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Abstract. Safe and efficient deployment of software components is an
important aspect of CBSE. The Nix deployment system enables side-by-
side deployment of different versions and variants of components, com-
plete installation, safe upgrades, and safe uninstalls through garbage
collection. It accomplishes this through a purely functional deployment
model, meaning that the file system content of a component only depends
on the inputs used to build it, and never changes afterwards. An appar-
ent downside to this model is that upgrading “fundamental” components
used as build inputs by many other components becomes expensive, since
all of these must be rebuilt and redeployed. In this paper we show that
binary patching between sets of components enables efficient deployment
of upgrades in the purely functional model, transparently to users. Se-
quences of patches can be combined automatically to enable upgrading
between arbitrary versions. The approach was empirically validated.

1 Introduction

An important aspect of Component-Based Software Engineering (CBSE) is the
correct and efficient deployment of components after they have been developed
[1]. This is often surprisingly hard. The main issues are dealing with side-by-
side deployment of different versions or variants, isolation between components,
ensuring complete component dependencies, and so on [2].

The Nix deployment system addresses these problems [3, 4]. The central idea
is that each binary component is stored in isolation in the file system under
a path name that contains a cryptographic hash of all inputs used to build
the component, e.g., /nix/store/920e492a10af...-firefox-1.0. These inputs include
(recursively) the component’s build-time dependencies, build scripts, build pa-
rameters, platform, and so on.

The advantage is that we get variability support “for free”: if two compo-
nents are different in any way, they are stored in different locations in the file
system. This isolation prevents undeclared build-time component dependencies.
The hashes enable determination of run-time dependencies through a conser-
vative pointer scanning approach [3]. This enables Nix to support side-by-side
deployment of different versions and variants of components, complete installa-
tion, safe upgrades, and safe uninstalls through garbage collection.



However, there is a downside: upgrading becomes a much more resource-
intensive operation. If we change any build-time input to a component, the hash
of the component changes, and so it will need to be rebuilt and redeployed. This
is the right thing to do, since the change to the input might actually matter in an
observable way, i.e., we have obtained a new variant. However, for upgrades to
“fundamental” components that are used directly or indirectly by many others,
the cost of redeployment may be substantial. For instance, in the dependency
graph of a typical Linux system, virtually all components depend on the GNU
C Library (Glibc). An update to Glibc would therefore trigger a rebuild of all
components in the system, similar to how a change to a common header file
will cause massive recompilation in Make [5]. This is not a major issue since
it takes place on the distributor’s systems. Worse, however, is that in order to
re-deploy the Glibc upgrade to end-users, each of them would need to download
all rebuilt dependent components in addition to the new Glibc. This requires
very substantial network resources; e.g., a small bug fix to Glibc might induce
hundreds of megabytes worth of downloads.

In more conventional deployment models, upgrades are delivered as “destruc-
tive updates” that overwrite the older version of the component. This is more
efficient but it short-circuits the dependency graph, inhibits rollbacks, and may
break other installed components.

However, the inefficiency of deploying upgrades in Nix would suggest that the
Nix system is not practical. In this paper we show that it is. By deploying binary
patches, we can efficiently distribute new versions or variants of components to
the end-user systems. For instance, a Glibc update typically causes a download
of just a few hundred kilobytes in patches for around 150 components, a modest
amount even on slow network connections.

Contributions The contributions of this paper are as follows.

– We show that the Nix deployment model can support efficient deployment
of upgrades through the use of automatically generated binary patches that
are transparently used by client machines.

– We introduce the technique of automatic patch chaining to relief the burden
of having to generate patches between arbitrary releases.

– We show that patches between components can easily be produced, even
in the presence of file or directory renames and moves, by producing deltas
between archives of the components.

The techniques discussed in this paper have been implemented, and we dis-
cuss their effectiveness.

Outline The remainder of this paper is structured as follows. Section 2 gives a
brief overview of the Nix system and motivates why we need binary patch deploy-
ment in Nix. Section 3 describes binary patch deployment in Nix, including the
concept of patch chaining. The problem of selecting the right base components
for patches is addressed in Section 4. We describe our experiences in Section 5.
Related work is discussed in Section 6, and we conclude in Section 7.
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Fig. 1. The Nix store

2 Motivation

2.1 The Nix Deployment System

Nix is a system for software deployment [3, 4]. Its job is to build components,
support their deployment to client machines, and manage the components on
those clients. It has several important features:

– It supports component variability, allowing arbitrary side-by-side existence
of multiple versions and variants (preventing the “DLL Hell”). Users or pro-
cesses can have different “views” on the set of installed components.

– It helps ensure complete dependency specifications. Typical Unix package
management systems such as RPM [6] require developers to specify their
component’s dependencies on other components. However, there is no assur-
ance that such a specification is complete. This leads to incomplete deploy-
ment, i.e., references to missing components at run-time.

– It ensures consistency between components; e.g., that they are not removed
from the system if they are required by other installed components.

– Components are built from a flexible component specification language —
Nix expressions — supporting the concise specification of variability in com-
ponents, such as domain features and dependencies.

– It supports binary deployment of components as an essentially transparent
optimisation of source deployment, as explained below.

The central idea in the Nix system is that every component is stored in isola-
tion in the Nix store. The store is a designated part of the file system (typically
/nix/store), each subdirectory of which contains a component. An example of a
number of Nix components on a Linux system is shown in Figure 1. The name of



{ stdenv, fetchurl, pkgconfig, gtk # function arguments

, perl, zip, libIDL, libXi }:

assert libIDL.glib == gtk.glib; # consistency requirement

stdenv.mkDerivation { # the function result: a build action

name = "firefox-1.0";

builder = ./builder.sh; # the build script

src = fetchurl { # the sources

url = ftp://.../firefox/1.0/source/firefox-1.0-source.tar.bz2;

md5 = "49c16a71f4de014ea471be81e46b1da8";

};

buildInputs = [pkgconfig gtk perl zip libIDL libXi];

}

Fig. 2. Nix expression for Firefox

each component directory contains, apart from a symbolic identifier of the com-
ponent such as firefox-1.0, a unique hexadecimal number which is a cryptographic
hash of all inputs involved in building the component.

For instance, for the Firefox component, the inputs include the operating sys-
tem and platform for which we are building (e.g., i686-linux), the C++ compiler,
the GNU C library, the GTK widget library, the X11 windowing system client
libraries, the script that builds the component, the full sources of the component,
and so on.

The arrows in Figure 1 denote file system references between components
(note that it shows only a subset of Firefox’s run-time dependencies; in reality
Firefox has many more). For instance, the Firefox binary contains in its exe-
cutable image the full path of the C and GTK libraries to be used at run-time
(these are specified in the “RPATH” of Unix ELF executables [7]). That is, while
those libraries are dynamically loaded at run-time, their locations are hard-coded
into the components at build-time.

Nix components are built from Nix expressions, which is a simple functional
language, a model well-suited for specifying components. Figure 2 shows the Nix
expression for the Firefox component. This is actually a function1 that accepts a
number of arguments (e.g., gtk) and returns a derivation, which is Nix-speak for
a component build action2. Likewise, there are Nix expressions specifying how
to build the GNU C library (glibc), GTK, etc., when called with the appropriate
arguments. Since these are all functions, to instantiate actual components, they
must be called (i.e., composed). This is done in the Nix expression in Figure 3.

1 I.e., it specifies requires interfaces of the component [2].
2 A more complete description of the Nix expression language is given in [4] and in

the Nix manual [8].



rec {

firefox = (import ../applications/firefox) { # function call

inherit fetchurl stdenv pkgconfig gtk ...; # arguments

};

gtk = (import ../development/libraries/gtk) {
inherit fetchurl stdenv;

};

fetchurl = ...;

stdenv = ...;

}

Fig. 3. Nix expression composing Firefox, GTK, etc.

When we evaluate the firefox attribute thus defined, Nix will recursively build
all components insofar as they are not already present on the system.

As stated above, for each component Nix computes its path name in the Nix
store by hashing all inputs used to build it. This is a recursive process: if the
hash of any direct or indirect dependency of a component changes, the hash of
the component itself will also change (since the hashes are 128-bit MD5 hashes,
the chances of a hash collision are very slight indeed). For instance, if in the
specification of the GTK component we change the source file from which it is
built from release 2.2.4 to 2.4.13, the hash of Firefox will also change (Figure 4).
Hence, both GTK and Firefox will be rebuilt.

Note that as we do so, any previous versions of GTK and Firefox are left
untouched since they reside in a different location in the file system. This has
important advantages. First, the previous installation of Firefox is unaffected.
For instance, if the new GTK is not quite backwards compatible, it will not break
the installed Firefox. Nix never relies on any notion of component interface com-
patibility, since those in practice cannot be trusted to completely specify the
behaviour of the component. Only the implementation constitutes a full specifi-
cation. Second, different users or processes can easily have different “activated”
components (essentially, by having, for instance, different versions of Firefox in
their PATH environment variables). Third, it enables efficient roll-back to previ-
ous versions if necessary, since the old version is still available until it is removed
by running the Nix garbage collector.

Nix, as described above, implements a source deployment model (as do, e.g.,
FreeBSD [9] and Gentoo Linux [10]). That is, to deploy a component, we deploy
to the clients the Nix expressions that describe how to build from source the
component and its dependencies. While this is convenient for the developer, it
is generally not appropriate for end-users since builds can consume substantial
CPU, disk, and network resources. Also, it is inappropriate for closed source
products. However, Nix can almost transparently support binary deployment
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Fig. 4. Hash change propagation in the build-time dependency graph of the Firefox
component after a GTK upgrade. Square nodes denote sources, with cryptographic
hashes of the contents. Round nodes denote components, with store path hashes. Ar-
rows indicate build-time dependencies.

thanks to the hashing scheme through its substitute mechanism, which works
as follows. The component developer or distributor builds the Nix expression
and uploads the resulting components to a repository accessible by the clients,
typically a web server. A manifest on the server describes the available pre-built
components, e.g,

{ StorePath: /nix/store/075931820cae...-firefox-1.0
NarURL: http://server/075931820cae...-firefox-1.0.nar.bz2
Size: 11480169 }

Then, when the client attempts to build the Nix expression, Nix will see that
the path /nix/store/075931820cae...-firefox-1.0 that it wants to build is already
present on the server. It will download the component from the URL given in the
manifest and unpack it. On the other hand, if the path that it wants to build is
not present on the server, if will fall back to building it from source, if possible.

2.2 Installing Upgrades

This paper is concerned with the efficient distribution of upgrades to compo-
nents. Examples include the deployment of a security or other fix for Firefox or
Glibc, or an ordinary version upgrade, such as Firefox 0.9 being updated to 1.0.

In conventional deployment models, upgrades are deployed “destructively”.
For instance, in RPM [6], we would just install a new Glibc RPM package that
overwrites the old one. This however prevents side-by-side deployment of variants
(what if some component needs the old Glibc because it is incompatible with
the new one?), makes roll-backs much harder (essential in server environments),
and is generally bad from a SCM perspective (since it becomes much harder to



identify the current configuration). Also, such destructive upgrades only work
with dynamic linking and other late-binding techniques; if the component has
been statically linked into other components at build time, we must identify all
affected components and upgrade them as well. This was for instance a major
problem when a security bug was discovered in the ubiquitous Zlib compression
library [11].

In Nix, on the other hand, as shown in Figure 4, the change to a compo-
nent affects the hashes of all components that depend on it. That is, Nix has a
purely functional deployment model: the “value” (i.e., file system contents) of a
component only depends on the inputs used to build it, and never changes after-
wards. This has two effects. First, all affected components must be rebuilt. This
is exactly right, since the change to the dependencies may of course affect the
derivates. This is the case even if interfaces haven’t changed, e.g., in the case of
statically linked libraries, smart cross-module inlining, changes to the compiler
affecting the binary interface, and so on.

The second effect is that all affected components must be re-deployed to the
clients, i.e., the clients must download and install each affected component. This
is the scalability issue that this paper addresses. For instance, if we want to
deploy a 100-byte bug fix to Glibc, almost all components in the system must be
downloaded again, since at the very least the RPATHs of dependent binaries will
have changed to point at the new Glibc. Depending on network characteristics,
this can take many hours even on fast connections. Note that this is much worse
than the first effect (having to rebuild the components), since that can be done
centralised and only needs to be done once. The re-deployment, on the other
hand, must be done for each client.

So why don’t we just destructively update components in place, as is done in
other deployment systems, e.g., by overwriting the old Glibc with the new one?
The reason is that this violates the crucial deployment invariant that the hash
of a path uniquely describes the component. (This is similar to allowing assign-
ments in purely functional programming languages such as Haskell [12].) From a
configuration management perspective, the hashes identify the configuration of
the components, and destructive updates remove the ability to identify what we
have on our system. Also, it destroys the component isolation property, i.e., that
an upgrade to one component cannot cause the failure to another component. If
an upgrade is not entirely backwards compatible, this no longer holds.

One might ask whether the relative difficulty (in terms of hardware resources,
not developer or user effort) of deploying upgrades doesn’t show that Nix is
unsuitable for large-scale software deployment. However, Nix’s advantages in
supporting side-by-side variability, correct dependency, atomic rollbacks, and so
on, in the face of a quasi-component model (i.e., the huge base of existing Unix
packages) not designed to support those features, makes it compelling to seek
a solution to the upgrade deployment problem within the Nix framework. The
remainder of this paper shows such a solution.



3 Binary Patch Deployment

The previous section showed the explosion in the number of components to be re-
deployed in case of an update to a fundamental component such as Glibc. In this
section we solve this problem by transparently deploying binary patches between
component releases. For instance, if a bug fix to Glibc induces a switch from
/nix/store/219a...-glibc-2.3.3 to /nix/store/ff9c...-glibc-2.3.3p1, then we compute
the delta (the binary patch) between the contents of those paths and make the
patch available to clients. We also do this for all components depending on it.
Subsequently the clients can apply those patches to the old version to produce
the new version. As we shall see in Section 5, patches for components affected
by a change to a dependency are generally very small.

A binary patch describes a set of edit operations that transforms a base
component stored at path X in the Nix store into a target component stored at
path Y . Thus, if a client needs path Y and it has path X already installed, then
it can speed up the installation of Y by downloading the patch from X to Y ,
copy X to Y in the Nix store, and finally apply the patch to Y .

This fits nicely into Nix’s substitute mechanism used to implement trans-
parent binary deployment. We just extend its download capabilities: rather than
doing a full download, if a patch is available, we download that instead. Manifests
can specify the availability of patches. For instance,

patch {
StorePath: /nix/store/5bfd71c253db...-firefox-1.0
NarURL: http://server/52c036147222...-firefox-1.0-to-1.0.nar-bsdiff
Size: 357
BasePath: /nix/store/075931820cae...-firefox-1.0

}

describes a 357-byte patch from the Firefox component shown in the previous
section (stored at BasePath) to a new one (stored at StorePath) induced by
a Glibc upgrade. If a patch is not available, or if the base component is not
installed, we fall back to a full download of the new component; or even a local
build if no download is available.

3.1 Binary Patch Creation

There are many off-the-shelf algorithms and implementations to compute binary
deltas between two arbitrary files. We used the bsdiff utility [13] because it
produced the smallest patches compared to others (see Section 6).

However, the components in the Nix store are arbitrary directory trees. How
do we produce deltas between directories trees? A “simple” solution would be to
compute deltas between corresponding regular files (i.e., with the same relative
path in the components) and distribute all deltas together. The full contents of
all new files in the target should also be added, as well as a list describing file
deletions, changes to symlink contents, etc. Files not listed would be assumed to
be unchanged.



This method is both complex and has the severe problem of not following
renames. For instance, the Firefox component stores most of its files in a subdi-
rectory lib/firefox-version. The method described above would fail to patch, e.g.,
lib/firefox-0.9/libmozjs.so into lib/firefox-1.0/libmozjs.so since the path names do
not correspond; rather, the latter file would be stored in full in the patch. Hence,
patching would not be very effective in the presence of renames.

There is however a much simpler and more effective solution: we take the
patch between archive files of the components. For instance, we can produce an
uncompressed Zip or Tar file3 containing the full contents of the directory trees
of the two components, and compute the binary delta between those files. This
automatically takes renames, deletions, file type changes, etc. into account, since
these are just simple changes within the archive files. To apply a patch, a client
must also create an archive of the base component, apply the binary patch to it,
and unpack the resulting archive into the target path.

For instance, for the example above, the base archive will at some point
contain a filename lib/firefox-0.9/libmozjs.so followed by the contents of that file,
while the target archive will contain a filename lib/firefox-1.0/libmozjs.so followed
by its contents, which may or may not be the same as the original file. The
binary delta algorithm will just emit an edit operation that changes the first
file name into the second, followed by the appropriate edit operations for the
file contents. It does not matter whether the position of the file in the archive
has changed: contrary to delta algorithms like the standard diff tool, bsdiff can
handle re-ordering of the data.

3.2 Patch Chaining

It is generally infeasible to produce patches between every pair of releases of
a set of components. The number of patches would be O(n2m), where n is the
number of releases and m is the number of components. As an example, consider
the Nix Packages collection (Nixpkgs). It is a set of existing Unix components
ranging from GCC to Firefox. Pre-releases of Nixpkgs are made on every commit
to its version management repository, which typically is several times a day.
Developers and users can stay up-to-date by subscribing to a channel, which is
just a convenience mechanism for updating Nix expressions on client machines.

Since pre-releases appear so often, we cannot feasibly produce patches be-
tween each pair of pre-releases. So as a general policy we only produce patches be-
tween immediately succeeding pre-releases. For instance, given releases 0.7pre1899,
0.7pre1928 and 0.7pre1931, we produce patches between 0.7pre1899 and 0.7pre1928,
and between 0.7pre1928 and 0.7pre1931. This creates a problem, however: sup-
pose that a user has Firefox from 0.7pre1899 installed, and Firefox changed in

3 In actuality, we produce a “Nar file”, which is Nix’s archive file format. Nar files,
unlike Tar or Zip files, have a canonical form: there is a single, uniquely defined
archive for the contents of a directory. For instance, directory entries are always
stored in the same order. This minimises the chances of a patch failing to apply due
to version differences in the archiving tool.



... 0.6pre1741 ... 0.7pre1928 ... 0.70.5 0.6 0.7pre1777 0.7pre1785

Fig. 5. Patch set created between Nixpkgs releases. Arrows indicate the existence of a
patch set.

both succeeding releases, then there would be no patch that brings the user
up-to-date.

The solution is to automatically chain patches, i.e., using a series of available
patches X1 → ... → Xn → Y to produce path Y . In the example above, we have
a Firefox component installed that can be used as the base path to a patch in
the 0.7pre1928 release, to produce a component that can in turn serve as a base
path to a patch in the 0.7pre1931 release.

However, such patch sequences can eventually become so large that they
approach, or become larger than, full downloads. In that case we can “short-
circuit” the sequence by adding patches between additional releases. Figure 5
shows an example sequence of patches between releases thus formed. Here, patch
sets are produced by directly succeeding pre-releases, and between any successive
stable releases. An additional “short-circuit” patch set between 0.7pre1785 and
0.7pre1928 was also made.

In the presence of patch sets between arbitrary releases, it is not directly
obvious which sequence of patches or full downloads is optimal. To be fully gen-
eral, the Nix substitute downloader runs a shortest path algorithm on a directed
acyclic graph that, intuitively, represents components already installed, avail-
able patches between components, and available full downloads of components.
Formally, the graph is defined as follows:

– The nodes are the store paths for which pre-built binaries are available on
the server, either as full downloads or as patches, plus any store paths that
serve as bases to patches. There is also a special start node.

– There are three types of edges:
• Patch edges between store paths that represent available patches. The

edge weight is the size of the patch (in bytes).
• Full download edges from start to a store path for which we have a full

download available. The edge weight is the size of full download.
• Free edges from start to a store path representing that a store path is

already available on the system. The edge weight is 0.

We then find the shortest path between start and the path of the requested
component using Dijkstra’s shortest path algorithm. This method can find any
of the following:

– A sequence of patches transforming an already installed component into the
requested component.



– A full download of the requested component.
– A full download of some component X which is then transformed using a

sequence of patches into the requested component. Generally, this will be
longer than immediately doing a full download of the requested component,
but this allows one to make only patches available for upgrades.

Above, edge weight was defined as the size in bytes of downloads. We could
take other factors into account, such as protocol/network overhead per download,
the CPU resources necessary to apply patches, and so on. For instance, on a
reasonably fast connection, a full download might be preferable over a long
sequence of patches even if the combined byte count of those patches is less than
the full download.

4 Base Selection

To deploy an upgrade, we have to produce patches between “corresponding”
components. This is intuitively simple: for instance, to deploy a Glibc upgrade,
we have to produce patches between the old Glibc and the new one, but also
between the components depending on it, e.g., between the old Firefox and the
new one. However, a complication is that the dependency graphs might not be
isomorphic. For instance, components may have been removed or added, depen-
dencies moved, component names changed (e.g., Phoenix to Firebird to Firefox),
and so on. Also, even disregarding component renames, simply matching by name
is insufficient because there may be multiple component instances with the same
name (e.g., builds for different platforms).

The base selection problem is the problem, when deploying a set of target
components Y, of selecting from a set of base components X a set of patches
(X, Y ) ∈ (X × Y) such that the probability of the Xs being present on the
clients is maximised within certain resource constraints.

Clearly, we could produce patches between all Xs and Y s. This policy is
“optimal” in the sense that the client would always be able to select the abso-
lutely shortest sequence of patches. However, it is infeasible in terms of time and
space since producing a patch takes a non-negligible amount of time, and most
such patches will be large since they will be between unrelated components (for
instance, patching Acrobat Reader into Firefox is obviously inefficient).

Therefore, we need to select some subset of (X× Y). The solution currently
implemented is heuristical: we use a number of properties of the components
to guess whether they “match” (i.e., are conceptually the “same” component).
Indeed, the selection problem seems inherently heuristical for two reasons. First,
there can be arbitrary changes between releases. Second, we cannot feasibly
produce all patches to select the “best” according to some objective criterion.

Possible heuristics include the following:

– Same component name. This is clearly one of the simplest and most effective
criteria. However, there is a complication: there can be multiple components
with the same name. For instance, Nixpkgs contains the GNU C Compiler



gcc at several levels in the dependency graph (due to bootstrapping). Also, it
contains two components called firefox — one is the “real thing”, the other
is a shell script wrapper around the first to enable some plugins. Finally,
Nixpkgs contains the same components for multiple platforms.

– The weighted number of uses can be used to disambiguate between compo-
nents at different bootstrapping levels such as GCC mentioned above, or
disambiguate between certain variants of a component. It is defined for a
component at path p as follows:

w(p) =
∑

q∈users(p)

1
rd(q,p)

where users(p) is the set of components from which p is reachable in the
build-time dependency graph, i.e., the components that are directly or indi-
rectly dependent on p; where d(q, p) is the unweighted distance from com-
ponent q to p in the build-time dependency graph; and where r ≥ 1 is an
empirically determined value that causes less weight to be given to “distant”
dependencies than to “nearby” dependencies.
For instance, in the Nixpkgs dependency graph, there is a “bootstrap” GCC
and a “final” GCC, the former being used to compile the latter, and the
latter being used to compile almost all other packages. If we were to take
the unweighted number of uses (r = 1), then the bootstrap GCC would have
a slightly higher number of uses than the final GCC (since any component
using the latter is indirectly dependent on the former), but the difference
is too small for disambiguation — such a difference could also be caused
by the addition or removal of dependent components. However, if we take,
e.g., r = 2, then the weighted number of uses for the final GCC will be
almost twice as large. This is because the bootstrap GCC is at least one step
further away in the dependency graph from the majority of components,
thus halving their contribution to its w(p).
Thus, if the ratio between w(p) and w(q) is greater than some empirically
determined value k, then components p and q are considered unrelated, and
no patch between them is produced. A good value for k would be around 2,
e.g., k = 1.9.

– Size of the component. If the ratio between the sizes of two components dif-
fers more than some value l, then the components are considered unrelated.
A typical value would be l = 3; even if components differing in size by a
factor of 3 are related, then patching is unlikely to be effectual. This trivial
heuristic can disambiguate between the two Firefox components mentioned
above, since the wrapper script component is much smaller than the real
Firefox component.

– Platform. In general, it is pointless to create a patch between components
for different platforms (e.g., Linux and Mac OS X), since it is unlikely that
a client has components for a different platform installed.



5 Experience

We have implemented the binary patch deployment scheme described above in
the Nix system, and used it to produce patches between 50 subsequent (pre-)
releases of the Nix Packages collection4. Base components were selected on the
basis of matching names, using the size and weighted number of uses heuris-
tics described in the previous section to disambiguate between a number of
components with equal names. The use of patches is automatic and completely
transparent to users; an upgrade action in Nix uses (a sequence of) patches if
available and applicable, and falls back to full downloads otherwise. In this sec-
tion we provide some data to show that the patching scheme succeeds in its
main goal, i.e., reducing network bandwidth consumption in the face of updates
to fundamental components such as Glibc or GCC to an “acceptable” level.

We computed for each pair of subsequent releases how large an upgrade using
full downloads of changed components would be, versus downloading patches to
changed components. Also, the average and median sizes of each patch for the
changed components (or full download, if no patch was possible) were computed.
New top-level components (e.g., applications introduced in the new release) were
disregarded. Table 1 summarises the results for a number of selected releases,
representing various types of upgrades. File sizes are in bytes unless specified
otherwise. Omitted releases were typically upgrades of single leaf components
such as applications. An example is the Firefox upgrade in revision 0.6pre1702.

Efficient upgrades or patches to fundamental components are the main goal
of this paper. For instance, release 0.7pre1980 upgraded the GNU C Compiler
used to build all other components, while releases 0.7pre1820 and 0.7pre1977
provided bug fixes to the GNU C Library, also used at build-time and run-
time by all other components. The patches resulting from the Glibc changes in
particular are tiny: the median patch size is around 440 bytes. This is because
such patches generally only need to modify the RPATH in executable and shared
libraries. The average is higher (around 4K) because a handful of applications
and libraries statically link against Glibc components. Still, the total size of the
patches for all components is only 598K and 743K, respectively — a fairly trivial
size even on slow modem connections.

On the other hand, release 0.6pre1489 is not small at all — the patch savings
are only 60.5%. However, this release contained many significant changes. In
particular, there was a major upgrade to GCC, with important changes to the
generated code in all components. In general, compilers should not be switched
lightly. (If individual components need an upgraded version, e.g., to fix a code
generation bug, that is no problem: Nix expressions, being a functional language,
can easily express that different components must be built with different compil-
ers.) Minor compiler upgrades need not be a problem; release 0.7pre1980, which
featured a minor upgrade to GCC, has a 98.1% patch effectiveness.

4 The releases are available at http://catamaran.labs.cs.uu.nl/dist/nix, and the Nix
expressions from which they were generated at https://svn.cs.uu.nl:12443/viewcvs/
trace/nixpkgs/trunk/.



Release
Comps.
changed

Full
size

Total
patch
size

Savings
Avg.
patch
size

Median
patch
size

Remarks

0.6pre1069 27 31.6M 162K 99.5% 6172 898 X11 client libraries update
0.6pre1489 147 180M 71M 60.5% 495K 81K Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, many other
changes5

0.6pre1538 147 176.7M 364K 99.8% 2536 509 Standard build environ-
ment changes

0.6pre1542 1 9.3M 67K 99.3% 67K 67K Firefox extensions/profiles
bug fix

0.6pre1672 26 38.0M 562K 98.6% 22155 6475 GTK updates
0.6pre1702 3 11.0M 190K 98.3% 63K 234K Firefox 1.0rc1 → 1.0rc2
0.7pre1820 154 188.6M 598K 99.7% 3981 446 Glibc loadlocale bug fix
0.7pre1931 1 1164K 45K 96.1% 45K 45K Subversion 1.1.1 → 1.1.2
0.7pre1977 153 196.3M 743K 99.6% 4977 440 Glibc UTF-8 locales patch
0.7pre1980 154 197.2M 3748K 98.1% 24924 974 GCC 3.4.2 → 3.4.3

Table 1. Statistics for patch sets between selected Nixpkgs releases and their imme-
diate predecessors

Patch generation is a relatively slow process. For example, the generation of
the patch set for release 0.7pre1820 took 49 minutes on a 3.2 GHz Pentium 4
machine with 1 GB of RAM running Linux 2.4.26. The bsdiff program also needs
a large amount of memory; its documentation recommends a working set of at
least 8 times the base file. For a large component such as Glibc, which takes
46M of disk space, this works out to 368M of RAM.

A final point not addressed previously is the disk space consumption of up-
grades. A change to a component such as Glibc will still cause every component
to be duplicated on disk, even if they do no longer have to be downloaded in full.
However, after an upgrade, a user can run the Nix garbage collector that safely
and automatically removes unused components. Nonetheless, as an optimisation,
we observe that many files in those components will be exactly the same (e.g.,
header files, scripts, documentation, JAR files). Therefore, we implemented a
tool that “optimises” the Nix store by finding all identical regular files in the
store, and replacing them with hard links [14] to a single copy. On typical Nix
stores (i.e., subject to normal evolution over a period of time) this saved between
15–30% of disk space. While this is useful, it is not an order of complexity change
as is the case with the amount of bandwidth saved using patches.

6 Related Work

Binary patching has a long history, going back to manual patching of binaries
on mainframes in the 1960s, where it was often a more efficient method of fix-
5 First release since 0.6pre1398.



ing bugs than recompiling from source. Binary patching has been available in
commercial patch tools such as .RTPatch, and interactive installer tools such
as InstallShield. Most Unix binary package managers only support upgrades
through full downloads (SuSE’s “Patch RPMs” include full copies of all changed
files). Microsoft recently introduced binary patching in Windows XP Service
Pack 2 as a method to speed up bug fix deployment [15].

A method for automatically computing and distributing binary patches be-
tween FreeBSD releases is described in [16]. It addresses the additional com-
plication that FreeBSD systems are often built from source, and the resulting
binaries can differ even if the sources are the same, for instance, due to times-
tamps being stored in files. In the Nix patching scheme we guard against this
possibility by providing the MD5 hash of the archive to which the patch applies.
If it does not apply, we fall back to a full download. In general, however, this
situation does not occur because patches are obtained from the same source as
the original binaries.

In Nix, the use of patches is completely hidden from users, who only observe it
as a speed increase. In general, deployment methods often require users to figure
out what files to download to install an upgrade (e.g., hotfixes in Windows). Also,
if sequences of patches are required, these must be applied manually by the user,
unless the distributor has consolidated them into a single patch. The creation
of patches is often a manual and error-prone process, e.g., figuring out what
components to redeploy as a result of a security bug like [11]. In our approach,
this determination is automatic.

The bsdiff program [13] that Nix uses to generate patches is based on the
qsufsort algorithm [17]. In our experience bsdiff outperformed methods such as
ZDelta [18] and VDelta [19, 20], but a comparison of delta algorithms is beyond
the scope of this paper. An overview of some delta algorithms is given in [19].

The problem of keeping derivates consistent with sources and dependency
graph specifications occurs in all build systems, e.g., Make [5]. To ensure cor-
rectness, such systems must rebuild all dependent objects if some source changes.
If a source is fundamental, then a large number of build actions may be neces-
sary. So this problem is not unique in any way to Nix. However, the problems of
build systems affect developers, not end users, while Nix is a deployment system
first and foremost. This is why it is important to ensure that end users are not
affected by the use of a strict update propagation semantics.

7 Conclusion

In a previous ICSE paper [3] we introduced the purely functional deployment
model underlying Nix, where components are stored in isolation in paths in
the file system that contain a hash of all build-time inputs used to construct
the component, and argued that this has substantial advantages for the safe
deployment of software. However, as we noted then, the downside to such a model
is that updates to fundamental components require all components depending
on them to be updated also. In this paper we have shown that using binary



patch deployment, Nix’s functional deployment model can in fact efficiently and
transparently support such operations.
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