered per user, and substitute only tries substi-
tutes registered by the current user. Content-addressability allows
the function to verify that a substitute for a path p does indeed cre-
ate content that matches p, i.e., that invariant 3 holds.

5. THE MIXED MODEL
The intensional model described in the previous section gives

us a Nix store that can be shared by mutually untrusted users, or

users who have different remote trust relations. Due to content-
addressability, we get sharing between multiple builds of a deriva-
tion if each build produced exactly the same binary result, that is,
if there is no impurity in the build. If there is impurity, then each
build result will end up under a different store path.

Between untrusted users, this is exactly what we want. For in-
stance, if Alice obtains substitutes from a malicious machine, it
does not affect Bob. Note that Alice and Bob do get sharing if they
happen to get their substitutes from the same remote machine.

However, we want to re-enable sharing in common scenarios.
For instance, users generally trust components installed by the ad-
ministrator. Thus, if Alice is an administrator, than Bob should be
able to use the output paths already installed by Alice. In general,
users should be able to specify trust relations between each other.

We can achieve this through a simple extension of the inten-
sional model called the mixed model. For each user, we main-
tain a mapping trustedUsers : UserId → {UserId} that specifies
for each user a set of trusted users. E.g., trustedUsers[”bob”] =
{”alice”,”bob”}. (The mapping should be reflexive, that is, u ∈
trustedUsers[u].) We then augment the function trustedPaths:

trustedPaths(eqClass, user) =
{p | ∃u ∈ trustedUsers[user] :

(u, p) ∈ eqClassMembers[eqClass]}

Otherwise, this is exactly the intensional model. Of course, shar-
ing between users increases the possibility of equivalence class
collisions, but that is handled through the resolution algorithm in
Section 4.3.2. The name “mixed model” does not imply that we
back away from intensionality — the store is still fully content-
addressed. We just gain back the ability to have sharing between
users. The crucial difference with the extensional model is that
sharing is now selective and fine-grained.

6. DISCUSSION
In this section we briefly discuss our experiences with the imple-

mentation of the intensional model, and the security implications
of content-addressability through cryptographic hashes.

6.1 Evaluation
The most risky part of the intensional model is the use of hash

rewriting. It comes as a shock to some that this even works, i.e.,
doesn’t produce broken binaries. In [2], we even wrote that “patch-
ing files [by rewriting hashes] is unlikely to work in general, e.g.,
due to internal checksums on files being invalidated in the process.”
It turns out that this assessment was too pessimistic. Whether the
technique is practical is an empirical question. We have applied
hash rewriting to a set of applications from the Nix Packages col-
lection (a large set of Nix expressions for existing Unix software)
consisting of 86 components, and verified that the resulting applica-
tions were functional. These applications include C/Unix programs
such as Firefox, as well as Java and C# programs such as Monode-
velop. We encountered no problems.

Hash rewriting necessarily fails in case of pointer hiding [2], i.e.,
when references to components are stored in such a way that they
are not detected as such (e.g., in compressed files). However, this
also causes dependency scanning to fail, and those cases are very
rare (in fact, to date we have not encountered them at all).

6.2 Cryptographic hashing
A content-addressable system depends for its correctness on the

assumption that collisions of the hash function being used do not
occur in practice. That is, it should be computationally infeasi-
ble to produce two inputs that hash to the same value. This is the

basic goal of cryptographic hash functions [10]. Nix uses 160-bit
(truncated) SHA-256 hashes, meaning that the brute-force effort
required to find a collision is 280 hash operations on average. How-
ever, the possibility that cryptographic hash functions might sud-
denly be broken is a threat to the long-term deployment of tools
depending on their security. Indeed, MD5 has recently been bro-
ken [16], and SHA-1 weakened [15].

7. RELATED WORK
Nix’s transparent source/binary model is a unique feature for a

deployment system. Relative to binary-only or source-only deploy-
ment models, it adds the complication that we do not only need to
authenticate binaries but also the fact that they are a bona fide result
of certain sources. However, caching and sharing between users of
build results is a feature of some SCM systems such as Vesta [7].

As claimed in the introduction, deployment systems tend to have
monolithic trust models. For instance, typical Unix package man-
agement systems such as RPM [3], Debian APT, or Gentoo Linux
[5], allow installation of software by the administrator only; soft-
ware installed by individual users is not managed by those tools.
On the other hand, Mac OS X application bundles may be installed
and moved around by any user, but the system does not track de-
pendencies in any way.

Security aspects of deployment have typically focused on ensur-
ing integrity of components in transit (e.g., by using signatures),
and on assessing or constraining the impact of a component on the
system (e.g., [14]). We have not addressed the issue of ensuring
that remote substitutes have not been tampered with (e.g., by a
man-in-the-middle). Obviously, such problems can be solved by
cryptographically signing substitutes, or rather, the manifests (lists
of substitutes available on a server), since the fact that substitutes
themselves have not been tampered with is easily verified by com-
paring their cryptographic hashes to their names.

Microsoft’s .NET has a Global Assembly Cache that permits
sharing of components [12]. This is however not intended for stor-
age of components private to an application. Thus, if multiple users
install an application having such private components, duplication
can occur. Also, .NET has a purely binary deployment model, thus
bypassing source/binary correspondence issues.

In [6] a scenario is described in which components impersonate
other components. This is not possible in a content-addressable
file system with static component composition (e.g., Unix dynamic
libraries with RPATHs pointing to the full paths of components to
link against, as happens in the Nix Packages collection).

Content-addressability is a common property of the distributed
hash schemes used in peer-to-peer file-sharing and caching appli-
cations (e.g., Pastry [9]). It is also used in the storage layer of
version management tools such as Monotone [8].

8. CONCLUSION
The Nix deployment system (available at http://nix.cs.uu.

nl) has many useful properties, such as reliable dependencies, side-
by-side deployment of different versions or variants of components,
the ability to atomically upgrade or roll back, transparent source/-
binary deployment, and the ability for different users in a system
to independently maintain sets of activated applications. The latter
is ideal for multi-user environments, except that Nix’s previous ex-
tensional model required mutual trust between all users. The inten-
sional model described in this paper lifts that requirement, while
the mixed model recaptures the sharing of the extensional model
using fine-grained trust relations.

In [2] the techniques underlying the Nix system were motivated

by analogy to techniques used in programming language imple-
mentation. For instance, scanning for hash references in files to
determine possible runtime dependencies is analogous to the way
conservative garbage collectors find pointers. This paper improves
on that result by adding hash rewriting — the analogue of pointer
rewriting in copying garbage collectors — to the repertoire of op-
erations in the Nix deployment system.

Acknowledgements This research was supported by CIBIT|SERC
and NWO/JACQUARD project 638.001.201, TraCE: Transparent
Configuration Environments. I am grateful to Martin Bravenboer
and the anonymous referees for their comments.

9. REFERENCES
[1] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and

policy-free system for software deployment. In L. Damon,
editor, 18th Large Installation System Administration
Conference (LISA ’04), pages 79–92, Atlanta, Georgia, USA,
November 2004. USENIX.

[2] E. Dolstra, E. Visser, and M. de Jonge. Imposing a memory
management discipline on software deployment. In 26th
International Conference on Software Engineering (ICSE
2004), pages 583–592. IEEE Computer Society, May 2004.

[3] E. Foster-Johnson. Red Hat RPM Guide. John Wiley and
Sons, 2003.

[4] FreeBSD Project. FreeBSD Ports Collection.
http://www.freebsd.org/ports/.

[5] Gentoo Foundation. Gentoo Linux.
http://www.gentoo.org/.

[6] M. Grechanik and D. Perry. Secure deployment of
components. In W. Emmerich and A. L. Wolf, editors, 2nd
International Working Conference on Component
Deployment (CD 2004), volume 3083 of Lecture Notes in
Computer Science (LNCS). Springer, May 2004.

[7] A. Heydon, R. Levin, and Y. Yu. Caching function calls
using precise dependencies. In ACM SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 311–320. ACM Press, 2000.

[8] G. Hoare. Monotone.
http://www.venge.net/monotone/, 2005.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer
systems. In 18th IFIP/ACM Intl. Conf. on Distributed
Systems Platforms (Middleware 2001), Nov. 2001.

[10] B. Schneier. Applied Cryptography. John Wiley and Sons,
second edition, 1996.

[11] W. R. Stevens. Advanced Programming in the UNIX
Environment. Addison-Wesley, 1993.

[12] C. Szyperski. Component Software — Beyond
Object-Oriented Programming. Addison-Wesley / ACM
Press, second edition, 2002.

[13] TIS Committee. Tool Interface Specification (TIS)
Executable and Linking Format (ELF) Specification, Version
1.2, May 1995.

[14] V. N. Venkatakrishnan, R. Sekar, T. Kamat, S. Tsipa, and
Z. Liang. An approach for secure software installation. In
16th Systems Administration Conference (LISA ’02), pages
219–226. USENIX Association, Nov. 2002.

[15] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full
SHA-1. In CRYPTO 2005, Aug. 2005.

[16] X. Wang and H. Yu. How to break MD5 and other hash
functions. In Eurocrypt 2005, May 2005.

