
Maximal Laziness

An Efficient Interpretation Technique for Purely
Functional DSLs

Eelco Dolstra

Utrecht University
eelco@cs.uu.nl

Abstract

In lazy functional languages, any variable is evaluated at most once. This paper proposes the notion of
maximal laziness, in which syntactically equal terms are evaluated at most once: if two terms e1 and
e2 arising during the evaluation of a program have the same abstract syntax representation, then only
one will be evaluated, while the other will reuse the former’s evaluation result. Maximal laziness can be
implemented easily in interpreters for purely functional languages based on term rewriting systems that
have the property of maximal sharing — if two terms are equal, they have the same address. It makes
it easier to write interpreters, as techniques such as closure updating, which would otherwise be required
for efficiency, are not needed. Instead, a straight-forward translation of call-by-name semantic rules yields
a call-by-need interpreter, reducing the gap between the language specification and its implementation.
Moreover, maximal laziness obviates the need for optimisations such as memoisation and let-floating.

1 Introduction

In lazy functional languages such as Haskell [18], the value of a variable binding is
computed only when it is needed, and then only once. For instance, in the Haskell
function

f x y = if x == 0 then y else z + z where z = product [1..x]

the function argument y is only computed when x = 0, and the local variable z

only and only once when x 6= 0. Laziness is a useful property because it allows
the programmer to abstract over the ordering of computations, and enables the
construction of infinite data structures and the definition of control structures within
the language [12].

This paper proposes the notion of maximal laziness, in which any set of “equal”
terms is evaluated at most once during the execution of a program. For instance,
in a function such as

f n = fac n + fac n where fac n = product [1..n]

Preprint submitted to Electronic Notes in Theoretical Computer Science 16 February 2008



under a maximal laziness regime, the expression fac n will be computed only once,
while the second occurrence of the expression will reuse the result from the first. To
be precise, if two terms e1 and e2 arising during the evaluation of a program have
the same abstract syntax representation, then only one will be evaluated, while the
other will reuse the former’s evaluation result. Hence, it’s a rather stronger property
than static common subexpression elimination. For instance, in the program

f n = fac n + fac 10 where fac n = product [1..n]

if f is called with argument 10, fac 10 will be computed only once.
Maximal laziness is an expensive property to implement in a general purpose,

compiled language. Indeed, in compiled code there is generally no notion of the
abstract syntax tree of a value — certainly not one that relates in a meaningful
way to the abstract syntax of the language. However, for domain specific languages
(DSLs), one typically does not want to implement a full compiler but rather an
interpreter that performs sufficiently well without too much implementation effort.
As a motivating example of such a DSL, this paper uses the Nix expression language
(described in Section 2), a purely functional language used by the Nix software
deployment system [7,5] to specify how to build and compose software packages.

In interpreters for functional languages based on term rewriting, maximal lazi-
ness is much easier to achieve. In a term rewriting approach, the abstract syntax
term representing the program is rewritten according to the semantic rules of the
language until a normal form — the evaluation result — is reached. In fact, maximal
laziness comes naturally when one implements the interpreter in a term rewriting
system that has the property of maximal sharing, such as ASF+SDF [23] or the
Stratego/XT program transformation system [24], both of which rely on the ATerm
library [20] to implement maximal sharing of terms. In such systems, if two terms
are syntactically equal, then they occupy the same location in memory — i.e., any
term is stored only once (a technique known as hash-consing in Lisp). This makes
it easy and cheap to add a simple memoisation to the term rewriting code to map
abstract syntax trees to their normal forms, thus “caching” evaluation results and
achieving maximal laziness.

Maximal laziness has a number of advantages:

• The implementation of the language becomes simpler and stays closer to the spec-
ification of the semantics of the language. The semantics of a purely functional
language can be specified conveniently as a set of rewrite rules over the terms of
the language, e.g., β-reduction to execute function calls: (λx.e1)e2 7→ e1[x e2].
However, direct implementation of such “call-by-name” semantics generally gives
extremely poor performance, as one gets a lot of work duplication: for instance,
in the β-reduction rule, the computation of e2 will be duplicated for every oc-
currence of x in e1. To prevent this, an entirely different, call-by-need style of
implementation is required. We cannot simply substitute variables; rather, they
must be represented explicitly and updated when they have been computed (see,
e.g., [6] for an attempt to do so in a rewriting formalism). But with maximal
laziness, the naive implementation of the semantics has the required “updating”

2



behaviour. For instance, in the case of β-reduction, multiple occurrences of e2

will be evaluated at most once due to the memoisation of evaluation results. This
is shown in detail in Section 3 for the case of the interpreter for the Nix language.

• Maximal laziness can give a nice performance improvement over a “traditional”
implementation of sharing (Section 5), reducing the number of rewrite steps by
40% to as much as 280% for typical, large Nix expressions. So maximal laziness
gives faster but simpler interpreters. Also, several years of experience with max-
imal laziness in the Nix expression evaluator has shown that memory use scales
well despite the naive evaluation result caching that never discards any result.

• Maximal laziness obviates the need for optimisations such as let-floating [19]
(also known as the full laziness transformation) and function memoisation in
many cases (Section 4). However, function memoisation is tricky in the case of
non-strict languages.

2 Motivating example: Nix expressions

This section introduces a motivating example: a purely functional, domain specific
language for which we want to implement an efficient interpreter without much
effort. The DSL in question is the Nix expression language, which is used in the Nix
deployment system [7,5] to specify how to build and compose software packages. A
purely functional language is a good fit to the problem of specifying the building
of software packages, because packages often need to be built in different versions
or variants. For instance, different packages in the system may need to be built
with different versions of the C compiler; and packages often have a great deal of
variability in the functionality that can be compiled into them, such as whether
to build Mozilla Firefox with support for Scalable Vector Graphics, which requires
additional dependencies. Thus, it makes sense to describe packages as functions
of their variability in terms of dependencies and optional features, so that such
functions can be called any number of times with different arguments to create the
desired instances of a package. The evaluation of a Nix expression yields a graph of
build actions that must be performed to build a specific instance of a package with
all its dependencies.

As an example, Figure 1 show a Nix expression that builds the GNU Hello
package. First, it specifies at point 1 a function named helloFun that builds the
Hello package, given values that describe the dependencies required by that package,
such as perl. Functions have the syntax arg: body. Thus, the body of helloFun is the
call to the function stdenv.mkDerivation (at 2 ).

The helper function stdenv.mkDerivation returns a special value called a deriva-
tion, which is simply the build graph for this particular instance of the Hello package.
The arguments to mkDerivation specify the various inputs to the build, such as the
package’s name, its source code (src), and its dependencies (buildInputs). The source
code is obtained by calling the function fetchurl, which specifies a derivation that
downloads a file from the network. The evaluation of a Nix expression, at top-level,
must yield one or more of these derivations, which are then used to perform the

3



helloFun =
{stdenv, fetchurl, perl}: 1

stdenv.mkDerivation { 2
name = "hello-2.1.1";
src = fetchurl {

url = mirror://gnu/hello/hello-2.1.1.tar.gz;
md5 = "70c9ccf9fac07f762c24f2df2290784d";
};
buildInputs = [perl];
};

hello = helloFun { 3
inherit fetchurl stdenv perl;
};

stdenv = ...; perl = ...; fetchurl = ...;

Fig. 1. Nix expression for GNU Hello

required build actions imperatively. Thus, the declarative, purely functional Nix
expression language is used to specify a set of imperative build steps.

Since helloFun is a function, to actually build an instance of the Hello package,
we must call it. This is done at point 3 , and the resulting build graph is bound
to the variable hello. The function is called with a set of arguments inherited
from the surrounding lexical scope using the inherit keyword. (inherit x is merely
syntactic sugar for an argument specification x = x;, i.e. the argument x is the
expression x, where the latter x refers to the variable x in the surrounding scope.)
Of course, the function can be called any number of times. For instance, if we
had a value perl6 representing a different version of Perl, we could build Hello with
it: helloWithPerl6 = helloFun {inherit fetchurl stdenv; perl = perl6;}. This is a lazy
language: expressions are only evaluated, and the build graphs they represent only
built, when they are actually needed.

It is not the purpose of this paper to give a full treatment of Nix or its expression
language. (These can be found in [5] and in the Nix manual at http://nix.cs.
uu.nl/.) Instead, the remainder of this section shows a part of the syntax and
semantics of Nix expressions to illustrate, in Section 3, how such a semantics can
be turned into an efficient interpreter using term rewriting and maximal laziness.

2.1 Syntax

The Nix expression language has several data types, such as strings, Booleans (with
values true and false), lists (between square brackets), and attribute sets (between
curly braces). The most important data type in the language is the attribute set,
which is a set of name/value pairs, e.g., { x = ”foo”; y = 123; }. Attribute names are
identifiers, and attribute values are arbitrary expressions. The order of attributes
is irrelevant, but any attribute name can occur only once in a set. Attributes can
be selected using the . operator. E.g., { x = ”foo”; y = 123; }.y evaluates to 123.

Recursive attribute sets allow attribute values to refer to each other. They are
constructed using the rec keyword. Formally, each attribute in the set is added to
the scope of the entire attribute set. Hence, rec { x = y; y = 123; }.x evaluates to 123.
If rec were omitted, the identifier y in the definition of the attribute x would refer
to some y bound in the surrounding scope. Recursive attribute sets introduce the

4

http://nix.cs.uu.nl/
http://nix.cs.uu.nl/


possibility of recursion, including non-termination, e.g. rec { x = x; }.x. Recursion
is used in the Nix language for many purposes, such as defining packages that are
an input to themselves, e.g., the bootstrap process of compilers.

As we saw above, when defining an attribute set, attribute values can be inherited
from the surrounding lexical scope or from other attribute sets. The expression x:
{ inherit x; y = 123; } defines a function that returns an attribute set with two
attributes: x which is inherited from the function argument named x, and y which
is declared normally. As the inherit construct is just syntactic sugar, the previous
expression could also have been written as x: { x = x; y = 123; }. Note that the
right-hand side of the attribute x = x refers to the function argument x, not to the
attribute x. Thus, x = x is not a recursive definition.

The language has two types of functions. The first takes a single argument and
has the form x : e. For instance, the (anonymous) identity function can be defined
as x: x. Of course, this style of function is just a plain λ-abstraction from the
λ-calculus. Though this style only allows functions with a single argument, since
this is a functional language we can still define (in a sense) functions with multiple
arguments, e.g., x: y: x + y, which is a function taking an argument x that returns
another function that accepts an argument y.

The second style of function definition, and the one used in Figure 1, is more
important in this language. It takes an attribute set and binds the attributes defined
therein to local variables. Thus, {x, y}: x + y declares a function that accepts an
attribute set with attributes x and y (and nothing else), and the expression ({x, y}:
x + y) {y = ”bar”; x = ”foo”;} yields ”foobar”.

2.2 Semantics

The operational semantics of the language is specified using semantic rules of the
form e1 7→ e2 that transform expression e1 into e2. Rules may only be applied
to closed terms, i.e., terms that have no free variables. Thus it is not allowed to
arbitrarily apply rules to subterms.

An expression e1 is said to evaluate to e2, notation e1
∗7→ e2, if there exists

a sequence of zero or more applications of semantic rules to e1 that transform it
into e2 such that no rule is applicable to e2. Thus e2 is the normal form of e1.
Since rules are only allowed to be applied to an expression at top level (i.e., not to
subexpressions), a normal form corresponds to the notion of a weak head normal
form (WHNF) [16, Section 11.3.1]. Weak head normal form differs from the notion
of head normal form in that right-hand sides of functions need not be normalised.
A nice property of this style of evaluation is that there can be no name capture [3],
which simplifies the evaluation machinery. Not all expressions have a normal form.
For instance, the expression (rec {x = x;}).x does not terminate. But if evaluation
does terminate, there must be a single normal form. This confluence property [2]
follows from the fact that at most one rule applies to any expression.

The semantic rules are stated below in the following general form Rule :
condition

e7→e′ . That is, we can conclude that e evaluates to e′ if the proposition condition
holds. If there are no conditions, the rule is simply written as Rule : e 7→ e′.

5



As an example of a simple rewrite rule, consider conditionals, if e1 then e2 else
e3. Conditional expressions first evaluate the condition expression. It must evaluate
to a Boolean. (Evaluation fails if it is not, but for simplicity I will not consider type
errors here.) The conditional then evaluates to one of its alternatives.

IfThen :
e1
∗7→ true

if e1 then e2 else e3 7→ e2
IfElse :

e1
∗7→ false

if e1 then e2 else e3 7→ e3

The Select rule implements attribute selection. This rule governs successful
selection, i.e., it applies only if the given attribute name exists in the attribute set.

Select :
e
∗7→ {as} ∧ 〈n = e′〉 ∈ as

e.n 7→ e′

Here as are the elements of an attribute set, and 〈n = e〉 ∈ as denotes that the
attribute set as has an attribute named n with value e. Note that there is no rule
for failure. If attribute n is not in as, evaluation fails and a nice error message is
printed in the actual implementation.

For the remaining rules below, we need a notion of substitution of expressions for
variables in other expressions. The substitution function subst(subs, e) (not shown
here) performs a set of substitutions subs in the expression e. The set subs consists
of substitutions of the form x  e that replace a variable x with an expression e.
subst replaces all free variables for which there is a substitution. A variable is free
in a subexpression if it is not bound by any of its enclosing expressions. Variables
are bound in functions and in recursive attribute sets. In recursive attribute sets,
only the recursive attributes (as1) bind variables; the non-recursive attributes (as2)
do not. It is assumed that the expressions in subs contain no free variables, so subst
does not have to perform renaming to prevent name capture.

A recursive attribute set is desugared to a normal attribute set by replacing
all occurrences of references to the attributes with the recursive attribute set. For
instance, if e = rec {x = f x y; y = x;}, then e is desugared to {x = f (e.x) (e.y); y
= e.x;}, or in full, {x = f ((rec {x = f x y; y = x;}).x) ((rec {x = f x y; y = x;}).y); y
= (rec {x = f x y; y = x;}).x;}. This desugaring is implemented by the Rec rule:

Rec : rec {as} 7→ {subst(subs, {as})}

where subs = {n  (rec {as}).n | n ∈ names(as)} and names(as) is the set of
attribute names occurring in the left hand side of a set of attributes as. As we
shall see in Section 3, due to maximal sharing, this substitution does not lead to a
potential explosion in the size of expressions.

Function calls to single-argument functions (i.e., lambdas) are just plain β-
reduction in the λ-calculus [3].

β-Reduce :
e1
∗7→ x: e3

e1 e2 7→ subst({x e2}, e3)

(As argued in Section 3, expression e2 can contain no free variables. Therefore,
there is no danger of name capture in subst.) Calls to multi-argument functions,

6



Expr eval(Expr e)
{

Expr e1, e2, e3;
if (matchIf(e, e1, e2, e3) && evalBool(e1))

return eval(e2);
ATerm x;
if (matchCall(e, e1, e2) &&

matchFunction1(eval(e1), x, e3)) {
ATermMap subs; subs.set(x, e2);
return eval(subst(subs), e3);
}
. . . more rules . . .
}

Fig. 2. Implementation of some of the semantic rules
in C++

Expr eval(Expr e) :
if cache[e] 6= ε :

return cache[e]
else :

e′ ← realEval(e)
cache[e]← e′

return e′

Fig. 3. Evaluation caching (pseudo-code)

i.e., functions that match an attribute set, are a bit more complicated:

β-Reduce’ :
e1
∗7→ {fs}: e3 ∧ e2

∗7→ {as} ∧ names(as) = fs
e1 e2 7→ subst({n e | 〈n = e〉 ∈ as}, e3)

(fs (for “formals”) is the set of names of arguments of a multi-argument function.)
Note that a multi-argument function call is strict in its argument—the attribute
set—but not in the values of the attributes.

3 Implementation

Using term rewriting, it is straight-forward to turn the semantic rules from the
previous section into a concrete interpreter for the language. However, without
maximal laziness, such an interpreter would not perform well. This section shows
how we can obtain an efficient interpreter from a straight-forward translation of the
semantic rules using term rewriting and maximal laziness.

3.1 Evaluation through rewriting

A typical way to derive an interpreter from rewrite rules is to select some abstract
syntax representation for terms, and then to translate the rewrite rules into whatever
meta-language the interpreter is implemented in. The Nix expression evaluator uses
ATerms (for Annotated Terms) [20] to represent terms. The ATerm library is a C
library that allows the efficient creation and manipulation of term data structures in
C. An ATerm t is a the application of an n-ary constructor to n subterms, denoted
C(t1, . . . , tn); or a list of n terms [t1, . . . tn]; or some terminal term such as an integer
or string (actually a nullary constructor). For example, the expression (x: x) 123 is
represented as the ATerm Call(Function1(”x”,Var(”x”)),Int(123)).

Both the ASF+SDF Meta-Environment [23] and Stratego/XT [24] program
transformation systems use ATerms for representing abstract syntax trees, and can
be used to manipulate them conveniently. For example, in Stratego/XT the IfThen

rule could be implemented as

eval: If(e1, e2, e3) -> e2 where <eval> e1 => Bool(True)

which is an almost literal translation of that rule. However, the Nix expression
evaluator is written in C++, thus the translation of the rules is a bit more verbose.
Figure 2 shows the outline of the function eval that implements the Nix expression

7



evaluator, with the code corresponding to the IfThen and β-Reduce rules. It
takes a pointer e to the ATerm representing the term to be evaluated, and returns
a pointer to the ATerm representing the resulting normal form. Helper functions
such as matchIf are used to recognise and build ATerms. The elided helper function
evalBool(e) calls eval(e) and returns true if the resulting term is Bool(True).

The evaluator in Figure 2 is extremely slow. This is a result of a lack of sharing
in the evaluation of variables. For instance, the code for the β-Reduce rule simply
replaces every occurrence of Var(x) in the body of the function with the term repre-
senting the argument value. Thus, if x occurs n times in the body of the function,
it is possible for e2 (the argument) to be evaluated n times. Indeed, if x is passed as
an argument to other functions, it may be duplicated even further, quickly leading
to an exponential running time.

The typical solution to this explosion is to arrange for sharing of variable eval-
uation. For instance, β-Reduce could be defined as follows:

β-Reduce :
e1
∗7→ x: e3

e1 e2 7→ let x = e2 in e3

where we give let a special “destructive update” semantics so that the evaluation
result of x is written back into the right-hand side of the let-binding. Of course,
to give a semantics to let, we need to maintain some kind of environment, which
makes the semantic rules rather more complicated [6]. At runtime, there is the
same problem: in an interpreter, we need to keep an environment of the bound
variables that are in scope (which is much more work than the simple call to subst
in Figure 2), while in compiled code, x would be a pointer that points to a piece
of memory containing code and environment pointers (the closure or thunk [17]),
which after evaluation is overwritten with the actual result.

3.2 Maximal sharing with ATerms

A very nice property of the ATerm library, which will be critical in solving the
performance problems described above, is its maximal sharing : if two terms are
syntactically equal, then they occupy the same location in memory. This means
that a shallow pointer equality test is sufficient to perform a deep syntactic equality
test. Maximal sharing is implemented through a hash table. Whenever a new term
is created through the ATerm API (using functions such as ATmakeAppl), the term
to be created is looked up in the hash table. If the term already exists, the address of
the term obtained from the hash table is returned. Otherwise, the term is allocated,
initialised, added to the hash table, and returned. A garbage collector takes care of
freeing terms that are no longer referenced.

Maximal sharing makes term creation slower, due to the hash table check. How-
ever, this is offset by the fact that memory use is reduced and the overhead of
allocating a term that already exists is removed. More importantly, testing for
equality between terms is very cheap, namely a pointer equality test. This makes
the implementation of operations such as substitutions and memoisation very cheap.
Empirical results on the efficiency of maximal sharing of ATerms are given in [20,21].

8



3.3 Maximal laziness

Maximal sharing is extremely useful in the implementation of a Nix expression inter-
preter since it allows easy caching of evaluation results, which speeds up expression
evaluation by removing unnecessary evaluation of identical terms. The interpreter
maintains a hash lookup table cache : ATerm → ATerm that maps ATerms repre-
senting Nix expressions to their normal forms. Figure 3 shows pseudo-code for the
caching evaluation function eval, which “wraps” the real eval function from Figure 2
(now renamed to realEval) in a memoisation layer. It is assumed that realEval calls
back into eval to evaluate subterms (i.e., every time a rule uses the relation ∗7→ in a
condition). Thus we obtain the desired caching. The special value ε denotes that
no mapping exists in the cache for the expression. Note that thanks to maximal
sharing, the lookup cache[e] is very cheap: it is a lookup of a pointer in a hash table.

Since any syntactically equal term is now evaluated at most once, the interpreter
in Figure 3 is maximally lazy. So does this solve the performance problem with the
“naive” implementation of rules such as β-Reduce? Intuitively this seems to be
the case, because multiple occurrences of x will be replaced by the same argument
term e2, and due to the memoisation in Figure 3, repeated encounters of e2 will
reuse the normal form of e2 computed on the first encounter.

However, there is a catch: what if later substitutions in subexpressions of the
body of the function cause the copies of e2 to change in different ways? Consider the
function call (x: (rec {y = ”foo”; z = x;}.z) + (rec {y = ”bar”; z = x;}.z)) y, which
would reduce to (rec {y = ”foo”; z = y;}.z) + (rec {y = ”bar”; z = y;}.z). Here,
the two occurrences of the variable x in the original expression evaluate to different
results (”foo” and ”bar” respectively). This is of course the result of unhygienic
substitution: the free variable y in the argument becomes bound after β-reduction.
However, it is easy to see that this situation can never occur because all top-level
terms are always closed. (This fact is proven in [5, Section 4.4] and follows from
the observation that all rules produce closed terms when applied to closed terms.)

Thus, a straight-forward, substitution-based reduction scheme such as the naive
implementation of β-Reduce has at least as much sharing as a more difficult im-
plementation based on closure updating. More importantly, this property comes at
almost no additional cost, as Section 5 shows.

4 Optimisations

4.1 Optimising substitution

While the memoisation of term evaluation prevents unnecessary recomputation,
there is still a problem with substitution-based semantic rules such as β-Reduce.
Consider the expression (x : y : e1) e2 e3, where e2 is a large expression. With
normal substitution, we first replace all occurrences of x in e1 with e2. Then, we
replace all occurrences of y in the resulting term with e3. This substitution also
descends into the e2 replacements of x, even though those subterms are closed. Since
e2 is large, this is inefficient. A naive implementation of subst that recurses over the

9



Expr eval(Expr e) :
if cache[e] 6= ε :

if cache[e] = blackhole : Abort.
return cache[e]

else :
cache[e]← blackhole
e′ ← realEval(e)
cache[e]← e′

return e′

Fig. 4. Evaluation caching with blackholing

(rec {f = x: f x;}).f 10
(Rec) 7→ {f = x: (rec {f = x: f x;}).f x;}.f 10

(Select) 7→ (x: (rec {f = x: f x;}).f x) 10
(β-Reduce) 7→ (rec {f = x: f x;}).f 10

Fig. 5. Detecting infinite recursion

structure of the term, may thus perform a lot of redundant work by substituting
repeatedly in syntactically equal subterms. It is important to recognise that under
maximal sharing, a term should be treated as a graph rather than a tree. Thus,
one optimisation for subst is to memoise it (taking into account the fact that when
substitutions are removed from the mapping subs in some of the recursive cases, a
new memoisation table must be used for the recursive call).

There is, however, a much simpler and efficient solution that uses the fact that
all substitution terms are closed. The optimisation is that we can mark replacement
terms to indicate to the substitution function that it need not descend into such
subterms. Since substitution terms are always closed, we can adapt substitution
function subst as follows:

subst(subs, x) =


closed(e) if (x closed(e)) ∈ subs
closed(e) if (x e) ∈ subs
x otherwise

That is, replacement terms e are placed inside a wrapper closed(e). (The first case
merely prevents repeated wrapping in closed nodes, e.g., closed(closed(e)), which
reduces the effectiveness of caching.) The wrapper denotes that e is a closed subterm
under which no substitution is necessary, since it has no free variables. To actually
make use of this optimisation, we also add a case to subst to stop at closed terms,
namely subst(subs, closed(e)) = closed(e). Of course, during evaluation we must
get rid of closed eventually. That’s easily implemented through a rule Closed:
closed(e) 7→ e, as a closed term is semantically equivalent to the term that it wraps.
Since reduction only takes place at top-level, the closed wrapper is only discarded
when the term actually needs to be evaluated.

4.2 Blackholing

Figure 4 shows a simple modification of the eval function in Figure 3 that, in addi-
tion to maximal laziness, implements a trick known as blackholing [17] that allows
detection of certain simple kinds of infinite recursion. When we evaluate an expres-
sion e, we store in the cache a preliminary “fake” normal form blackhole. If, during
the evaluation of e, we need to evaluate e again, the cache will contain blackhole
as the normal form for e. Due to the determinism and purity of the language, this
necessarily indicates an infinite loop, since if we start evaluating e again, we will
eventually encounter it another time, and so on.

Note that blackholing as implemented here differs from conventional blackholing,
which overwrites a value being evaluated with a black hole. This allows discovery

10



of self-referential values, e.g., x = ... x ...;. But it does not detect infinite recursions
like in the expression (rec {f = x: f x;}).f 10, since every recursive call to f creates a
new value of x, and so blackholing will not catch the infinite recursion. In contrast,
our blackholing does detect it, since it is keyed on maximally shared ATerms that
represent syntactically equal expressions. Figure 5 shows the evaluation of this
expression. Note that the final expression is equal to the first (which is blackholed
at this time), and so an infinite recursion is signalled.

4.3 Optimisations

Because of maximal laziness, we get some optimisations that are conventionally
applied to purely functional languages for free. For instance, the full laziness trans-
formation [19] makes code more efficient by moving subexpressions outward as far
as possible, e.g. let {f x = let {y = fac 100} in x + y} in f 1 + f 2, which computes
fac 100 twice, can be transformed into let {y = fac 100; f x = x + y} in f 1 + f 2,
which computes it only once in a conventional lazy implementation. With maxi-
mal laziness, this transformation is unnecessary: repeated occurrences of the same
subexpression across multiple calls to a function will be computed only once.

Another, usually explicit optimisation in purely functional programs is to mem-
oise specific functions [4]. Intuitively, one would expect that memoisation of the
language evaluation function (Figure 3) also memoises functions in the language.
This is not necessarily the case, however, in the presence of non-strict arguments.
For instance, consider the Fibonacci function:

fib = n: if n == 0 then 0 else
if n == 1 then 1 else fib (n-1) + fib (n-2);

Without memoisation, this function is very inefficient. But maximal laziness won’t
memoise it for us in a non-strict language. This is because the arguments won’t be
evaluated terms 1, 2, etc., but unevaluated expressions such as ((9-1)-1)-1. Some
memoisation will occur, but not enough to make the function run in O(n) time.

Note that the function fib is in fact strict in its argument; the conditional if
n == 0 ... forces evaluation of the argument. But by the time we evaluate the
argument, we are already in the evaluation of the function, and it’s too late.

The Nix expression evaluator implements a technique called function short-
circuiting that cuts off evaluation of a function when the normal form of its ar-
gument becomes known and the function has been called before with an argument
with the same normal form. It does so by keeping track of which function calls are
currently being evaluated. In eval, after realEval returns with a normal form e′ for
some expression e, we check if we are currently evaluating some function Call(f , e)
and cache[Call(f , e′)] 6= ε. If so, we unwind the stack to the eval call for Call(f ,
e) (by throwing an exception), and return cache[Call(f , e′)]. Also, memoised Calls
in cache must be stored with their normalised argument. That is, when eval has
computed that Call(f , e)

∗7→ e′, and cache[e] 6= ε (i.e., the function has evaluated its
argument), it sets cache[Call(f , cache[e])] to e′.

11



5 Evaluation

To see how the variants of maximal laziness perform compared to no sharing and
to a conventional implementation based on closure updating, Table 1 shows the
execution times of several variants of the Nix expression evaluator on a number of
Nix expressions. The execution times are in seconds. The tests were performed on
an Linux-based Athlon 64 X2 3800+ with 1 GiB of memory. Entries marked “-” in
the table mean that the test did not finish in a reasonable amount of time because
of the exponential explosion due to the lack of sharing or in substitutions. Table 2
shows the number of calls to eval for each of the Nix expressions in Table 1 for some
of the variants, along with the number of cache hits (the number of times that a
call to eval could be satisfied from the cache).

The tested Nix expressions are: 1) The function fib (Section 4.3) with n = 25.
2) A variant of fib in which the recursive call reads strict fib (n-1) + strict fib (n-2)
where strict is a built-in function that reduces its second argument to normal form
before applying the first to it. 3) While fib is a toy problem for which the Nix
expression DSL isn’t even intended, the remaining tests are realistic. The third test
computes the derivation graph of the gcc attribute in the Nix Packages collection,
a set of Nix expressions for over a thousand Unix software packages. 4) The eval-
uation performed by the Nix command nix-env -qa ’*’ –drv-path –out-path (which
shows all packages defined by an expression) applied to the Nix Packages collection,
which involves computing the derivation graphs of all packages, and causes the eval-
uation of 743 source files containing 22191 lines of code. 5) The computation of the
derivation graph for the installation CD of NixOS, a Linux distribution based on
Nix, which involves the evaluation of 162 source files containing 13503 lines of code.

The variants of the Nix expression evaluator (available at https://svn.cs.uu.
nl:12443/repos/trace/nix/branches/sharing-hackery/) are as follows.

• No sharing : the naive term-rewriting based interpreter from Section 2. Unsur-
prisingly, it performs very poorly.

• Traditional sharing : an implementation that updates variable bindings after they
have been evaluated. This is the sharing model in most implementations of func-
tional languages. This implementation is a modification of the existing (maxi-
mally lazy) Nix expression evaluator, made for comparison purposes. It therefore
does use the ATerm library, and maximal sharing to store terms efficiently.

• Maximal laziness: the no sharing variant with memoisation as in Figure 3. Ta-
ble 2 shows that the number of rewrite steps is substantially smaller than with
traditional sharing, and the number of cache hits is substantial. (The number of
rewrite steps is the same as for the maximal laziness with both variant in Table 2.)
However, term blow-up due to substitutions causes it to perform poorly on large
terms: it is outperformed by traditional sharing on the GCC test, and doesn’t
finish in a reasonable time frame on the nix-env and NixOS tests.

• Maximal laziness with substitution memoisation is the previous variant with mem-
oisation around the subst function (see Section 4.1). It helps performance a bit,

12

https://svn.cs.uu.nl:12443/repos/trace/nix/branches/sharing-hackery/
https://svn.cs.uu.nl:12443/repos/trace/nix/branches/sharing-hackery/


fib 25 fib 25
(strict) GCC nix-env NixOS

No sharing - 28.866 151.633 - -
Traditional sharing 32.576 33.178 0.788 45.304 10.752
Maximal laziness 23.904 0.018 2.778 - -
Maximal laziness + substitution memoisation 15.253 0.023 1.025 - -
Maximal laziness + closed term optimisation 6.558 0.018 0.212 2.750 0.988
Maximal laziness + both 6.184 0.022 0.195 2.752 0.939
Maximal laziness + short-circuiting 0.022 0.022 0.197 2.820 1.181

Table 1
CPU times in seconds for sharing variants

fib 25 fib 25 (strict) GCC nix-env -qa NixOS
Steps Hits Steps Hits Steps Hits Steps Hits Steps Hits

No sharing - n/a 6809K n/a 4421K n/a - n/a - n/a
Traditional sharing 5838K n/a 6809K n/a 6516 n/a 561K n/a 975K n/a
Maximal laziness +
both

3820K 1850K 705 342 4538 2254 368K 225K 253K 111K

Maximal laziness +
short-circuiting 675 292 682 319 4538 2254 367K 225K 253K 111K

Table 2
Rewrite steps and cache hits for sharing variants

but not enough to save it.
• Maximal laziness with closed term optimisation wraps substituted terms in closed

nodes as described in Section 4.1. This very simple change alone makes maximal
laziness fast enough: operations such as nix-env -qa now run in a few seconds,
which is actually faster than similar operations in other package management tools
that do not have package descriptions in a full-fledged programming language. We
can thus conclude that the closed term optimisation is essential to make maximal
laziness feasible. This is the variant that the production version of Nix uses.

• Maximal laziness with both combines substitution memoisation and closed term
optimisation. It does not give an appreciable improvement over the latter.

• Maximal laziness with short-circuiting adds the short-circuiting technique de-
scribed in Section 4.3. It does indeed succeed in turning the non-strict fib func-
tion automatically into a memoised function that runs in O(n) time. However, it
doesn’t do much for Nix expressions in the real world.

So what is the cost in terms of memory use of maximal laziness? The nix-env -qa
test, which represents the largest computation occuring in practice, takes around
21 MiB, a fairly modest amount of memory on current systems. On the other hand,
the atypical non-strict fib 25 test on the interpreter with maximal laziness and the
closed term optimisation (the one with 3820K reduction steps) takes around 170
MiB as a result of a lack of identical subterms (which short-circuiting solves).

The main lesson of this evaluation is that maximal laziness only works well with
the closed term optimisation, which is fortunately trivial to implement. However,
cache pruning becomes necessary to control memory consumption when evaluating
programs with little sharing, which is not the case for the Nix DSL.

6 Related work

Maximal sharing, the technique upon which maximal laziness is implemented, goes
back a long way. It is known as hash-consing in Lisp [1,8], where its utility is limited

13



by the impurity of Lisp [10]. Type-safe hash-consing in OCaml that ensures that
programmers cannot make unshared terms is discussed in [9], which uses operations
on λ-terms (similar to the term rewriting in Section 2) as an example.

The Nix expression evaluator is built on top of the ATerm library [20,22], which
is used in numerous term rewriting systems such as Stratego/XT [24] and in par-
ticular the ASF+SDF Meta-Environment [23], for which the ATerm library was
originally developed. The evaluator would certainly have been easier to implement
in Stratego than in C++, but this was not done as 1) C++ is a more suitable lan-
guage for general systems programming, and 2) being a deployment tool, Nix should
have as few dependencies as possible to ensure portability and ease of installation.
The ASF+SDF compiler relies heavily on maximal sharing for performance; see [21]
for a in-depth discussion. The compiler can be instructed to generate memoisation
around explicitly specified ASF+SDF functions. The authors note that “memoiza-
tion may easily become counterproductive if the memoized functions are not called
with the same arguments sufficiently often, and finding the right subset of functions
to memoize may require considerable experimentation and insight.” In this paper,
we have suggested memoising everything, which is not a feasible strategy for gen-
eral purpose languages, but, as we have seen, may simplify the implementation of
DSLs while providing sufficient performance. Unlimp [13] also appears to memoise
arbitrary term evaluation in the context of a purely functional language, but does
not discuss experience with non-trivial programs.

The “purity” of purely functional languages naturally suggests the use of maxi-
mal sharing, since, contrary to impure languages, one can unconditionally memoise
functions to obtain optimised versions. This relationship is explored in depth in [11],
which describes a language that has maximal sharing as a part of its runtime system
to ensure that all data is maximally shared, and shows that maximal sharing is not
an expensive feature (a fact also borne out by the experiences with ASF+SDF and
Stratego/XT). It also discusses the sharing of computations (as opposed to data)
through memoisation using maximal sharing — precisely the subject of this paper.
However, as in [4], memoisation is not automatically applied to all computations.

There is a great deal of theoretical work on optimal reduction strategies for the
λ-calculus (in particular Lamping’s work [14]; an overview is given in [15]). The
main restriction in the Nix evaluator, compared to optimal reduction, is that it only
shares closed terms (as these are the only terms that eval ever sees). Thus, in an
expression such as (f : f 1 + f 2)(x : e), the expression e is duplicated, with only
subterms of e not containing x being shared between the calls. On the other hand,
the evaluator does optimise evaluation for terms that are not initially shared but
become syntactically equal after a number of reduction steps.

7 Conclusion

This paper has given a practical demonstration of the use of maximal sharing as
an implementation technique for interpreters. It shows that maximal sharing is
efficient enough to allow the evaluation of a practical purely functional DSL to be

14



completely memoised, giving rise to the highly useful property of maximal laziness.
Acknowledgements. This paper builds heavily upon the ATerm library and

its property of maximal sharing, developed by Mark van den Brand, Hayco de Jong,
Paul Klint and Pieter Olivier. I would also like to thank the contributors to the
Nix package manager, in particular Martin Bravenboer and Eelco Visser, as well as
the anonymous reviewers for their comments.

References

[1] Allen, J., “Anatomy of LISP,” McGraw-Hill, Inc., New York, NY, USA, 1978.

[2] Baader, F. and T. Nipkow, “Term rewriting and all that,” Cambridge University Press, 1998.

[3] Barendregt, H., “The Lambda Calculus: Its Syntax and Semantics,” Studies in Logic and the
Foundations of Mathematics II, Elsevier Science Publishers, Amsterdam, 1984, second edition.

[4] Cook, B. and J. Launchbury, Disposable memo functions (extended abstract), in: ICFP ’97: Proc. ACM
SIGPLAN Intl. Conf. on Functional programming (1997), p. 310.

[5] Dolstra, E., “The Purely Functional Software Deployment Model,” Ph.D. thesis, Faculty of Science,
Utrecht University, The Netherlands (2006).

[6] Dolstra, E. and E. Visser, Building interpreters with rewriting strategies, in: M. van den Brand
and R. Lämmel, editors, Workshop on Language Descriptions, Tools and Applications (LDTA’02),
Electronic Notes in Theoretical Computer Science 65/3 (2002), pp. 57–76.

[7] Dolstra, E., E. Visser and M. de Jonge, Imposing a memory management discipline on software
deployment, in: Proc. 26th Intl. Conf. on Software Engineering (ICSE 2004) (2004), pp. 583–592.

[8] Ershov, A. P., On programming of arithmetic operations, Commun. ACM 1 (1958), pp. 3–6.

[9] Filliâtre, J.-C. and S. Conchon, Type-safe modular hash-consing, in: ML ’06: Proceedings of the 2006
workshop on ML (2006), pp. 12–19.

[10] Goto, E., Monocopy and associative algorithms in an extended Lisp, Technical Report TR-74-03,
University of Toyko (1974).

[11] Goubault, J., Implementing functional languages with fast equality, sets and maps: an exercise in hash
consing, in: Journes Francophones des Langages Applicatifs (JFLA’93), 1993, pp. 222–238.

[12] Hudak, P., Conception, evolution, and application of functional programming languages, ACM
Computing Surveys 21 (1989), pp. 359–411.

[13] Kahrs, S., Unlimp — Uniqueness as a Leitmotiv for implementation, in: M. Bruynooghe and
M. Wirsing, editors, Proc. of the 4th Intl. Symposium on Programming Language Implementation
and Logic Programming PLILP ’92 (1992), pp. 115–129.

[14] Lamping, J., An algorithm for optimal lambda calculus reduction, in: POPL ’90: Proceedings of the
17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (1990), pp. 16–30.

[15] Lawall, J. L. and H. G. Mairson, Optimality and inefficiency: what isn’t a cost model of the lambda
calculus?, SIGPLAN Notices 31 (1996), pp. 92–101.

[16] Peyton Jones, S., “The Implementation of Functional Programming Languages,” Prentice Hall, 1987.

[17] Peyton Jones, S., Implementing lazy functional languages on stock hardware: the Spineless Tagless
G-machine, Journal of Functional Programming 2 (1992), pp. 127–202.

[18] Peyton Jones, S., editor, “Haskell 98 Language and Libraries: The Revised Report,” Cambridge
University Press, 2004.

[19] Peyton Jones, S., W. Partain and A. Santos, Let-floating: moving bindings to give faster programs, in:
ICFP ’96: Proc. ACM SIGPLAN Intl. Conf. on Functional programming (1996), pp. 1–12.

[20] van den Brand, M. G. J., H. A. de Jong, P. Klint and P. A. Olivier, Efficient annotated terms, Software—
Practice and Experience 30 (2000), pp. 259–291.

[21] van den Brand, M. G. J., J. Heering, P. Klint and P. A. Olivier, Compiling language definitions: the
ASF+SDF compiler, ACM Trans. Program. Lang. Syst. 24 (2002), pp. 334–368.

[22] van den Brand, M. G. J. and P. Klint, ATerms for manipulation and exchange of structured data: It’s
all about sharing, Inf. Softw. Technol. 49 (2007), pp. 55–64.

[23] van Deursen, A., J. Heering and P. Klint, editors, “Language Prototyping. An Algebraic Specification
Approach,” AMAST Series in Computing 5, World Scientific, Singapore, 1996.

[24] Visser, E., Program transformation with Stratego/XT: Strategies, tools, and systems in StrategoXT-0.9,
in: C. Lengauer, D. S. Batory, C. Consel and M. Odersky, editors, Domain-Specific Program Generation,
Lecture Notes in Computer Science 3016, Spinger-Verlag, 2004 pp. 216–238.

15


	Introduction
	Motivating example: Nix expressions
	Syntax
	Semantics

	Implementation
	Evaluation through rewriting
	Maximal sharing with ATerms
	Maximal laziness

	Optimisations
	Optimising substitution
	Blackholing
	Optimisations

	Evaluation
	Related work
	Conclusion
	References

