LLVM 20.0.0git
MachineScheduler.cpp
Go to the documentation of this file.
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// MachineScheduler schedules machine instructions after phi elimination. It
10// preserves LiveIntervals so it can be invoked before register allocation.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Statistic.h"
51#include "llvm/Config/llvm-config.h"
53#include "llvm/MC/LaneBitmask.h"
54#include "llvm/Pass.h"
57#include "llvm/Support/Debug.h"
61#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <iterator>
65#include <limits>
66#include <memory>
67#include <string>
68#include <tuple>
69#include <utility>
70#include <vector>
71
72using namespace llvm;
73
74#define DEBUG_TYPE "machine-scheduler"
75
76STATISTIC(NumClustered, "Number of load/store pairs clustered");
77
78namespace llvm {
79
81 "misched-prera-direction", cl::Hidden,
82 cl::desc("Pre reg-alloc list scheduling direction"),
86 "Force top-down pre reg-alloc list scheduling"),
87 clEnumValN(MISched::BottomUp, "bottomup",
88 "Force bottom-up pre reg-alloc list scheduling"),
89 clEnumValN(MISched::Bidirectional, "bidirectional",
90 "Force bidirectional pre reg-alloc list scheduling")));
91
93 "misched-postra-direction", cl::Hidden,
94 cl::desc("Post reg-alloc list scheduling direction"),
98 "Force top-down post reg-alloc list scheduling"),
99 clEnumValN(MISched::BottomUp, "bottomup",
100 "Force bottom-up post reg-alloc list scheduling"),
101 clEnumValN(MISched::Bidirectional, "bidirectional",
102 "Force bidirectional post reg-alloc list scheduling")));
103
106 cl::desc("Print critical path length to stdout"));
107
109 "verify-misched", cl::Hidden,
110 cl::desc("Verify machine instrs before and after machine scheduling"));
111
112#ifndef NDEBUG
114 "view-misched-dags", cl::Hidden,
115 cl::desc("Pop up a window to show MISched dags after they are processed"));
116cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
117 cl::desc("Print schedule DAGs"));
119 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
120 cl::desc("Dump resource usage at schedule boundary."));
122 "misched-detail-resource-booking", cl::Hidden, cl::init(false),
123 cl::desc("Show details of invoking getNextResoufceCycle."));
124#else
125const bool ViewMISchedDAGs = false;
126const bool PrintDAGs = false;
127const bool MischedDetailResourceBooking = false;
128#ifdef LLVM_ENABLE_DUMP
129const bool MISchedDumpReservedCycles = false;
130#endif // LLVM_ENABLE_DUMP
131#endif // NDEBUG
132
133} // end namespace llvm
134
135#ifndef NDEBUG
136/// In some situations a few uninteresting nodes depend on nearly all other
137/// nodes in the graph, provide a cutoff to hide them.
138static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
139 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
140
142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
143
145 cl::desc("Only schedule this function"));
146static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
147 cl::desc("Only schedule this MBB#"));
148#endif // NDEBUG
149
150/// Avoid quadratic complexity in unusually large basic blocks by limiting the
151/// size of the ready lists.
153 cl::desc("Limit ready list to N instructions"), cl::init(256));
154
155static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
156 cl::desc("Enable register pressure scheduling."), cl::init(true));
157
158static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
159 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
160
162 cl::desc("Enable memop clustering."),
163 cl::init(true));
164static cl::opt<bool>
165 ForceFastCluster("force-fast-cluster", cl::Hidden,
166 cl::desc("Switch to fast cluster algorithm with the lost "
167 "of some fusion opportunities"),
168 cl::init(false));
170 FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
171 cl::desc("The threshold for fast cluster"),
172 cl::init(1000));
173
174#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
176 "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
177 cl::desc("Dump resource usage at schedule boundary."));
179 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
180 cl::desc("Set width of the columns with "
181 "the resources and schedule units"),
182 cl::init(19));
184 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
185 cl::desc("Set width of the columns showing resource booking."),
186 cl::init(5));
188 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true),
189 cl::desc("Sort the resources printed in the dump trace"));
190#endif
191
193 MIResourceCutOff("misched-resource-cutoff", cl::Hidden,
194 cl::desc("Number of intervals to track"), cl::init(10));
195
196// DAG subtrees must have at least this many nodes.
197static const unsigned MinSubtreeSize = 8;
198
199// Pin the vtables to this file.
200void MachineSchedStrategy::anchor() {}
201
202void ScheduleDAGMutation::anchor() {}
203
204//===----------------------------------------------------------------------===//
205// Machine Instruction Scheduling Pass and Registry
206//===----------------------------------------------------------------------===//
207
210}
211
213 delete RegClassInfo;
214}
215
216namespace {
217
218/// Base class for a machine scheduler class that can run at any point.
219class MachineSchedulerBase : public MachineSchedContext,
220 public MachineFunctionPass {
221public:
222 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
223
224 void print(raw_ostream &O, const Module* = nullptr) const override;
225
226protected:
227 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
228};
229
230/// MachineScheduler runs after coalescing and before register allocation.
231class MachineScheduler : public MachineSchedulerBase {
232public:
233 MachineScheduler();
234
235 void getAnalysisUsage(AnalysisUsage &AU) const override;
236
237 bool runOnMachineFunction(MachineFunction&) override;
238
239 static char ID; // Class identification, replacement for typeinfo
240
241protected:
242 ScheduleDAGInstrs *createMachineScheduler();
243};
244
245/// PostMachineScheduler runs after shortly before code emission.
246class PostMachineScheduler : public MachineSchedulerBase {
247public:
248 PostMachineScheduler();
249
250 void getAnalysisUsage(AnalysisUsage &AU) const override;
251
252 bool runOnMachineFunction(MachineFunction&) override;
253
254 static char ID; // Class identification, replacement for typeinfo
255
256protected:
257 ScheduleDAGInstrs *createPostMachineScheduler();
258};
259
260} // end anonymous namespace
261
262char MachineScheduler::ID = 0;
263
264char &llvm::MachineSchedulerID = MachineScheduler::ID;
265
267 "Machine Instruction Scheduler", false, false)
275
276MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
278}
279
280void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
281 AU.setPreservesCFG();
291}
292
293char PostMachineScheduler::ID = 0;
294
295char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
296
297INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
298 "PostRA Machine Instruction Scheduler", false, false)
302INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
304
305PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
307}
308
309void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
310 AU.setPreservesCFG();
316}
317
320
321/// A dummy default scheduler factory indicates whether the scheduler
322/// is overridden on the command line.
324 return nullptr;
325}
326
327/// MachineSchedOpt allows command line selection of the scheduler.
332 cl::desc("Machine instruction scheduler to use"));
333
335DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
337
339 "enable-misched",
340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
341 cl::Hidden);
342
344 "enable-post-misched",
345 cl::desc("Enable the post-ra machine instruction scheduling pass."),
346 cl::init(true), cl::Hidden);
347
348/// Decrement this iterator until reaching the top or a non-debug instr.
352 assert(I != Beg && "reached the top of the region, cannot decrement");
353 while (--I != Beg) {
354 if (!I->isDebugOrPseudoInstr())
355 break;
356 }
357 return I;
358}
359
360/// Non-const version.
366}
367
368/// If this iterator is a debug value, increment until reaching the End or a
369/// non-debug instruction.
373 for(; I != End; ++I) {
374 if (!I->isDebugOrPseudoInstr())
375 break;
376 }
377 return I;
378}
379
380/// Non-const version.
386}
387
388/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
389ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
390 // Select the scheduler, or set the default.
392 if (Ctor != useDefaultMachineSched)
393 return Ctor(this);
394
395 // Get the default scheduler set by the target for this function.
396 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
397 if (Scheduler)
398 return Scheduler;
399
400 // Default to GenericScheduler.
401 return createGenericSchedLive(this);
402}
403
404/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
405/// the caller. We don't have a command line option to override the postRA
406/// scheduler. The Target must configure it.
407ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
408 // Get the postRA scheduler set by the target for this function.
409 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
410 if (Scheduler)
411 return Scheduler;
412
413 // Default to GenericScheduler.
414 return createGenericSchedPostRA(this);
415}
416
417/// Top-level MachineScheduler pass driver.
418///
419/// Visit blocks in function order. Divide each block into scheduling regions
420/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
421/// consistent with the DAG builder, which traverses the interior of the
422/// scheduling regions bottom-up.
423///
424/// This design avoids exposing scheduling boundaries to the DAG builder,
425/// simplifying the DAG builder's support for "special" target instructions.
426/// At the same time the design allows target schedulers to operate across
427/// scheduling boundaries, for example to bundle the boundary instructions
428/// without reordering them. This creates complexity, because the target
429/// scheduler must update the RegionBegin and RegionEnd positions cached by
430/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
431/// design would be to split blocks at scheduling boundaries, but LLVM has a
432/// general bias against block splitting purely for implementation simplicity.
433bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
434 if (skipFunction(mf.getFunction()))
435 return false;
436
439 return false;
440 } else if (!mf.getSubtarget().enableMachineScheduler())
441 return false;
442
443 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
444
445 // Initialize the context of the pass.
446 MF = &mf;
447 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
448 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
449 PassConfig = &getAnalysis<TargetPassConfig>();
450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
451
452 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
453
454 if (VerifyScheduling) {
455 LLVM_DEBUG(LIS->dump());
456 MF->verify(this, "Before machine scheduling.", &errs());
457 }
458 RegClassInfo->runOnMachineFunction(*MF);
459
460 // Instantiate the selected scheduler for this target, function, and
461 // optimization level.
462 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
463 scheduleRegions(*Scheduler, false);
464
465 LLVM_DEBUG(LIS->dump());
467 MF->verify(this, "After machine scheduling.", &errs());
468 return true;
469}
470
471bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
472 if (skipFunction(mf.getFunction()))
473 return false;
474
477 return false;
478 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
479 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
480 return false;
481 }
482 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
483
484 // Initialize the context of the pass.
485 MF = &mf;
486 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
487 PassConfig = &getAnalysis<TargetPassConfig>();
488 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
489
491 MF->verify(this, "Before post machine scheduling.", &errs());
492
493 // Instantiate the selected scheduler for this target, function, and
494 // optimization level.
495 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
496 scheduleRegions(*Scheduler, true);
497
499 MF->verify(this, "After post machine scheduling.", &errs());
500 return true;
501}
502
503/// Return true of the given instruction should not be included in a scheduling
504/// region.
505///
506/// MachineScheduler does not currently support scheduling across calls. To
507/// handle calls, the DAG builder needs to be modified to create register
508/// anti/output dependencies on the registers clobbered by the call's regmask
509/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
510/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
511/// the boundary, but there would be no benefit to postRA scheduling across
512/// calls this late anyway.
515 MachineFunction *MF,
516 const TargetInstrInfo *TII) {
517 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF) ||
518 MI->isFakeUse();
519}
520
521/// A region of an MBB for scheduling.
522namespace {
523struct SchedRegion {
524 /// RegionBegin is the first instruction in the scheduling region, and
525 /// RegionEnd is either MBB->end() or the scheduling boundary after the
526 /// last instruction in the scheduling region. These iterators cannot refer
527 /// to instructions outside of the identified scheduling region because
528 /// those may be reordered before scheduling this region.
529 MachineBasicBlock::iterator RegionBegin;
531 unsigned NumRegionInstrs;
532
534 unsigned N) :
535 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
536};
537} // end anonymous namespace
538
540
541static void
543 MBBRegionsVector &Regions,
544 bool RegionsTopDown) {
547
549 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
550 RegionEnd != MBB->begin(); RegionEnd = I) {
551
552 // Avoid decrementing RegionEnd for blocks with no terminator.
553 if (RegionEnd != MBB->end() ||
554 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
555 --RegionEnd;
556 }
557
558 // The next region starts above the previous region. Look backward in the
559 // instruction stream until we find the nearest boundary.
560 unsigned NumRegionInstrs = 0;
561 I = RegionEnd;
562 for (;I != MBB->begin(); --I) {
563 MachineInstr &MI = *std::prev(I);
564 if (isSchedBoundary(&MI, &*MBB, MF, TII))
565 break;
566 if (!MI.isDebugOrPseudoInstr()) {
567 // MBB::size() uses instr_iterator to count. Here we need a bundle to
568 // count as a single instruction.
569 ++NumRegionInstrs;
570 }
571 }
572
573 // It's possible we found a scheduling region that only has debug
574 // instructions. Don't bother scheduling these.
575 if (NumRegionInstrs != 0)
576 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
577 }
578
579 if (RegionsTopDown)
580 std::reverse(Regions.begin(), Regions.end());
581}
582
583/// Main driver for both MachineScheduler and PostMachineScheduler.
584void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
585 bool FixKillFlags) {
586 // Visit all machine basic blocks.
587 //
588 // TODO: Visit blocks in global postorder or postorder within the bottom-up
589 // loop tree. Then we can optionally compute global RegPressure.
590 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
591 MBB != MBBEnd; ++MBB) {
592
593 Scheduler.startBlock(&*MBB);
594
595#ifndef NDEBUG
596 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
597 continue;
598 if (SchedOnlyBlock.getNumOccurrences()
599 && (int)SchedOnlyBlock != MBB->getNumber())
600 continue;
601#endif
602
603 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
604 // points to the scheduling boundary at the bottom of the region. The DAG
605 // does not include RegionEnd, but the region does (i.e. the next
606 // RegionEnd is above the previous RegionBegin). If the current block has
607 // no terminator then RegionEnd == MBB->end() for the bottom region.
608 //
609 // All the regions of MBB are first found and stored in MBBRegions, which
610 // will be processed (MBB) top-down if initialized with true.
611 //
612 // The Scheduler may insert instructions during either schedule() or
613 // exitRegion(), even for empty regions. So the local iterators 'I' and
614 // 'RegionEnd' are invalid across these calls. Instructions must not be
615 // added to other regions than the current one without updating MBBRegions.
616
617 MBBRegionsVector MBBRegions;
618 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
619 for (const SchedRegion &R : MBBRegions) {
620 MachineBasicBlock::iterator I = R.RegionBegin;
621 MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
622 unsigned NumRegionInstrs = R.NumRegionInstrs;
623
624 // Notify the scheduler of the region, even if we may skip scheduling
625 // it. Perhaps it still needs to be bundled.
626 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
627
628 // Skip empty scheduling regions (0 or 1 schedulable instructions).
629 if (I == RegionEnd || I == std::prev(RegionEnd)) {
630 // Close the current region. Bundle the terminator if needed.
631 // This invalidates 'RegionEnd' and 'I'.
632 Scheduler.exitRegion();
633 continue;
634 }
635 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
636 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
637 << " " << MBB->getName() << "\n From: " << *I
638 << " To: ";
639 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
640 else dbgs() << "End\n";
641 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
643 errs() << MF->getName();
644 errs() << ":%bb. " << MBB->getNumber();
645 errs() << " " << MBB->getName() << " \n";
646 }
647
648 // Schedule a region: possibly reorder instructions.
649 // This invalidates the original region iterators.
650 Scheduler.schedule();
651
652 // Close the current region.
653 Scheduler.exitRegion();
654 }
655 Scheduler.finishBlock();
656 // FIXME: Ideally, no further passes should rely on kill flags. However,
657 // thumb2 size reduction is currently an exception, so the PostMIScheduler
658 // needs to do this.
659 if (FixKillFlags)
660 Scheduler.fixupKills(*MBB);
661 }
662 Scheduler.finalizeSchedule();
663}
664
665void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
666 // unimplemented
667}
668
669#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
671 dbgs() << "Queue " << Name << ": ";
672 for (const SUnit *SU : Queue)
673 dbgs() << SU->NodeNum << " ";
674 dbgs() << "\n";
675}
676#endif
677
678//===----------------------------------------------------------------------===//
679// ScheduleDAGMI - Basic machine instruction scheduling. This is
680// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
681// virtual registers.
682// ===----------------------------------------------------------------------===/
683
684// Provide a vtable anchor.
686
687/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
688/// NumPredsLeft reaches zero, release the successor node.
689///
690/// FIXME: Adjust SuccSU height based on MinLatency.
692 SUnit *SuccSU = SuccEdge->getSUnit();
693
694 if (SuccEdge->isWeak()) {
695 --SuccSU->WeakPredsLeft;
696 if (SuccEdge->isCluster())
697 NextClusterSucc = SuccSU;
698 return;
699 }
700#ifndef NDEBUG
701 if (SuccSU->NumPredsLeft == 0) {
702 dbgs() << "*** Scheduling failed! ***\n";
703 dumpNode(*SuccSU);
704 dbgs() << " has been released too many times!\n";
705 llvm_unreachable(nullptr);
706 }
707#endif
708 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
709 // CurrCycle may have advanced since then.
710 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
711 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
712
713 --SuccSU->NumPredsLeft;
714 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
715 SchedImpl->releaseTopNode(SuccSU);
716}
717
718/// releaseSuccessors - Call releaseSucc on each of SU's successors.
720 for (SDep &Succ : SU->Succs)
721 releaseSucc(SU, &Succ);
722}
723
724/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
725/// NumSuccsLeft reaches zero, release the predecessor node.
726///
727/// FIXME: Adjust PredSU height based on MinLatency.
729 SUnit *PredSU = PredEdge->getSUnit();
730
731 if (PredEdge->isWeak()) {
732 --PredSU->WeakSuccsLeft;
733 if (PredEdge->isCluster())
734 NextClusterPred = PredSU;
735 return;
736 }
737#ifndef NDEBUG
738 if (PredSU->NumSuccsLeft == 0) {
739 dbgs() << "*** Scheduling failed! ***\n";
740 dumpNode(*PredSU);
741 dbgs() << " has been released too many times!\n";
742 llvm_unreachable(nullptr);
743 }
744#endif
745 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
746 // CurrCycle may have advanced since then.
747 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
748 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
749
750 --PredSU->NumSuccsLeft;
751 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
752 SchedImpl->releaseBottomNode(PredSU);
753}
754
755/// releasePredecessors - Call releasePred on each of SU's predecessors.
757 for (SDep &Pred : SU->Preds)
758 releasePred(SU, &Pred);
759}
760
763 SchedImpl->enterMBB(bb);
764}
765
767 SchedImpl->leaveMBB();
769}
770
771/// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction
772/// after crossing a scheduling boundary. [begin, end) includes all instructions
773/// in the region, including the boundary itself and single-instruction regions
774/// that don't get scheduled.
778 unsigned regioninstrs)
779{
780 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
781
782 SchedImpl->initPolicy(begin, end, regioninstrs);
783
784 // Set dump direction after initializing sched policy.
786 if (SchedImpl->getPolicy().OnlyTopDown)
788 else if (SchedImpl->getPolicy().OnlyBottomUp)
790 else
793}
794
795/// This is normally called from the main scheduler loop but may also be invoked
796/// by the scheduling strategy to perform additional code motion.
799 // Advance RegionBegin if the first instruction moves down.
800 if (&*RegionBegin == MI)
801 ++RegionBegin;
802
803 // Update the instruction stream.
804 BB->splice(InsertPos, BB, MI);
805
806 // Update LiveIntervals
807 if (LIS)
808 LIS->handleMove(*MI, /*UpdateFlags=*/true);
809
810 // Recede RegionBegin if an instruction moves above the first.
811 if (RegionBegin == InsertPos)
812 RegionBegin = MI;
813}
814
816#if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
817 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
819 return false;
820 }
821 ++NumInstrsScheduled;
822#endif
823 return true;
824}
825
826/// Per-region scheduling driver, called back from
827/// PostMachineScheduler::runOnMachineFunction. This is a simplified driver
828/// that does not consider liveness or register pressure. It is useful for
829/// PostRA scheduling and potentially other custom schedulers.
831 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
832 LLVM_DEBUG(SchedImpl->dumpPolicy());
833
834 // Build the DAG.
836
838
839 SmallVector<SUnit*, 8> TopRoots, BotRoots;
840 findRootsAndBiasEdges(TopRoots, BotRoots);
841
842 LLVM_DEBUG(dump());
843 if (PrintDAGs) dump();
845
846 // Initialize the strategy before modifying the DAG.
847 // This may initialize a DFSResult to be used for queue priority.
848 SchedImpl->initialize(this);
849
850 // Initialize ready queues now that the DAG and priority data are finalized.
851 initQueues(TopRoots, BotRoots);
852
853 bool IsTopNode = false;
854 while (true) {
855 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
856 SUnit *SU = SchedImpl->pickNode(IsTopNode);
857 if (!SU) break;
858
859 assert(!SU->isScheduled && "Node already scheduled");
860 if (!checkSchedLimit())
861 break;
862
863 MachineInstr *MI = SU->getInstr();
864 if (IsTopNode) {
865 assert(SU->isTopReady() && "node still has unscheduled dependencies");
866 if (&*CurrentTop == MI)
868 else
870 } else {
871 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
874 if (&*priorII == MI)
875 CurrentBottom = priorII;
876 else {
877 if (&*CurrentTop == MI)
878 CurrentTop = nextIfDebug(++CurrentTop, priorII);
881 }
882 }
883 // Notify the scheduling strategy before updating the DAG.
884 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
885 // runs, it can then use the accurate ReadyCycle time to determine whether
886 // newly released nodes can move to the readyQ.
887 SchedImpl->schedNode(SU, IsTopNode);
888
889 updateQueues(SU, IsTopNode);
890 }
891 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
892
894
895 LLVM_DEBUG({
896 dbgs() << "*** Final schedule for "
897 << printMBBReference(*begin()->getParent()) << " ***\n";
898 dumpSchedule();
899 dbgs() << '\n';
900 });
901}
902
903/// Apply each ScheduleDAGMutation step in order.
905 for (auto &m : Mutations)
906 m->apply(this);
907}
908
911 SmallVectorImpl<SUnit*> &BotRoots) {
912 for (SUnit &SU : SUnits) {
913 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
914
915 // Order predecessors so DFSResult follows the critical path.
916 SU.biasCriticalPath();
917
918 // A SUnit is ready to top schedule if it has no predecessors.
919 if (!SU.NumPredsLeft)
920 TopRoots.push_back(&SU);
921 // A SUnit is ready to bottom schedule if it has no successors.
922 if (!SU.NumSuccsLeft)
923 BotRoots.push_back(&SU);
924 }
926}
927
928/// Identify DAG roots and setup scheduler queues.
930 ArrayRef<SUnit*> BotRoots) {
931 NextClusterSucc = nullptr;
932 NextClusterPred = nullptr;
933
934 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
935 //
936 // Nodes with unreleased weak edges can still be roots.
937 // Release top roots in forward order.
938 for (SUnit *SU : TopRoots)
939 SchedImpl->releaseTopNode(SU);
940
941 // Release bottom roots in reverse order so the higher priority nodes appear
942 // first. This is more natural and slightly more efficient.
944 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
945 SchedImpl->releaseBottomNode(*I);
946 }
947
950
951 SchedImpl->registerRoots();
952
953 // Advance past initial DebugValues.
956}
957
958/// Update scheduler queues after scheduling an instruction.
959void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
960 // Release dependent instructions for scheduling.
961 if (IsTopNode)
963 else
965
966 SU->isScheduled = true;
967}
968
969/// Reinsert any remaining debug_values, just like the PostRA scheduler.
971 // If first instruction was a DBG_VALUE then put it back.
972 if (FirstDbgValue) {
975 }
976
977 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
978 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
979 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
980 MachineInstr *DbgValue = P.first;
981 MachineBasicBlock::iterator OrigPrevMI = P.second;
982 if (&*RegionBegin == DbgValue)
983 ++RegionBegin;
984 BB->splice(std::next(OrigPrevMI), BB, DbgValue);
985 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
987 }
988}
989
990#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
991static const char *scheduleTableLegend = " i: issue\n x: resource booked";
992
994 // Bail off when there is no schedule model to query.
996 return;
997
998 // Nothing to show if there is no or just one instruction.
999 if (BB->size() < 2)
1000 return;
1001
1002 dbgs() << " * Schedule table (TopDown):\n";
1003 dbgs() << scheduleTableLegend << "\n";
1004 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
1005 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
1006 for (MachineInstr &MI : *this) {
1007 SUnit *SU = getSUnit(&MI);
1008 if (!SU)
1009 continue;
1010 const MCSchedClassDesc *SC = getSchedClass(SU);
1013 PI != PE; ++PI) {
1014 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)
1015 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;
1016 }
1017 }
1018 // Print the header with the cycles
1019 dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1020 for (unsigned C = FirstCycle; C <= LastCycle; ++C)
1021 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1022 dbgs() << "|\n";
1023
1024 for (MachineInstr &MI : *this) {
1025 SUnit *SU = getSUnit(&MI);
1026 if (!SU) {
1027 dbgs() << "Missing SUnit\n";
1028 continue;
1029 }
1030 std::string NodeName("SU(");
1031 NodeName += std::to_string(SU->NodeNum) + ")";
1032 dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1033 unsigned C = FirstCycle;
1034 for (; C <= LastCycle; ++C) {
1035 if (C == SU->TopReadyCycle)
1036 dbgs() << llvm::left_justify("| i", ColWidth);
1037 else
1038 dbgs() << llvm::left_justify("|", ColWidth);
1039 }
1040 dbgs() << "|\n";
1041 const MCSchedClassDesc *SC = getSchedClass(SU);
1042
1046
1048 llvm::stable_sort(ResourcesIt,
1049 [](const MCWriteProcResEntry &LHS,
1050 const MCWriteProcResEntry &RHS) -> bool {
1051 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1052 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1053 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1054 });
1055 for (const MCWriteProcResEntry &PI : ResourcesIt) {
1056 C = FirstCycle;
1057 const std::string ResName =
1058 SchedModel.getResourceName(PI.ProcResourceIdx);
1059 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1060 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {
1061 dbgs() << llvm::left_justify("|", ColWidth);
1062 }
1063 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1064 ++I, ++C)
1065 dbgs() << llvm::left_justify("| x", ColWidth);
1066 while (C++ <= LastCycle)
1067 dbgs() << llvm::left_justify("|", ColWidth);
1068 // Place end char
1069 dbgs() << "| \n";
1070 }
1071 }
1072}
1073
1075 // Bail off when there is no schedule model to query.
1077 return;
1078
1079 // Nothing to show if there is no or just one instruction.
1080 if (BB->size() < 2)
1081 return;
1082
1083 dbgs() << " * Schedule table (BottomUp):\n";
1084 dbgs() << scheduleTableLegend << "\n";
1085
1086 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1087 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1088 for (MachineInstr &MI : *this) {
1089 SUnit *SU = getSUnit(&MI);
1090 if (!SU)
1091 continue;
1092 const MCSchedClassDesc *SC = getSchedClass(SU);
1095 PI != PE; ++PI) {
1096 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1097 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;
1098 }
1099 }
1100 // Print the header with the cycles
1101 dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1102 for (int C = FirstCycle; C >= LastCycle; --C)
1103 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1104 dbgs() << "|\n";
1105
1106 for (MachineInstr &MI : *this) {
1107 SUnit *SU = getSUnit(&MI);
1108 if (!SU) {
1109 dbgs() << "Missing SUnit\n";
1110 continue;
1111 }
1112 std::string NodeName("SU(");
1113 NodeName += std::to_string(SU->NodeNum) + ")";
1114 dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1115 int C = FirstCycle;
1116 for (; C >= LastCycle; --C) {
1117 if (C == (int)SU->BotReadyCycle)
1118 dbgs() << llvm::left_justify("| i", ColWidth);
1119 else
1120 dbgs() << llvm::left_justify("|", ColWidth);
1121 }
1122 dbgs() << "|\n";
1123 const MCSchedClassDesc *SC = getSchedClass(SU);
1127
1129 llvm::stable_sort(ResourcesIt,
1130 [](const MCWriteProcResEntry &LHS,
1131 const MCWriteProcResEntry &RHS) -> bool {
1132 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1133 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1134 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1135 });
1136 for (const MCWriteProcResEntry &PI : ResourcesIt) {
1137 C = FirstCycle;
1138 const std::string ResName =
1139 SchedModel.getResourceName(PI.ProcResourceIdx);
1140 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1141 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {
1142 dbgs() << llvm::left_justify("|", ColWidth);
1143 }
1144 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1145 ++I, --C)
1146 dbgs() << llvm::left_justify("| x", ColWidth);
1147 while (C-- >= LastCycle)
1148 dbgs() << llvm::left_justify("|", ColWidth);
1149 // Place end char
1150 dbgs() << "| \n";
1151 }
1152 }
1153}
1154#endif
1155
1156#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1161 else if (DumpDir == DumpDirection::BottomUp)
1164 dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1165 } else {
1166 dbgs() << "* Schedule table: DumpDirection not set.\n";
1167 }
1168 }
1169
1170 for (MachineInstr &MI : *this) {
1171 if (SUnit *SU = getSUnit(&MI))
1172 dumpNode(*SU);
1173 else
1174 dbgs() << "Missing SUnit\n";
1175 }
1176}
1177#endif
1178
1179//===----------------------------------------------------------------------===//
1180// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1181// preservation.
1182//===----------------------------------------------------------------------===//
1183
1185 delete DFSResult;
1186}
1187
1189 const MachineInstr &MI = *SU.getInstr();
1190 for (const MachineOperand &MO : MI.operands()) {
1191 if (!MO.isReg())
1192 continue;
1193 if (!MO.readsReg())
1194 continue;
1195 if (TrackLaneMasks && !MO.isUse())
1196 continue;
1197
1198 Register Reg = MO.getReg();
1199 if (!Reg.isVirtual())
1200 continue;
1201
1202 // Ignore re-defs.
1203 if (TrackLaneMasks) {
1204 bool FoundDef = false;
1205 for (const MachineOperand &MO2 : MI.all_defs()) {
1206 if (MO2.getReg() == Reg && !MO2.isDead()) {
1207 FoundDef = true;
1208 break;
1209 }
1210 }
1211 if (FoundDef)
1212 continue;
1213 }
1214
1215 // Record this local VReg use.
1217 for (; UI != VRegUses.end(); ++UI) {
1218 if (UI->SU == &SU)
1219 break;
1220 }
1221 if (UI == VRegUses.end())
1223 }
1224}
1225
1226/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1227/// crossing a scheduling boundary. [begin, end) includes all instructions in
1228/// the region, including the boundary itself and single-instruction regions
1229/// that don't get scheduled.
1233 unsigned regioninstrs)
1234{
1235 // ScheduleDAGMI initializes SchedImpl's per-region policy.
1236 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1237
1238 // For convenience remember the end of the liveness region.
1239 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1240
1242
1243 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1244 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1245
1247 "ShouldTrackLaneMasks requires ShouldTrackPressure");
1248}
1249
1250// Setup the register pressure trackers for the top scheduled and bottom
1251// scheduled regions.
1253 VRegUses.clear();
1255 for (SUnit &SU : SUnits)
1256 collectVRegUses(SU);
1257
1259 ShouldTrackLaneMasks, false);
1261 ShouldTrackLaneMasks, false);
1262
1263 // Close the RPTracker to finalize live ins.
1265
1267
1268 // Initialize the live ins and live outs.
1271
1272 // Close one end of the tracker so we can call
1273 // getMaxUpward/DownwardPressureDelta before advancing across any
1274 // instructions. This converts currently live regs into live ins/outs.
1277
1279 if (!BotRPTracker.getLiveThru().empty()) {
1281 LLVM_DEBUG(dbgs() << "Live Thru: ";
1283 };
1284
1285 // For each live out vreg reduce the pressure change associated with other
1286 // uses of the same vreg below the live-out reaching def.
1288
1289 // Account for liveness generated by the region boundary.
1290 if (LiveRegionEnd != RegionEnd) {
1292 BotRPTracker.recede(&LiveUses);
1293 updatePressureDiffs(LiveUses);
1294 }
1295
1296 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1298 dbgs() << "Bottom Pressure:\n";
1300
1302 (RegionEnd->isDebugInstr() &&
1304 "Can't find the region bottom");
1305
1306 // Cache the list of excess pressure sets in this region. This will also track
1307 // the max pressure in the scheduled code for these sets.
1308 RegionCriticalPSets.clear();
1309 const std::vector<unsigned> &RegionPressure =
1311 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1312 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1313 if (RegionPressure[i] > Limit) {
1314 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1315 << " Actual " << RegionPressure[i] << "\n");
1316 RegionCriticalPSets.push_back(PressureChange(i));
1317 }
1318 }
1319 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1320 for (const PressureChange &RCPS
1322 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1323 dbgs() << "\n");
1324}
1325
1328 const std::vector<unsigned> &NewMaxPressure) {
1329 const PressureDiff &PDiff = getPressureDiff(SU);
1330 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1331 for (const PressureChange &PC : PDiff) {
1332 if (!PC.isValid())
1333 break;
1334 unsigned ID = PC.getPSet();
1335 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1336 ++CritIdx;
1337 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1338 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1339 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1340 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1341 }
1342 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1343 if (NewMaxPressure[ID] >= Limit - 2) {
1344 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1345 << NewMaxPressure[ID]
1346 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1347 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1348 << " livethru)\n");
1349 }
1350 }
1351}
1352
1353/// Update the PressureDiff array for liveness after scheduling this
1354/// instruction.
1356 for (const VRegMaskOrUnit &P : LiveUses) {
1357 Register Reg = P.RegUnit;
1358 /// FIXME: Currently assuming single-use physregs.
1359 if (!Reg.isVirtual())
1360 continue;
1361
1363 // If the register has just become live then other uses won't change
1364 // this fact anymore => decrement pressure.
1365 // If the register has just become dead then other uses make it come
1366 // back to life => increment pressure.
1367 bool Decrement = P.LaneMask.any();
1368
1369 for (const VReg2SUnit &V2SU
1370 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1371 SUnit &SU = *V2SU.SU;
1372 if (SU.isScheduled || &SU == &ExitSU)
1373 continue;
1374
1375 PressureDiff &PDiff = getPressureDiff(&SU);
1376 PDiff.addPressureChange(Reg, Decrement, &MRI);
1377 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1378 << printReg(Reg, TRI) << ':'
1379 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1380 dbgs() << " to "; PDiff.dump(*TRI););
1381 }
1382 } else {
1383 assert(P.LaneMask.any());
1384 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1385 // This may be called before CurrentBottom has been initialized. However,
1386 // BotRPTracker must have a valid position. We want the value live into the
1387 // instruction or live out of the block, so ask for the previous
1388 // instruction's live-out.
1389 const LiveInterval &LI = LIS->getInterval(Reg);
1390 VNInfo *VNI;
1393 if (I == BB->end())
1394 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1395 else {
1397 VNI = LRQ.valueIn();
1398 }
1399 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1400 assert(VNI && "No live value at use.");
1401 for (const VReg2SUnit &V2SU
1402 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1403 SUnit *SU = V2SU.SU;
1404 // If this use comes before the reaching def, it cannot be a last use,
1405 // so decrease its pressure change.
1406 if (!SU->isScheduled && SU != &ExitSU) {
1407 LiveQueryResult LRQ =
1409 if (LRQ.valueIn() == VNI) {
1410 PressureDiff &PDiff = getPressureDiff(SU);
1411 PDiff.addPressureChange(Reg, true, &MRI);
1412 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1413 << *SU->getInstr();
1414 dbgs() << " to "; PDiff.dump(*TRI););
1415 }
1416 }
1417 }
1418 }
1419 }
1420}
1421
1423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1424 if (EntrySU.getInstr() != nullptr)
1426 for (const SUnit &SU : SUnits) {
1427 dumpNodeAll(SU);
1428 if (ShouldTrackPressure) {
1429 dbgs() << " Pressure Diff : ";
1430 getPressureDiff(&SU).dump(*TRI);
1431 }
1432 dbgs() << " Single Issue : ";
1433 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1434 SchedModel.mustEndGroup(SU.getInstr()))
1435 dbgs() << "true;";
1436 else
1437 dbgs() << "false;";
1438 dbgs() << '\n';
1439 }
1440 if (ExitSU.getInstr() != nullptr)
1442#endif
1443}
1444
1445/// schedule - Called back from MachineScheduler::runOnMachineFunction
1446/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1447/// only includes instructions that have DAG nodes, not scheduling boundaries.
1448///
1449/// This is a skeletal driver, with all the functionality pushed into helpers,
1450/// so that it can be easily extended by experimental schedulers. Generally,
1451/// implementing MachineSchedStrategy should be sufficient to implement a new
1452/// scheduling algorithm. However, if a scheduler further subclasses
1453/// ScheduleDAGMILive then it will want to override this virtual method in order
1454/// to update any specialized state.
1456 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1457 LLVM_DEBUG(SchedImpl->dumpPolicy());
1459
1461
1462 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1463 findRootsAndBiasEdges(TopRoots, BotRoots);
1464
1465 // Initialize the strategy before modifying the DAG.
1466 // This may initialize a DFSResult to be used for queue priority.
1467 SchedImpl->initialize(this);
1468
1469 LLVM_DEBUG(dump());
1470 if (PrintDAGs) dump();
1472
1473 // Initialize ready queues now that the DAG and priority data are finalized.
1474 initQueues(TopRoots, BotRoots);
1475
1476 bool IsTopNode = false;
1477 while (true) {
1478 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1479 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1480 if (!SU) break;
1481
1482 assert(!SU->isScheduled && "Node already scheduled");
1483 if (!checkSchedLimit())
1484 break;
1485
1486 scheduleMI(SU, IsTopNode);
1487
1488 if (DFSResult) {
1489 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1490 if (!ScheduledTrees.test(SubtreeID)) {
1491 ScheduledTrees.set(SubtreeID);
1492 DFSResult->scheduleTree(SubtreeID);
1493 SchedImpl->scheduleTree(SubtreeID);
1494 }
1495 }
1496
1497 // Notify the scheduling strategy after updating the DAG.
1498 SchedImpl->schedNode(SU, IsTopNode);
1499
1500 updateQueues(SU, IsTopNode);
1501 }
1502 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1503
1505
1506 LLVM_DEBUG({
1507 dbgs() << "*** Final schedule for "
1508 << printMBBReference(*begin()->getParent()) << " ***\n";
1509 dumpSchedule();
1510 dbgs() << '\n';
1511 });
1512}
1513
1514/// Build the DAG and setup three register pressure trackers.
1516 if (!ShouldTrackPressure) {
1517 RPTracker.reset();
1518 RegionCriticalPSets.clear();
1520 return;
1521 }
1522
1523 // Initialize the register pressure tracker used by buildSchedGraph.
1525 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1526
1527 // Account for liveness generate by the region boundary.
1528 if (LiveRegionEnd != RegionEnd)
1529 RPTracker.recede();
1530
1531 // Build the DAG, and compute current register pressure.
1533
1534 // Initialize top/bottom trackers after computing region pressure.
1536}
1537
1539 if (!DFSResult)
1540 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1541 DFSResult->clear();
1543 DFSResult->resize(SUnits.size());
1546}
1547
1548/// Compute the max cyclic critical path through the DAG. The scheduling DAG
1549/// only provides the critical path for single block loops. To handle loops that
1550/// span blocks, we could use the vreg path latencies provided by
1551/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1552/// available for use in the scheduler.
1553///
1554/// The cyclic path estimation identifies a def-use pair that crosses the back
1555/// edge and considers the depth and height of the nodes. For example, consider
1556/// the following instruction sequence where each instruction has unit latency
1557/// and defines an eponymous virtual register:
1558///
1559/// a->b(a,c)->c(b)->d(c)->exit
1560///
1561/// The cyclic critical path is a two cycles: b->c->b
1562/// The acyclic critical path is four cycles: a->b->c->d->exit
1563/// LiveOutHeight = height(c) = len(c->d->exit) = 2
1564/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1565/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1566/// LiveInDepth = depth(b) = len(a->b) = 1
1567///
1568/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1569/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1570/// CyclicCriticalPath = min(2, 2) = 2
1571///
1572/// This could be relevant to PostRA scheduling, but is currently implemented
1573/// assuming LiveIntervals.
1575 // This only applies to single block loop.
1576 if (!BB->isSuccessor(BB))
1577 return 0;
1578
1579 unsigned MaxCyclicLatency = 0;
1580 // Visit each live out vreg def to find def/use pairs that cross iterations.
1582 Register Reg = P.RegUnit;
1583 if (!Reg.isVirtual())
1584 continue;
1585 const LiveInterval &LI = LIS->getInterval(Reg);
1586 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1587 if (!DefVNI)
1588 continue;
1589
1591 const SUnit *DefSU = getSUnit(DefMI);
1592 if (!DefSU)
1593 continue;
1594
1595 unsigned LiveOutHeight = DefSU->getHeight();
1596 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1597 // Visit all local users of the vreg def.
1598 for (const VReg2SUnit &V2SU
1599 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1600 SUnit *SU = V2SU.SU;
1601 if (SU == &ExitSU)
1602 continue;
1603
1604 // Only consider uses of the phi.
1606 if (!LRQ.valueIn()->isPHIDef())
1607 continue;
1608
1609 // Assume that a path spanning two iterations is a cycle, which could
1610 // overestimate in strange cases. This allows cyclic latency to be
1611 // estimated as the minimum slack of the vreg's depth or height.
1612 unsigned CyclicLatency = 0;
1613 if (LiveOutDepth > SU->getDepth())
1614 CyclicLatency = LiveOutDepth - SU->getDepth();
1615
1616 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1617 if (LiveInHeight > LiveOutHeight) {
1618 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1619 CyclicLatency = LiveInHeight - LiveOutHeight;
1620 } else
1621 CyclicLatency = 0;
1622
1623 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1624 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1625 if (CyclicLatency > MaxCyclicLatency)
1626 MaxCyclicLatency = CyclicLatency;
1627 }
1628 }
1629 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1630 return MaxCyclicLatency;
1631}
1632
1633/// Release ExitSU predecessors and setup scheduler queues. Re-position
1634/// the Top RP tracker in case the region beginning has changed.
1636 ArrayRef<SUnit*> BotRoots) {
1637 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1638 if (ShouldTrackPressure) {
1639 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1641 }
1642}
1643
1644/// Move an instruction and update register pressure.
1645void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1646 // Move the instruction to its new location in the instruction stream.
1647 MachineInstr *MI = SU->getInstr();
1648
1649 if (IsTopNode) {
1650 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1651 if (&*CurrentTop == MI)
1653 else {
1656 }
1657
1658 if (ShouldTrackPressure) {
1659 // Update top scheduled pressure.
1660 RegisterOperands RegOpers;
1661 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks,
1662 /*IgnoreDead=*/false);
1664 // Adjust liveness and add missing dead+read-undef flags.
1665 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1666 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1667 } else {
1668 // Adjust for missing dead-def flags.
1669 RegOpers.detectDeadDefs(*MI, *LIS);
1670 }
1671
1672 TopRPTracker.advance(RegOpers);
1673 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1674 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1676
1678 }
1679 } else {
1680 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1683 if (&*priorII == MI)
1684 CurrentBottom = priorII;
1685 else {
1686 if (&*CurrentTop == MI) {
1687 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1689 }
1691 CurrentBottom = MI;
1693 }
1694 if (ShouldTrackPressure) {
1695 RegisterOperands RegOpers;
1696 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks,
1697 /*IgnoreDead=*/false);
1699 // Adjust liveness and add missing dead+read-undef flags.
1700 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1701 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1702 } else {
1703 // Adjust for missing dead-def flags.
1704 RegOpers.detectDeadDefs(*MI, *LIS);
1705 }
1706
1710 BotRPTracker.recede(RegOpers, &LiveUses);
1711 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1712 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1714
1716 updatePressureDiffs(LiveUses);
1717 }
1718 }
1719}
1720
1721//===----------------------------------------------------------------------===//
1722// BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1723//===----------------------------------------------------------------------===//
1724
1725namespace {
1726
1727/// Post-process the DAG to create cluster edges between neighboring
1728/// loads or between neighboring stores.
1729class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1730 struct MemOpInfo {
1731 SUnit *SU;
1733 int64_t Offset;
1734 LocationSize Width;
1735 bool OffsetIsScalable;
1736
1737 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1738 int64_t Offset, bool OffsetIsScalable, LocationSize Width)
1739 : SU(SU), BaseOps(BaseOps), Offset(Offset), Width(Width),
1740 OffsetIsScalable(OffsetIsScalable) {}
1741
1742 static bool Compare(const MachineOperand *const &A,
1743 const MachineOperand *const &B) {
1744 if (A->getType() != B->getType())
1745 return A->getType() < B->getType();
1746 if (A->isReg())
1747 return A->getReg() < B->getReg();
1748 if (A->isFI()) {
1749 const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1751 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1753 return StackGrowsDown ? A->getIndex() > B->getIndex()
1754 : A->getIndex() < B->getIndex();
1755 }
1756
1757 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1758 "index bases.");
1759 }
1760
1761 bool operator<(const MemOpInfo &RHS) const {
1762 // FIXME: Don't compare everything twice. Maybe use C++20 three way
1763 // comparison instead when it's available.
1764 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1765 RHS.BaseOps.begin(), RHS.BaseOps.end(),
1766 Compare))
1767 return true;
1768 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1769 BaseOps.begin(), BaseOps.end(), Compare))
1770 return false;
1771 if (Offset != RHS.Offset)
1772 return Offset < RHS.Offset;
1773 return SU->NodeNum < RHS.SU->NodeNum;
1774 }
1775 };
1776
1777 const TargetInstrInfo *TII;
1778 const TargetRegisterInfo *TRI;
1779 bool IsLoad;
1780 bool ReorderWhileClustering;
1781
1782public:
1783 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1784 const TargetRegisterInfo *tri, bool IsLoad,
1785 bool ReorderWhileClustering)
1786 : TII(tii), TRI(tri), IsLoad(IsLoad),
1787 ReorderWhileClustering(ReorderWhileClustering) {}
1788
1789 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1790
1791protected:
1792 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1793 ScheduleDAGInstrs *DAG);
1794 void collectMemOpRecords(std::vector<SUnit> &SUnits,
1795 SmallVectorImpl<MemOpInfo> &MemOpRecords);
1796 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1798};
1799
1800class StoreClusterMutation : public BaseMemOpClusterMutation {
1801public:
1802 StoreClusterMutation(const TargetInstrInfo *tii,
1803 const TargetRegisterInfo *tri,
1804 bool ReorderWhileClustering)
1805 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}
1806};
1807
1808class LoadClusterMutation : public BaseMemOpClusterMutation {
1809public:
1810 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri,
1811 bool ReorderWhileClustering)
1812 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}
1813};
1814
1815} // end anonymous namespace
1816
1817namespace llvm {
1818
1819std::unique_ptr<ScheduleDAGMutation>
1821 const TargetRegisterInfo *TRI,
1822 bool ReorderWhileClustering) {
1823 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(
1824 TII, TRI, ReorderWhileClustering)
1825 : nullptr;
1826}
1827
1828std::unique_ptr<ScheduleDAGMutation>
1830 const TargetRegisterInfo *TRI,
1831 bool ReorderWhileClustering) {
1832 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(
1833 TII, TRI, ReorderWhileClustering)
1834 : nullptr;
1835}
1836
1837} // end namespace llvm
1838
1839// Sorting all the loads/stores first, then for each load/store, checking the
1840// following load/store one by one, until reach the first non-dependent one and
1841// call target hook to see if they can cluster.
1842// If FastCluster is enabled, we assume that, all the loads/stores have been
1843// preprocessed and now, they didn't have dependencies on each other.
1844void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1845 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1846 ScheduleDAGInstrs *DAG) {
1847 // Keep track of the current cluster length and bytes for each SUnit.
1849
1850 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1851 // cluster mem ops collected within `MemOpRecords` array.
1852 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1853 // Decision to cluster mem ops is taken based on target dependent logic
1854 auto MemOpa = MemOpRecords[Idx];
1855
1856 // Seek for the next load/store to do the cluster.
1857 unsigned NextIdx = Idx + 1;
1858 for (; NextIdx < End; ++NextIdx)
1859 // Skip if MemOpb has been clustered already or has dependency with
1860 // MemOpa.
1861 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1862 (FastCluster ||
1863 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1864 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1865 break;
1866 if (NextIdx == End)
1867 continue;
1868
1869 auto MemOpb = MemOpRecords[NextIdx];
1870 unsigned ClusterLength = 2;
1871 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() +
1872 MemOpb.Width.getValue().getKnownMinValue();
1873 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1874 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1875 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second +
1876 MemOpb.Width.getValue().getKnownMinValue();
1877 }
1878
1879 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
1880 MemOpa.OffsetIsScalable, MemOpb.BaseOps,
1881 MemOpb.Offset, MemOpb.OffsetIsScalable,
1882 ClusterLength, CurrentClusterBytes))
1883 continue;
1884
1885 SUnit *SUa = MemOpa.SU;
1886 SUnit *SUb = MemOpb.SU;
1887 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)
1888 std::swap(SUa, SUb);
1889
1890 // FIXME: Is this check really required?
1891 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1892 continue;
1893
1894 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1895 << SUb->NodeNum << ")\n");
1896 ++NumClustered;
1897
1898 if (IsLoad) {
1899 // Copy successor edges from SUa to SUb. Interleaving computation
1900 // dependent on SUa can prevent load combining due to register reuse.
1901 // Predecessor edges do not need to be copied from SUb to SUa since
1902 // nearby loads should have effectively the same inputs.
1903 for (const SDep &Succ : SUa->Succs) {
1904 if (Succ.getSUnit() == SUb)
1905 continue;
1906 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1907 << ")\n");
1908 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1909 }
1910 } else {
1911 // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1912 // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1913 // do not need to be copied from SUa to SUb since no one will depend
1914 // on stores.
1915 // Notice that, we don't need to care about the memory dependency as
1916 // we won't try to cluster them if they have any memory dependency.
1917 for (const SDep &Pred : SUb->Preds) {
1918 if (Pred.getSUnit() == SUa)
1919 continue;
1920 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum
1921 << ")\n");
1922 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1923 }
1924 }
1925
1926 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1927 CurrentClusterBytes};
1928
1929 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength
1930 << ", Curr cluster bytes: " << CurrentClusterBytes
1931 << "\n");
1932 }
1933}
1934
1935void BaseMemOpClusterMutation::collectMemOpRecords(
1936 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1937 for (auto &SU : SUnits) {
1938 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1939 (!IsLoad && !SU.getInstr()->mayStore()))
1940 continue;
1941
1942 const MachineInstr &MI = *SU.getInstr();
1944 int64_t Offset;
1945 bool OffsetIsScalable;
1946 LocationSize Width = 0;
1948 OffsetIsScalable, Width, TRI)) {
1949 if (!Width.hasValue())
1950 continue;
1951
1952 MemOpRecords.push_back(
1953 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));
1954
1955 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1956 << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1957 << ", Width: " << Width << "\n");
1958 }
1959#ifndef NDEBUG
1960 for (const auto *Op : BaseOps)
1961 assert(Op);
1962#endif
1963 }
1964}
1965
1966bool BaseMemOpClusterMutation::groupMemOps(
1969 bool FastCluster =
1971 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1972
1973 for (const auto &MemOp : MemOps) {
1974 unsigned ChainPredID = DAG->SUnits.size();
1975 if (FastCluster) {
1976 for (const SDep &Pred : MemOp.SU->Preds) {
1977 // We only want to cluster the mem ops that have the same ctrl(non-data)
1978 // pred so that they didn't have ctrl dependency for each other. But for
1979 // store instrs, we can still cluster them if the pred is load instr.
1980 if ((Pred.isCtrl() &&
1981 (IsLoad ||
1982 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1983 !Pred.isArtificial()) {
1984 ChainPredID = Pred.getSUnit()->NodeNum;
1985 break;
1986 }
1987 }
1988 } else
1989 ChainPredID = 0;
1990
1991 Groups[ChainPredID].push_back(MemOp);
1992 }
1993 return FastCluster;
1994}
1995
1996/// Callback from DAG postProcessing to create cluster edges for loads/stores.
1997void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1998 // Collect all the clusterable loads/stores
1999 SmallVector<MemOpInfo, 32> MemOpRecords;
2000 collectMemOpRecords(DAG->SUnits, MemOpRecords);
2001
2002 if (MemOpRecords.size() < 2)
2003 return;
2004
2005 // Put the loads/stores without dependency into the same group with some
2006 // heuristic if the DAG is too complex to avoid compiling time blow up.
2007 // Notice that, some fusion pair could be lost with this.
2009 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
2010
2011 for (auto &Group : Groups) {
2012 // Sorting the loads/stores, so that, we can stop the cluster as early as
2013 // possible.
2014 llvm::sort(Group.second);
2015
2016 // Trying to cluster all the neighboring loads/stores.
2017 clusterNeighboringMemOps(Group.second, FastCluster, DAG);
2018 }
2019}
2020
2021//===----------------------------------------------------------------------===//
2022// CopyConstrain - DAG post-processing to encourage copy elimination.
2023//===----------------------------------------------------------------------===//
2024
2025namespace {
2026
2027/// Post-process the DAG to create weak edges from all uses of a copy to
2028/// the one use that defines the copy's source vreg, most likely an induction
2029/// variable increment.
2030class CopyConstrain : public ScheduleDAGMutation {
2031 // Transient state.
2032 SlotIndex RegionBeginIdx;
2033
2034 // RegionEndIdx is the slot index of the last non-debug instruction in the
2035 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
2036 SlotIndex RegionEndIdx;
2037
2038public:
2039 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
2040
2041 void apply(ScheduleDAGInstrs *DAGInstrs) override;
2042
2043protected:
2044 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2045};
2046
2047} // end anonymous namespace
2048
2049namespace llvm {
2050
2051std::unique_ptr<ScheduleDAGMutation>
2053 const TargetRegisterInfo *TRI) {
2054 return std::make_unique<CopyConstrain>(TII, TRI);
2055}
2056
2057} // end namespace llvm
2058
2059/// constrainLocalCopy handles two possibilities:
2060/// 1) Local src:
2061/// I0: = dst
2062/// I1: src = ...
2063/// I2: = dst
2064/// I3: dst = src (copy)
2065/// (create pred->succ edges I0->I1, I2->I1)
2066///
2067/// 2) Local copy:
2068/// I0: dst = src (copy)
2069/// I1: = dst
2070/// I2: src = ...
2071/// I3: = dst
2072/// (create pred->succ edges I1->I2, I3->I2)
2073///
2074/// Although the MachineScheduler is currently constrained to single blocks,
2075/// this algorithm should handle extended blocks. An EBB is a set of
2076/// contiguously numbered blocks such that the previous block in the EBB is
2077/// always the single predecessor.
2078void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
2079 LiveIntervals *LIS = DAG->getLIS();
2080 MachineInstr *Copy = CopySU->getInstr();
2081
2082 // Check for pure vreg copies.
2083 const MachineOperand &SrcOp = Copy->getOperand(1);
2084 Register SrcReg = SrcOp.getReg();
2085 if (!SrcReg.isVirtual() || !SrcOp.readsReg())
2086 return;
2087
2088 const MachineOperand &DstOp = Copy->getOperand(0);
2089 Register DstReg = DstOp.getReg();
2090 if (!DstReg.isVirtual() || DstOp.isDead())
2091 return;
2092
2093 // Check if either the dest or source is local. If it's live across a back
2094 // edge, it's not local. Note that if both vregs are live across the back
2095 // edge, we cannot successfully contrain the copy without cyclic scheduling.
2096 // If both the copy's source and dest are local live intervals, then we
2097 // should treat the dest as the global for the purpose of adding
2098 // constraints. This adds edges from source's other uses to the copy.
2099 unsigned LocalReg = SrcReg;
2100 unsigned GlobalReg = DstReg;
2101 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2102 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2103 LocalReg = DstReg;
2104 GlobalReg = SrcReg;
2105 LocalLI = &LIS->getInterval(LocalReg);
2106 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2107 return;
2108 }
2109 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2110
2111 // Find the global segment after the start of the local LI.
2112 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2113 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2114 // local live range. We could create edges from other global uses to the local
2115 // start, but the coalescer should have already eliminated these cases, so
2116 // don't bother dealing with it.
2117 if (GlobalSegment == GlobalLI->end())
2118 return;
2119
2120 // If GlobalSegment is killed at the LocalLI->start, the call to find()
2121 // returned the next global segment. But if GlobalSegment overlaps with
2122 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2123 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2124 if (GlobalSegment->contains(LocalLI->beginIndex()))
2125 ++GlobalSegment;
2126
2127 if (GlobalSegment == GlobalLI->end())
2128 return;
2129
2130 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2131 if (GlobalSegment != GlobalLI->begin()) {
2132 // Two address defs have no hole.
2133 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2134 GlobalSegment->start)) {
2135 return;
2136 }
2137 // If the prior global segment may be defined by the same two-address
2138 // instruction that also defines LocalLI, then can't make a hole here.
2139 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2140 LocalLI->beginIndex())) {
2141 return;
2142 }
2143 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2144 // it would be a disconnected component in the live range.
2145 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2146 "Disconnected LRG within the scheduling region.");
2147 }
2148 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2149 if (!GlobalDef)
2150 return;
2151
2152 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2153 if (!GlobalSU)
2154 return;
2155
2156 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2157 // constraining the uses of the last local def to precede GlobalDef.
2158 SmallVector<SUnit*,8> LocalUses;
2159 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2160 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2161 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2162 for (const SDep &Succ : LastLocalSU->Succs) {
2163 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2164 continue;
2165 if (Succ.getSUnit() == GlobalSU)
2166 continue;
2167 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2168 return;
2169 LocalUses.push_back(Succ.getSUnit());
2170 }
2171 // Open the top of the GlobalLI hole by constraining any earlier global uses
2172 // to precede the start of LocalLI.
2173 SmallVector<SUnit*,8> GlobalUses;
2174 MachineInstr *FirstLocalDef =
2175 LIS->getInstructionFromIndex(LocalLI->beginIndex());
2176 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2177 for (const SDep &Pred : GlobalSU->Preds) {
2178 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2179 continue;
2180 if (Pred.getSUnit() == FirstLocalSU)
2181 continue;
2182 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2183 return;
2184 GlobalUses.push_back(Pred.getSUnit());
2185 }
2186 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2187 // Add the weak edges.
2188 for (SUnit *LU : LocalUses) {
2189 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU("
2190 << GlobalSU->NodeNum << ")\n");
2191 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2192 }
2193 for (SUnit *GU : GlobalUses) {
2194 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU("
2195 << FirstLocalSU->NodeNum << ")\n");
2196 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2197 }
2198}
2199
2200/// Callback from DAG postProcessing to create weak edges to encourage
2201/// copy elimination.
2202void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2203 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2204 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2205
2206 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2207 if (FirstPos == DAG->end())
2208 return;
2209 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2210 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2211 *priorNonDebug(DAG->end(), DAG->begin()));
2212
2213 for (SUnit &SU : DAG->SUnits) {
2214 if (!SU.getInstr()->isCopy())
2215 continue;
2216
2217 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2218 }
2219}
2220
2221//===----------------------------------------------------------------------===//
2222// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2223// and possibly other custom schedulers.
2224//===----------------------------------------------------------------------===//
2225
2226static const unsigned InvalidCycle = ~0U;
2227
2229
2230/// Given a Count of resource usage and a Latency value, return true if a
2231/// SchedBoundary becomes resource limited.
2232/// If we are checking after scheduling a node, we should return true when
2233/// we just reach the resource limit.
2234static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2235 unsigned Latency, bool AfterSchedNode) {
2236 int ResCntFactor = (int)(Count - (Latency * LFactor));
2237 if (AfterSchedNode)
2238 return ResCntFactor >= (int)LFactor;
2239 else
2240 return ResCntFactor > (int)LFactor;
2241}
2242
2244 // A new HazardRec is created for each DAG and owned by SchedBoundary.
2245 // Destroying and reconstructing it is very expensive though. So keep
2246 // invalid, placeholder HazardRecs.
2247 if (HazardRec && HazardRec->isEnabled()) {
2248 delete HazardRec;
2249 HazardRec = nullptr;
2250 }
2251 Available.clear();
2252 Pending.clear();
2253 CheckPending = false;
2254 CurrCycle = 0;
2255 CurrMOps = 0;
2256 MinReadyCycle = std::numeric_limits<unsigned>::max();
2257 ExpectedLatency = 0;
2258 DependentLatency = 0;
2259 RetiredMOps = 0;
2260 MaxExecutedResCount = 0;
2261 ZoneCritResIdx = 0;
2262 IsResourceLimited = false;
2263 ReservedCycles.clear();
2264 ReservedResourceSegments.clear();
2265 ReservedCyclesIndex.clear();
2266 ResourceGroupSubUnitMasks.clear();
2267#if LLVM_ENABLE_ABI_BREAKING_CHECKS
2268 // Track the maximum number of stall cycles that could arise either from the
2269 // latency of a DAG edge or the number of cycles that a processor resource is
2270 // reserved (SchedBoundary::ReservedCycles).
2271 MaxObservedStall = 0;
2272#endif
2273 // Reserve a zero-count for invalid CritResIdx.
2274 ExecutedResCounts.resize(1);
2275 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2276}
2277
2279init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2280 reset();
2281 if (!SchedModel->hasInstrSchedModel())
2282 return;
2284 for (SUnit &SU : DAG->SUnits) {
2285 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2286 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2287 * SchedModel->getMicroOpFactor();
2289 PI = SchedModel->getWriteProcResBegin(SC),
2290 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2291 unsigned PIdx = PI->ProcResourceIdx;
2292 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2293 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2294 RemainingCounts[PIdx] +=
2295 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2296 }
2297 }
2298}
2299
2301init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2302 reset();
2303 DAG = dag;
2304 SchedModel = smodel;
2305 Rem = rem;
2307 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2308 ReservedCyclesIndex.resize(ResourceCount);
2309 ExecutedResCounts.resize(ResourceCount);
2310 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2311 unsigned NumUnits = 0;
2312
2313 for (unsigned i = 0; i < ResourceCount; ++i) {
2314 ReservedCyclesIndex[i] = NumUnits;
2315 NumUnits += SchedModel->getProcResource(i)->NumUnits;
2316 if (isUnbufferedGroup(i)) {
2317 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2318 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2319 U != UE; ++U)
2320 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2321 }
2322 }
2323
2324 ReservedCycles.resize(NumUnits, InvalidCycle);
2325 }
2326}
2327
2328/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2329/// these "soft stalls" differently than the hard stall cycles based on CPU
2330/// resources and computed by checkHazard(). A fully in-order model
2331/// (MicroOpBufferSize==0) will not make use of this since instructions are not
2332/// available for scheduling until they are ready. However, a weaker in-order
2333/// model may use this for heuristics. For example, if a processor has in-order
2334/// behavior when reading certain resources, this may come into play.
2336 if (!SU->isUnbuffered)
2337 return 0;
2338
2339 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2340 if (ReadyCycle > CurrCycle)
2341 return ReadyCycle - CurrCycle;
2342 return 0;
2343}
2344
2345/// Compute the next cycle at which the given processor resource unit
2346/// can be scheduled.
2348 unsigned ReleaseAtCycle,
2349 unsigned AcquireAtCycle) {
2351 if (isTop())
2352 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2353 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2354
2355 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2356 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2357 }
2358
2359 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2360 // If this resource has never been used, always return cycle zero.
2361 if (NextUnreserved == InvalidCycle)
2362 return CurrCycle;
2363 // For bottom-up scheduling add the cycles needed for the current operation.
2364 if (!isTop())
2365 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2366 return NextUnreserved;
2367}
2368
2369/// Compute the next cycle at which the given processor resource can be
2370/// scheduled. Returns the next cycle and the index of the processor resource
2371/// instance in the reserved cycles vector.
2372std::pair<unsigned, unsigned>
2374 unsigned ReleaseAtCycle,
2375 unsigned AcquireAtCycle) {
2377 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n");
2379 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n");
2380 }
2381 unsigned MinNextUnreserved = InvalidCycle;
2382 unsigned InstanceIdx = 0;
2383 unsigned StartIndex = ReservedCyclesIndex[PIdx];
2384 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2385 assert(NumberOfInstances > 0 &&
2386 "Cannot have zero instances of a ProcResource");
2387
2388 if (isUnbufferedGroup(PIdx)) {
2389 // If any subunits are used by the instruction, report that the
2390 // subunits of the resource group are available at the first cycle
2391 // in which the unit is available, effectively removing the group
2392 // record from hazarding and basing the hazarding decisions on the
2393 // subunit records. Otherwise, choose the first available instance
2394 // from among the subunits. Specifications which assign cycles to
2395 // both the subunits and the group or which use an unbuffered
2396 // group with buffered subunits will appear to schedule
2397 // strangely. In the first case, the additional cycles for the
2398 // group will be ignored. In the second, the group will be
2399 // ignored entirely.
2400 for (const MCWriteProcResEntry &PE :
2403 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2404 return std::make_pair(getNextResourceCycleByInstance(
2405 StartIndex, ReleaseAtCycle, AcquireAtCycle),
2406 StartIndex);
2407
2408 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2409 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2410 unsigned NextUnreserved, NextInstanceIdx;
2411 std::tie(NextUnreserved, NextInstanceIdx) =
2412 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle);
2413 if (MinNextUnreserved > NextUnreserved) {
2414 InstanceIdx = NextInstanceIdx;
2415 MinNextUnreserved = NextUnreserved;
2416 }
2417 }
2418 return std::make_pair(MinNextUnreserved, InstanceIdx);
2419 }
2420
2421 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2422 ++I) {
2423 unsigned NextUnreserved =
2424 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle);
2426 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @"
2427 << NextUnreserved << "c\n");
2428 if (MinNextUnreserved > NextUnreserved) {
2429 InstanceIdx = I;
2430 MinNextUnreserved = NextUnreserved;
2431 }
2432 }
2434 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx)
2435 << "[" << InstanceIdx - StartIndex << "]"
2436 << " available @" << MinNextUnreserved << "c"
2437 << "\n");
2438 return std::make_pair(MinNextUnreserved, InstanceIdx);
2439}
2440
2441/// Does this SU have a hazard within the current instruction group.
2442///
2443/// The scheduler supports two modes of hazard recognition. The first is the
2444/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2445/// supports highly complicated in-order reservation tables
2446/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2447///
2448/// The second is a streamlined mechanism that checks for hazards based on
2449/// simple counters that the scheduler itself maintains. It explicitly checks
2450/// for instruction dispatch limitations, including the number of micro-ops that
2451/// can dispatch per cycle.
2452///
2453/// TODO: Also check whether the SU must start a new group.
2455 if (HazardRec->isEnabled()
2457 return true;
2458 }
2459
2460 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2461 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2462 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
2463 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2464 return true;
2465 }
2466
2467 if (CurrMOps > 0 &&
2468 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2469 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2470 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
2471 << (isTop() ? "begin" : "end") << " group\n");
2472 return true;
2473 }
2474
2476 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2477 for (const MCWriteProcResEntry &PE :
2480 unsigned ResIdx = PE.ProcResourceIdx;
2481 unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2482 unsigned AcquireAtCycle = PE.AcquireAtCycle;
2483 unsigned NRCycle, InstanceIdx;
2484 std::tie(NRCycle, InstanceIdx) =
2485 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle);
2486 if (NRCycle > CurrCycle) {
2487#if LLVM_ENABLE_ABI_BREAKING_CHECKS
2488 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2489#endif
2490 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
2491 << SchedModel->getResourceName(ResIdx)
2492 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
2493 << "=" << NRCycle << "c\n");
2494 return true;
2495 }
2496 }
2497 }
2498 return false;
2499}
2500
2501// Find the unscheduled node in ReadySUs with the highest latency.
2504 SUnit *LateSU = nullptr;
2505 unsigned RemLatency = 0;
2506 for (SUnit *SU : ReadySUs) {
2507 unsigned L = getUnscheduledLatency(SU);
2508 if (L > RemLatency) {
2509 RemLatency = L;
2510 LateSU = SU;
2511 }
2512 }
2513 if (LateSU) {
2514 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2515 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2516 }
2517 return RemLatency;
2518}
2519
2520// Count resources in this zone and the remaining unscheduled
2521// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2522// resource index, or zero if the zone is issue limited.
2524getOtherResourceCount(unsigned &OtherCritIdx) {
2525 OtherCritIdx = 0;
2527 return 0;
2528
2529 unsigned OtherCritCount = Rem->RemIssueCount
2530 + (RetiredMOps * SchedModel->getMicroOpFactor());
2531 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2532 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2533 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2534 PIdx != PEnd; ++PIdx) {
2535 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2536 if (OtherCount > OtherCritCount) {
2537 OtherCritCount = OtherCount;
2538 OtherCritIdx = PIdx;
2539 }
2540 }
2541 if (OtherCritIdx) {
2542 LLVM_DEBUG(
2543 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2544 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2545 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2546 }
2547 return OtherCritCount;
2548}
2549
2550void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2551 unsigned Idx) {
2552 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2553
2554#if LLVM_ENABLE_ABI_BREAKING_CHECKS
2555 // ReadyCycle was been bumped up to the CurrCycle when this node was
2556 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2557 // scheduling, so may now be greater than ReadyCycle.
2558 if (ReadyCycle > CurrCycle)
2559 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2560#endif
2561
2562 if (ReadyCycle < MinReadyCycle)
2563 MinReadyCycle = ReadyCycle;
2564
2565 // Check for interlocks first. For the purpose of other heuristics, an
2566 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2567 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2568 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2570
2571 if (!HazardDetected) {
2572 Available.push(SU);
2573
2574 if (InPQueue)
2576 return;
2577 }
2578
2579 if (!InPQueue)
2580 Pending.push(SU);
2581}
2582
2583/// Move the boundary of scheduled code by one cycle.
2584void SchedBoundary::bumpCycle(unsigned NextCycle) {
2585 if (SchedModel->getMicroOpBufferSize() == 0) {
2586 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2587 "MinReadyCycle uninitialized");
2588 if (MinReadyCycle > NextCycle)
2589 NextCycle = MinReadyCycle;
2590 }
2591 // Update the current micro-ops, which will issue in the next cycle.
2592 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2593 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2594
2595 // Decrement DependentLatency based on the next cycle.
2596 if ((NextCycle - CurrCycle) > DependentLatency)
2597 DependentLatency = 0;
2598 else
2599 DependentLatency -= (NextCycle - CurrCycle);
2600
2601 if (!HazardRec->isEnabled()) {
2602 // Bypass HazardRec virtual calls.
2603 CurrCycle = NextCycle;
2604 } else {
2605 // Bypass getHazardType calls in case of long latency.
2606 for (; CurrCycle != NextCycle; ++CurrCycle) {
2607 if (isTop())
2609 else
2611 }
2612 }
2613 CheckPending = true;
2614 IsResourceLimited =
2616 getScheduledLatency(), true);
2617
2618 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2619 << '\n');
2620}
2621
2622void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2623 ExecutedResCounts[PIdx] += Count;
2624 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2625 MaxExecutedResCount = ExecutedResCounts[PIdx];
2626}
2627
2628/// Add the given processor resource to this scheduled zone.
2629///
2630/// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined)
2631/// cycles during which this resource is released.
2632///
2633/// \param AcquireAtCycle indicates the number of consecutive (non-pipelined)
2634/// cycles at which the resource is aquired after issue (assuming no stalls).
2635///
2636/// \return the next cycle at which the instruction may execute without
2637/// oversubscribing resources.
2638unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2639 unsigned ReleaseAtCycle,
2640 unsigned NextCycle,
2641 unsigned AcquireAtCycle) {
2642 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2643 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2644 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2645 << ReleaseAtCycle << "x" << Factor << "u\n");
2646
2647 // Update Executed resources counts.
2648 incExecutedResources(PIdx, Count);
2649 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2650 Rem->RemainingCounts[PIdx] -= Count;
2651
2652 // Check if this resource exceeds the current critical resource. If so, it
2653 // becomes the critical resource.
2654 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2655 ZoneCritResIdx = PIdx;
2656 LLVM_DEBUG(dbgs() << " *** Critical resource "
2657 << SchedModel->getResourceName(PIdx) << ": "
2659 << "c\n");
2660 }
2661 // For reserved resources, record the highest cycle using the resource.
2662 unsigned NextAvailable, InstanceIdx;
2663 std::tie(NextAvailable, InstanceIdx) =
2664 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle);
2665 if (NextAvailable > CurrCycle) {
2666 LLVM_DEBUG(dbgs() << " Resource conflict: "
2667 << SchedModel->getResourceName(PIdx)
2668 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
2669 << " reserved until @" << NextAvailable << "\n");
2670 }
2671 return NextAvailable;
2672}
2673
2674/// Move the boundary of scheduled code by one SUnit.
2676 // Update the reservation table.
2677 if (HazardRec->isEnabled()) {
2678 if (!isTop() && SU->isCall) {
2679 // Calls are scheduled with their preceding instructions. For bottom-up
2680 // scheduling, clear the pipeline state before emitting.
2681 HazardRec->Reset();
2682 }
2684 // Scheduling an instruction may have made pending instructions available.
2685 CheckPending = true;
2686 }
2687 // checkHazard should prevent scheduling multiple instructions per cycle that
2688 // exceed the issue width.
2689 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2690 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2691 assert(
2692 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2693 "Cannot schedule this instruction's MicroOps in the current cycle.");
2694
2695 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2696 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2697
2698 unsigned NextCycle = CurrCycle;
2699 switch (SchedModel->getMicroOpBufferSize()) {
2700 case 0:
2701 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2702 break;
2703 case 1:
2704 if (ReadyCycle > NextCycle) {
2705 NextCycle = ReadyCycle;
2706 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2707 }
2708 break;
2709 default:
2710 // We don't currently model the OOO reorder buffer, so consider all
2711 // scheduled MOps to be "retired". We do loosely model in-order resource
2712 // latency. If this instruction uses an in-order resource, account for any
2713 // likely stall cycles.
2714 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2715 NextCycle = ReadyCycle;
2716 break;
2717 }
2718 RetiredMOps += IncMOps;
2719
2720 // Update resource counts and critical resource.
2722 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2723 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2724 Rem->RemIssueCount -= DecRemIssue;
2725 if (ZoneCritResIdx) {
2726 // Scale scheduled micro-ops for comparing with the critical resource.
2727 unsigned ScaledMOps =
2728 RetiredMOps * SchedModel->getMicroOpFactor();
2729
2730 // If scaled micro-ops are now more than the previous critical resource by
2731 // a full cycle, then micro-ops issue becomes critical.
2732 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2733 >= (int)SchedModel->getLatencyFactor()) {
2734 ZoneCritResIdx = 0;
2735 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2736 << ScaledMOps / SchedModel->getLatencyFactor()
2737 << "c\n");
2738 }
2739 }
2742 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2743 unsigned RCycle =
2744 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
2745 PI->AcquireAtCycle);
2746 if (RCycle > NextCycle)
2747 NextCycle = RCycle;
2748 }
2749 if (SU->hasReservedResource) {
2750 // For reserved resources, record the highest cycle using the resource.
2751 // For top-down scheduling, this is the cycle in which we schedule this
2752 // instruction plus the number of cycles the operations reserves the
2753 // resource. For bottom-up is it simply the instruction's cycle.
2756 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2757 unsigned PIdx = PI->ProcResourceIdx;
2758 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2759
2761 unsigned ReservedUntil, InstanceIdx;
2762 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2763 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2764 if (isTop()) {
2765 ReservedResourceSegments[InstanceIdx].add(
2767 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2769 } else {
2770 ReservedResourceSegments[InstanceIdx].add(
2772 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2774 }
2775 } else {
2776
2777 unsigned ReservedUntil, InstanceIdx;
2778 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2779 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2780 if (isTop()) {
2781 ReservedCycles[InstanceIdx] =
2782 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
2783 } else
2784 ReservedCycles[InstanceIdx] = NextCycle;
2785 }
2786 }
2787 }
2788 }
2789 }
2790 // Update ExpectedLatency and DependentLatency.
2791 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2792 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2793 if (SU->getDepth() > TopLatency) {
2794 TopLatency = SU->getDepth();
2795 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2796 << SU->NodeNum << ") " << TopLatency << "c\n");
2797 }
2798 if (SU->getHeight() > BotLatency) {
2799 BotLatency = SU->getHeight();
2800 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2801 << SU->NodeNum << ") " << BotLatency << "c\n");
2802 }
2803 // If we stall for any reason, bump the cycle.
2804 if (NextCycle > CurrCycle)
2805 bumpCycle(NextCycle);
2806 else
2807 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2808 // resource limited. If a stall occurred, bumpCycle does this.
2809 IsResourceLimited =
2811 getScheduledLatency(), true);
2812
2813 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2814 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2815 // one cycle. Since we commonly reach the max MOps here, opportunistically
2816 // bump the cycle to avoid uselessly checking everything in the readyQ.
2817 CurrMOps += IncMOps;
2818
2819 // Bump the cycle count for issue group constraints.
2820 // This must be done after NextCycle has been adjust for all other stalls.
2821 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2822 // currCycle to X.
2823 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2824 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2825 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2826 << " group\n");
2827 bumpCycle(++NextCycle);
2828 }
2829
2830 while (CurrMOps >= SchedModel->getIssueWidth()) {
2831 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2832 << CurrCycle << '\n');
2833 bumpCycle(++NextCycle);
2834 }
2836}
2837
2838/// Release pending ready nodes in to the available queue. This makes them
2839/// visible to heuristics.
2841 // If the available queue is empty, it is safe to reset MinReadyCycle.
2842 if (Available.empty())
2843 MinReadyCycle = std::numeric_limits<unsigned>::max();
2844
2845 // Check to see if any of the pending instructions are ready to issue. If
2846 // so, add them to the available queue.
2847 for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2848 SUnit *SU = *(Pending.begin() + I);
2849 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2850
2851 if (ReadyCycle < MinReadyCycle)
2852 MinReadyCycle = ReadyCycle;
2853
2854 if (Available.size() >= ReadyListLimit)
2855 break;
2856
2857 releaseNode(SU, ReadyCycle, true, I);
2858 if (E != Pending.size()) {
2859 --I;
2860 --E;
2861 }
2862 }
2863 CheckPending = false;
2864}
2865
2866/// Remove SU from the ready set for this boundary.
2868 if (Available.isInQueue(SU))
2870 else {
2871 assert(Pending.isInQueue(SU) && "bad ready count");
2873 }
2874}
2875
2876/// If this queue only has one ready candidate, return it. As a side effect,
2877/// defer any nodes that now hit a hazard, and advance the cycle until at least
2878/// one node is ready. If multiple instructions are ready, return NULL.
2880 if (CheckPending)
2882
2883 // Defer any ready instrs that now have a hazard.
2885 if (checkHazard(*I)) {
2886 Pending.push(*I);
2887 I = Available.remove(I);
2888 continue;
2889 }
2890 ++I;
2891 }
2892 for (unsigned i = 0; Available.empty(); ++i) {
2893// FIXME: Re-enable assert once PR20057 is resolved.
2894// assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2895// "permanent hazard");
2896 (void)i;
2897 bumpCycle(CurrCycle + 1);
2899 }
2900
2903
2904 if (Available.size() == 1)
2905 return *Available.begin();
2906 return nullptr;
2907}
2908
2909#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2910
2911/// Dump the content of the \ref ReservedCycles vector for the
2912/// resources that are used in the basic block.
2913///
2916 return;
2917
2918 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2919 unsigned StartIdx = 0;
2920
2921 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2922 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2923 std::string ResName = SchedModel->getResourceName(ResIdx);
2924 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2925 dbgs() << ResName << "(" << UnitIdx << ") = ";
2927 if (ReservedResourceSegments.count(StartIdx + UnitIdx))
2928 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
2929 else
2930 dbgs() << "{ }\n";
2931 } else
2932 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";
2933 }
2934 StartIdx += NumUnits;
2935 }
2936}
2937
2938// This is useful information to dump after bumpNode.
2939// Note that the Queue contents are more useful before pickNodeFromQueue.
2941 unsigned ResFactor;
2942 unsigned ResCount;
2943 if (ZoneCritResIdx) {
2944 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2945 ResCount = getResourceCount(ZoneCritResIdx);
2946 } else {
2947 ResFactor = SchedModel->getMicroOpFactor();
2948 ResCount = RetiredMOps * ResFactor;
2949 }
2950 unsigned LFactor = SchedModel->getLatencyFactor();
2951 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2952 << " Retired: " << RetiredMOps;
2953 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2954 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2955 << ResCount / ResFactor << " "
2956 << SchedModel->getResourceName(ZoneCritResIdx)
2957 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2958 << (IsResourceLimited ? " - Resource" : " - Latency")
2959 << " limited.\n";
2962}
2963#endif
2964
2965//===----------------------------------------------------------------------===//
2966// GenericScheduler - Generic implementation of MachineSchedStrategy.
2967//===----------------------------------------------------------------------===//
2968
2971 const TargetSchedModel *SchedModel) {
2973 return;
2974
2975 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2978 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2979 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2980 ResDelta.CritResources += PI->ReleaseAtCycle;
2981 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2982 ResDelta.DemandedResources += PI->ReleaseAtCycle;
2983 }
2984}
2985
2986/// Compute remaining latency. We need this both to determine whether the
2987/// overall schedule has become latency-limited and whether the instructions
2988/// outside this zone are resource or latency limited.
2989///
2990/// The "dependent" latency is updated incrementally during scheduling as the
2991/// max height/depth of scheduled nodes minus the cycles since it was
2992/// scheduled:
2993/// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2994///
2995/// The "independent" latency is the max ready queue depth:
2996/// ILat = max N.depth for N in Available|Pending
2997///
2998/// RemainingLatency is the greater of independent and dependent latency.
2999///
3000/// These computations are expensive, especially in DAGs with many edges, so
3001/// only do them if necessary.
3002static unsigned computeRemLatency(SchedBoundary &CurrZone) {
3003 unsigned RemLatency = CurrZone.getDependentLatency();
3004 RemLatency = std::max(RemLatency,
3005 CurrZone.findMaxLatency(CurrZone.Available.elements()));
3006 RemLatency = std::max(RemLatency,
3007 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
3008 return RemLatency;
3009}
3010
3011/// Returns true if the current cycle plus remaning latency is greater than
3012/// the critical path in the scheduling region.
3013bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
3014 SchedBoundary &CurrZone,
3015 bool ComputeRemLatency,
3016 unsigned &RemLatency) const {
3017 // The current cycle is already greater than the critical path, so we are
3018 // already latency limited and don't need to compute the remaining latency.
3019 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
3020 return true;
3021
3022 // If we haven't scheduled anything yet, then we aren't latency limited.
3023 if (CurrZone.getCurrCycle() == 0)
3024 return false;
3025
3026 if (ComputeRemLatency)
3027 RemLatency = computeRemLatency(CurrZone);
3028
3029 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
3030}
3031
3032/// Set the CandPolicy given a scheduling zone given the current resources and
3033/// latencies inside and outside the zone.
3035 SchedBoundary &CurrZone,
3036 SchedBoundary *OtherZone) {
3037 // Apply preemptive heuristics based on the total latency and resources
3038 // inside and outside this zone. Potential stalls should be considered before
3039 // following this policy.
3040
3041 // Compute the critical resource outside the zone.
3042 unsigned OtherCritIdx = 0;
3043 unsigned OtherCount =
3044 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
3045
3046 bool OtherResLimited = false;
3047 unsigned RemLatency = 0;
3048 bool RemLatencyComputed = false;
3049 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3050 RemLatency = computeRemLatency(CurrZone);
3051 RemLatencyComputed = true;
3052 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
3053 OtherCount, RemLatency, false);
3054 }
3055
3056 // Schedule aggressively for latency in PostRA mode. We don't check for
3057 // acyclic latency during PostRA, and highly out-of-order processors will
3058 // skip PostRA scheduling.
3059 if (!OtherResLimited &&
3060 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3061 RemLatency))) {
3062 Policy.ReduceLatency |= true;
3063 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
3064 << " RemainingLatency " << RemLatency << " + "
3065 << CurrZone.getCurrCycle() << "c > CritPath "
3066 << Rem.CriticalPath << "\n");
3067 }
3068 // If the same resource is limiting inside and outside the zone, do nothing.
3069 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
3070 return;
3071
3072 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
3073 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
3074 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
3075 } if (OtherResLimited) dbgs()
3076 << " RemainingLimit: "
3077 << SchedModel->getResourceName(OtherCritIdx) << "\n";
3078 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
3079 << " Latency limited both directions.\n");
3080
3081 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
3082 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
3083
3084 if (OtherResLimited)
3085 Policy.DemandResIdx = OtherCritIdx;
3086}
3087
3088#ifndef NDEBUG
3091 switch (Reason) {
3092 case NoCand: return "NOCAND ";
3093 case Only1: return "ONLY1 ";
3094 case PhysReg: return "PHYS-REG ";
3095 case RegExcess: return "REG-EXCESS";
3096 case RegCritical: return "REG-CRIT ";
3097 case Stall: return "STALL ";
3098 case Cluster: return "CLUSTER ";
3099 case Weak: return "WEAK ";
3100 case RegMax: return "REG-MAX ";
3101 case ResourceReduce: return "RES-REDUCE";
3102 case ResourceDemand: return "RES-DEMAND";
3103 case TopDepthReduce: return "TOP-DEPTH ";
3104 case TopPathReduce: return "TOP-PATH ";
3105 case BotHeightReduce:return "BOT-HEIGHT";
3106 case BotPathReduce: return "BOT-PATH ";
3107 case NextDefUse: return "DEF-USE ";
3108 case NodeOrder: return "ORDER ";
3109 };
3110 llvm_unreachable("Unknown reason!");
3111}
3112
3115 unsigned ResIdx = 0;
3116 unsigned Latency = 0;
3117 switch (Cand.Reason) {
3118 default:
3119 break;
3120 case RegExcess:
3121 P = Cand.RPDelta.Excess;
3122 break;
3123 case RegCritical:
3124 P = Cand.RPDelta.CriticalMax;
3125 break;
3126 case RegMax:
3127 P = Cand.RPDelta.CurrentMax;
3128 break;
3129 case ResourceReduce:
3130 ResIdx = Cand.Policy.ReduceResIdx;
3131 break;
3132 case ResourceDemand:
3133 ResIdx = Cand.Policy.DemandResIdx;
3134 break;
3135 case TopDepthReduce:
3136 Latency = Cand.SU->getDepth();
3137 break;
3138 case TopPathReduce:
3139 Latency = Cand.SU->getHeight();
3140 break;
3141 case BotHeightReduce:
3142 Latency = Cand.SU->getHeight();
3143 break;
3144 case BotPathReduce:
3145 Latency = Cand.SU->getDepth();
3146 break;
3147 }
3148 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
3149 if (P.isValid())
3150 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
3151 << ":" << P.getUnitInc() << " ";
3152 else
3153 dbgs() << " ";
3154 if (ResIdx)
3155 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
3156 else
3157 dbgs() << " ";
3158 if (Latency)
3159 dbgs() << " " << Latency << " cycles ";
3160 else
3161 dbgs() << " ";
3162 dbgs() << '\n';
3163}
3164#endif
3165
3166namespace llvm {
3167/// Return true if this heuristic determines order.
3168/// TODO: Consider refactor return type of these functions as integer or enum,
3169/// as we may need to differentiate whether TryCand is better than Cand.
3170bool tryLess(int TryVal, int CandVal,
3174 if (TryVal < CandVal) {
3175 TryCand.Reason = Reason;
3176 return true;
3177 }
3178 if (TryVal > CandVal) {
3179 if (Cand.Reason > Reason)
3180 Cand.Reason = Reason;
3181 return true;
3182 }
3183 return false;
3184}
3185
3186bool tryGreater(int TryVal, int CandVal,
3190 if (TryVal > CandVal) {
3191 TryCand.Reason = Reason;
3192 return true;
3193 }
3194 if (TryVal < CandVal) {
3195 if (Cand.Reason > Reason)
3196 Cand.Reason = Reason;
3197 return true;
3198 }
3199 return false;
3200}
3201
3204 SchedBoundary &Zone) {
3205 if (Zone.isTop()) {
3206 // Prefer the candidate with the lesser depth, but only if one of them has
3207 // depth greater than the total latency scheduled so far, otherwise either
3208 // of them could be scheduled now with no stall.
3209 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3210 Zone.getScheduledLatency()) {
3211 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3213 return true;
3214 }
3215 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3217 return true;
3218 } else {
3219 // Prefer the candidate with the lesser height, but only if one of them has
3220 // height greater than the total latency scheduled so far, otherwise either
3221 // of them could be scheduled now with no stall.
3222 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3223 Zone.getScheduledLatency()) {
3224 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3226 return true;
3227 }
3228 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3230 return true;
3231 }
3232 return false;
3233}
3234} // end namespace llvm
3235
3236static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3237 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3238 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3239}
3240
3242 tracePick(Cand.Reason, Cand.AtTop);
3243}
3244
3246 assert(dag->hasVRegLiveness() &&
3247 "(PreRA)GenericScheduler needs vreg liveness");
3248 DAG = static_cast<ScheduleDAGMILive*>(dag);
3249 SchedModel = DAG->getSchedModel();
3250 TRI = DAG->TRI;
3251
3253 DAG->computeDFSResult();
3254
3255 Rem.init(DAG, SchedModel);
3256 Top.init(DAG, SchedModel, &Rem);
3257 Bot.init(DAG, SchedModel, &Rem);
3258
3259 // Initialize resource counts.
3260
3261 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3262 // are disabled, then these HazardRecs will be disabled.
3264 if (!Top.HazardRec) {
3265 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3266 }
3267 if (!Bot.HazardRec) {
3268 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3269 }
3270 TopCand.SU = nullptr;
3271 BotCand.SU = nullptr;
3272}
3273
3274/// Initialize the per-region scheduling policy.
3277 unsigned NumRegionInstrs) {
3278 const MachineFunction &MF = *Begin->getMF();
3279 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3280
3281 // Avoid setting up the register pressure tracker for small regions to save
3282 // compile time. As a rough heuristic, only track pressure when the number of
3283 // schedulable instructions exceeds half the allocatable integer register file
3284 // that is the largest legal integer regiser type.
3286 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) {
3288 if (TLI->isTypeLegal(LegalIntVT)) {
3289 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3290 TLI->getRegClassFor(LegalIntVT));
3291 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3292 break;
3293 }
3294 }
3295
3296 // For generic targets, we default to bottom-up, because it's simpler and more
3297 // compile-time optimizations have been implemented in that direction.
3299
3300 // Allow the subtarget to override default policy.
3301 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3302
3303 // After subtarget overrides, apply command line options.
3304 if (!EnableRegPressure) {
3307 }
3308
3311 RegionPolicy.OnlyBottomUp = false;
3312 } else if (PreRADirection == MISched::BottomUp) {
3313 RegionPolicy.OnlyTopDown = false;
3315 } else if (PreRADirection == MISched::Bidirectional) {
3316 RegionPolicy.OnlyBottomUp = false;
3317 RegionPolicy.OnlyTopDown = false;
3318 }
3319}
3320
3322 // Cannot completely remove virtual function even in release mode.
3323#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3324 dbgs() << "GenericScheduler RegionPolicy: "
3325 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3326 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3327 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3328 << "\n";
3329#endif
3330}
3331
3332/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3333/// critical path by more cycles than it takes to drain the instruction buffer.
3334/// We estimate an upper bounds on in-flight instructions as:
3335///
3336/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3337/// InFlightIterations = AcyclicPath / CyclesPerIteration
3338/// InFlightResources = InFlightIterations * LoopResources
3339///
3340/// TODO: Check execution resources in addition to IssueCount.
3343 return;
3344
3345 // Scaled number of cycles per loop iteration.
3346 unsigned IterCount =
3349 // Scaled acyclic critical path.
3350 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3351 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3352 unsigned InFlightCount =
3353 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3354 unsigned BufferLimit =
3356
3357 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3358
3359 LLVM_DEBUG(
3360 dbgs() << "IssueCycles="
3362 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3363 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3364 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3365 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3366 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
3367}
3368
3371
3372 // Some roots may not feed into ExitSU. Check all of them in case.
3373 for (const SUnit *SU : Bot.Available) {
3374 if (SU->getDepth() > Rem.CriticalPath)
3375 Rem.CriticalPath = SU->getDepth();
3376 }
3377 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3379 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3380 }
3381
3383 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3384 checkAcyclicLatency();
3385 }
3386}
3387
3388namespace llvm {
3390 const PressureChange &CandP,
3394 const TargetRegisterInfo *TRI,
3395 const MachineFunction &MF) {
3396 // If one candidate decreases and the other increases, go with it.
3397 // Invalid candidates have UnitInc==0.
3398 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3399 Reason)) {
3400 return true;
3401 }
3402 // Do not compare the magnitude of pressure changes between top and bottom
3403 // boundary.
3404 if (Cand.AtTop != TryCand.AtTop)
3405 return false;
3406
3407 // If both candidates affect the same set in the same boundary, go with the
3408 // smallest increase.
3409 unsigned TryPSet = TryP.getPSetOrMax();
3410 unsigned CandPSet = CandP.getPSetOrMax();
3411 if (TryPSet == CandPSet) {
3412 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3413 Reason);
3414 }
3415
3416 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3417 std::numeric_limits<int>::max();
3418
3419 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3420 std::numeric_limits<int>::max();
3421
3422 // If the candidates are decreasing pressure, reverse priority.
3423 if (TryP.getUnitInc() < 0)
3424 std::swap(TryRank, CandRank);
3425 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3426}
3427
3428unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3429 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3430}
3431
3432/// Minimize physical register live ranges. Regalloc wants them adjacent to
3433/// their physreg def/use.
3434///
3435/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3436/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3437/// with the operation that produces or consumes the physreg. We'll do this when
3438/// regalloc has support for parallel copies.
3439int biasPhysReg(const SUnit *SU, bool isTop) {
3440 const MachineInstr *MI = SU->getInstr();
3441
3442 if (MI->isCopy()) {
3443 unsigned ScheduledOper = isTop ? 1 : 0;
3444 unsigned UnscheduledOper = isTop ? 0 : 1;
3445 // If we have already scheduled the physreg produce/consumer, immediately
3446 // schedule the copy.
3447 if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3448 return 1;
3449 // If the physreg is at the boundary, defer it. Otherwise schedule it
3450 // immediately to free the dependent. We can hoist the copy later.
3451 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3452 if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3453 return AtBoundary ? -1 : 1;
3454 }
3455
3456 if (MI->isMoveImmediate()) {
3457 // If we have a move immediate and all successors have been assigned, bias
3458 // towards scheduling this later. Make sure all register defs are to
3459 // physical registers.
3460 bool DoBias = true;
3461 for (const MachineOperand &Op : MI->defs()) {
3462 if (Op.isReg() && !Op.getReg().isPhysical()) {
3463 DoBias = false;
3464 break;
3465 }
3466 }
3467
3468 if (DoBias)
3469 return isTop ? -1 : 1;
3470 }
3471
3472 return 0;
3473}
3474} // end namespace llvm
3475
3477 bool AtTop,
3478 const RegPressureTracker &RPTracker,
3479 RegPressureTracker &TempTracker) {
3480 Cand.SU = SU;
3481 Cand.AtTop = AtTop;
3482 if (DAG->isTrackingPressure()) {
3483 if (AtTop) {
3484 TempTracker.getMaxDownwardPressureDelta(
3485 Cand.SU->getInstr(),
3486 Cand.RPDelta,
3487 DAG->getRegionCriticalPSets(),
3488 DAG->getRegPressure().MaxSetPressure);
3489 } else {
3490 if (VerifyScheduling) {
3491 TempTracker.getMaxUpwardPressureDelta(
3492 Cand.SU->getInstr(),
3493 &DAG->getPressureDiff(Cand.SU),
3494 Cand.RPDelta,
3495 DAG->getRegionCriticalPSets(),
3496 DAG->getRegPressure().MaxSetPressure);
3497 } else {
3498 RPTracker.getUpwardPressureDelta(
3499 Cand.SU->getInstr(),
3500 DAG->getPressureDiff(Cand.SU),
3501 Cand.RPDelta,
3502 DAG->getRegionCriticalPSets(),
3503 DAG->getRegPressure().MaxSetPressure);
3504 }
3505 }
3506 }
3507 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3508 << " Try SU(" << Cand.SU->NodeNum << ") "
3510 << Cand.RPDelta.Excess.getUnitInc() << "\n");
3511}
3512
3513/// Apply a set of heuristics to a new candidate. Heuristics are currently
3514/// hierarchical. This may be more efficient than a graduated cost model because
3515/// we don't need to evaluate all aspects of the model for each node in the
3516/// queue. But it's really done to make the heuristics easier to debug and
3517/// statistically analyze.
3518///
3519/// \param Cand provides the policy and current best candidate.
3520/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3521/// \param Zone describes the scheduled zone that we are extending, or nullptr
3522/// if Cand is from a different zone than TryCand.
3523/// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3525 SchedCandidate &TryCand,
3526 SchedBoundary *Zone) const {
3527 // Initialize the candidate if needed.
3528 if (!Cand.isValid()) {
3529 TryCand.Reason = NodeOrder;
3530 return true;
3531 }
3532
3533 // Bias PhysReg Defs and copies to their uses and defined respectively.
3534 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3535 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3536 return TryCand.Reason != NoCand;
3537
3538 // Avoid exceeding the target's limit.
3539 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3540 Cand.RPDelta.Excess,
3541 TryCand, Cand, RegExcess, TRI,
3542 DAG->MF))
3543 return TryCand.Reason != NoCand;
3544
3545 // Avoid increasing the max critical pressure in the scheduled region.
3546 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3547 Cand.RPDelta.CriticalMax,
3548 TryCand, Cand, RegCritical, TRI,
3549 DAG->MF))
3550 return TryCand.Reason != NoCand;
3551
3552 // We only compare a subset of features when comparing nodes between
3553 // Top and Bottom boundary. Some properties are simply incomparable, in many
3554 // other instances we should only override the other boundary if something
3555 // is a clear good pick on one boundary. Skip heuristics that are more
3556 // "tie-breaking" in nature.
3557 bool SameBoundary = Zone != nullptr;
3558 if (SameBoundary) {
3559 // For loops that are acyclic path limited, aggressively schedule for
3560 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3561 // heuristics to take precedence.
3562 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3563 tryLatency(TryCand, Cand, *Zone))
3564 return TryCand.Reason != NoCand;
3565
3566 // Prioritize instructions that read unbuffered resources by stall cycles.
3567 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3568 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3569 return TryCand.Reason != NoCand;
3570 }
3571
3572 // Keep clustered nodes together to encourage downstream peephole
3573 // optimizations which may reduce resource requirements.
3574 //
3575 // This is a best effort to set things up for a post-RA pass. Optimizations
3576 // like generating loads of multiple registers should ideally be done within
3577 // the scheduler pass by combining the loads during DAG postprocessing.
3578 const SUnit *CandNextClusterSU =
3579 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3580 const SUnit *TryCandNextClusterSU =
3581 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3582 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3583 Cand.SU == CandNextClusterSU,
3584 TryCand, Cand, Cluster))
3585 return TryCand.Reason != NoCand;
3586
3587 if (SameBoundary) {
3588 // Weak edges are for clustering and other constraints.
3589 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3590 getWeakLeft(Cand.SU, Cand.AtTop),
3591 TryCand, Cand, Weak))
3592 return TryCand.Reason != NoCand;
3593 }
3594
3595 // Avoid increasing the max pressure of the entire region.
3596 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3597 Cand.RPDelta.CurrentMax,
3598 TryCand, Cand, RegMax, TRI,
3599 DAG->MF))
3600 return TryCand.Reason != NoCand;
3601
3602 if (SameBoundary) {
3603 // Avoid critical resource consumption and balance the schedule.
3604 TryCand.initResourceDelta(DAG, SchedModel);
3606 TryCand, Cand, ResourceReduce))
3607 return TryCand.Reason != NoCand;
3610 TryCand, Cand, ResourceDemand))
3611 return TryCand.Reason != NoCand;
3612
3613 // Avoid serializing long latency dependence chains.
3614 // For acyclic path limited loops, latency was already checked above.
3616 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3617 return TryCand.Reason != NoCand;
3618
3619 // Fall through to original instruction order.
3620 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3621 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3622 TryCand.Reason = NodeOrder;
3623 return true;
3624 }
3625 }
3626
3627 return false;
3628}
3629
3630/// Pick the best candidate from the queue.
3631///
3632/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3633/// DAG building. To adjust for the current scheduling location we need to
3634/// maintain the number of vreg uses remaining to be top-scheduled.
3636 const CandPolicy &ZonePolicy,
3637 const RegPressureTracker &RPTracker,
3638 SchedCandidate &Cand) {
3639 // getMaxPressureDelta temporarily modifies the tracker.
3640 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3641
3642 ReadyQueue &Q = Zone.Available;
3643 for (SUnit *SU : Q) {
3644
3645 SchedCandidate TryCand(ZonePolicy);
3646 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3647 // Pass SchedBoundary only when comparing nodes from the same boundary.
3648 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3649 if (tryCandidate(Cand, TryCand, ZoneArg)) {
3650 // Initialize resource delta if needed in case future heuristics query it.
3651 if (TryCand.ResDelta == SchedResourceDelta())
3652 TryCand.initResourceDelta(DAG, SchedModel);
3653 Cand.setBest(TryCand);
3655 }
3656 }
3657}
3658
3659/// Pick the best candidate node from either the top or bottom queue.
3661 // Schedule as far as possible in the direction of no choice. This is most
3662 // efficient, but also provides the best heuristics for CriticalPSets.
3663 if (SUnit *SU = Bot.pickOnlyChoice()) {
3664 IsTopNode = false;
3665 tracePick(Only1, false);
3666 return SU;
3667 }
3668 if (SUnit *SU = Top.pickOnlyChoice()) {
3669 IsTopNode = true;
3670 tracePick(Only1, true);
3671 return SU;
3672 }
3673 // Set the bottom-up policy based on the state of the current bottom zone and
3674 // the instructions outside the zone, including the top zone.
3675 CandPolicy BotPolicy;
3676 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3677 // Set the top-down policy based on the state of the current top zone and
3678 // the instructions outside the zone, including the bottom zone.
3679 CandPolicy TopPolicy;
3680 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3681
3682 // See if BotCand is still valid (because we previously scheduled from Top).
3683 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3684 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3685 BotCand.Policy != BotPolicy) {
3686 BotCand.reset(CandPolicy());
3687 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3688 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3689 } else {
3690 LLVM_DEBUG(traceCandidate(BotCand));
3691#ifndef NDEBUG
3692 if (VerifyScheduling) {
3693 SchedCandidate TCand;
3694 TCand.reset(CandPolicy());
3695 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3696 assert(TCand.SU == BotCand.SU &&
3697 "Last pick result should correspond to re-picking right now");
3698 }
3699#endif
3700 }
3701
3702 // Check if the top Q has a better candidate.
3703 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3704 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3705 TopCand.Policy != TopPolicy) {
3706 TopCand.reset(CandPolicy());
3707 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3708 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3709 } else {
3710 LLVM_DEBUG(traceCandidate(TopCand));
3711#ifndef NDEBUG
3712 if (VerifyScheduling) {
3713 SchedCandidate TCand;
3714 TCand.reset(CandPolicy());
3715 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3716 assert(TCand.SU == TopCand.SU &&
3717 "Last pick result should correspond to re-picking right now");
3718 }
3719#endif
3720 }
3721
3722 // Pick best from BotCand and TopCand.
3723 assert(BotCand.isValid());
3724 assert(TopCand.isValid());
3725 SchedCandidate Cand = BotCand;
3726 TopCand.Reason = NoCand;
3727 if (tryCandidate(Cand, TopCand, nullptr)) {
3728 Cand.setBest(TopCand);
3730 }
3731
3732 IsTopNode = Cand.AtTop;
3733 tracePick(Cand);
3734 return Cand.SU;
3735}
3736
3737/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3739 if (DAG->top() == DAG->bottom()) {
3740 assert(Top.Available.empty() && Top.Pending.empty() &&
3741 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3742 return nullptr;
3743 }
3744 SUnit *SU;
3745 do {
3747 SU = Top.pickOnlyChoice();
3748 if (!SU) {
3749 CandPolicy NoPolicy;
3750 TopCand.reset(NoPolicy);
3751 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3752 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3753 tracePick(TopCand);
3754 SU = TopCand.SU;
3755 }
3756 IsTopNode = true;
3757 } else if (RegionPolicy.OnlyBottomUp) {
3758 SU = Bot.pickOnlyChoice();
3759 if (!SU) {
3760 CandPolicy NoPolicy;
3761 BotCand.reset(NoPolicy);
3762 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3763 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3764 tracePick(BotCand);
3765 SU = BotCand.SU;
3766 }
3767 IsTopNode = false;
3768 } else {
3769 SU = pickNodeBidirectional(IsTopNode);
3770 }
3771 } while (SU->isScheduled);
3772
3773 // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise,
3774 // if isTopReady(), then SU is in either Top.Available or Top.Pending.
3775 // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise,
3776 // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending.
3777 //
3778 // It is coincidental when !IsTopNode && isTopReady or when IsTopNode &&
3779 // isBottomReady. That is, it didn't factor into the decision to choose SU
3780 // because it isTopReady or isBottomReady, respectively. In fact, if the
3781 // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top
3782 // queues respectivley contain the original roots and don't get updated when
3783 // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was
3784 // because we schduled everything but the top roots. Conversley, if SU
3785 // isBottomReady on OnlyTopDown, then it was because we scheduled everything
3786 // but the bottom roots. If its in a queue even coincidentally, it should be
3787 // removed so it does not get re-picked in a subsequent pickNode call.
3788 if (SU->isTopReady())
3789 Top.removeReady(SU);
3790 if (SU->isBottomReady())
3791 Bot.removeReady(SU);
3792
3793 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3794 << *SU->getInstr());
3795 return SU;
3796}
3797
3799 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3800 if (!isTop)
3801 ++InsertPos;
3802 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3803
3804 // Find already scheduled copies with a single physreg dependence and move
3805 // them just above the scheduled instruction.
3806 for (SDep &Dep : Deps) {
3807 if (Dep.getKind() != SDep::Data ||
3808 !Register::isPhysicalRegister(Dep.getReg()))
3809 continue;
3810 SUnit *DepSU = Dep.getSUnit();
3811 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3812 continue;
3813 MachineInstr *Copy = DepSU->getInstr();
3814 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3815 continue;
3816 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3817 DAG->dumpNode(*Dep.getSUnit()));
3818 DAG->moveInstruction(Copy, InsertPos);
3819 }
3820}
3821
3822/// Update the scheduler's state after scheduling a node. This is the same node
3823/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3824/// update it's state based on the current cycle before MachineSchedStrategy
3825/// does.
3826///
3827/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3828/// them here. See comments in biasPhysReg.
3829void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3830 if (IsTopNode) {
3831 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3832 Top.bumpNode(SU);
3833 if (SU->hasPhysRegUses)
3834 reschedulePhysReg(SU, true);
3835 } else {
3836 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3837 Bot.bumpNode(SU);
3838 if (SU->hasPhysRegDefs)
3839 reschedulePhysReg(SU, false);
3840 }
3841}
3842
3843/// Create the standard converging machine scheduler. This will be used as the
3844/// default scheduler if the target does not set a default.
3846 ScheduleDAGMILive *DAG =
3847 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3848 // Register DAG post-processors.
3849 //
3850 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3851 // data and pass it to later mutations. Have a single mutation that gathers
3852 // the interesting nodes in one pass.
3854
3855 const TargetSubtargetInfo &STI = C->MF->getSubtarget();
3856 // Add MacroFusion mutation if fusions are not empty.
3857 const auto &MacroFusions = STI.getMacroFusions();
3858 if (!MacroFusions.empty())
3859 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions));
3860 return DAG;
3861}
3862
3864 return createGenericSchedLive(C);
3865}
3866
3868GenericSchedRegistry("converge", "Standard converging scheduler.",
3870
3871//===----------------------------------------------------------------------===//
3872// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3873//===----------------------------------------------------------------------===//
3874
3876 DAG = Dag;
3877 SchedModel = DAG->getSchedModel();
3878 TRI = DAG->TRI;
3879
3880 Rem.init(DAG, SchedModel);
3881 Top.init(DAG, SchedModel, &Rem);
3882 Bot.init(DAG, SchedModel, &Rem);
3883
3884 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3885 // or are disabled, then these HazardRecs will be disabled.
3887 if (!Top.HazardRec) {
3888 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3889 }
3890 if (!Bot.HazardRec) {
3891 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3892 }
3893}
3894
3897 unsigned NumRegionInstrs) {
3898 const MachineFunction &MF = *Begin->getMF();
3899
3900 // Default to top-down because it was implemented first and existing targets
3901 // expect that behavior by default.
3903 RegionPolicy.OnlyBottomUp = false;
3904
3905 // Allow the subtarget to override default policy.
3907
3908 // After subtarget overrides, apply command line options.
3911 RegionPolicy.OnlyBottomUp = false;
3912 } else if (PostRADirection == MISched::BottomUp) {
3913 RegionPolicy.OnlyTopDown = false;
3916 RegionPolicy.OnlyBottomUp = false;
3917 RegionPolicy.OnlyTopDown = false;
3918 }
3919}
3920
3923
3924 // Some roots may not feed into ExitSU. Check all of them in case.
3925 for (const SUnit *SU : Bot.Available) {
3926 if (SU->getDepth() > Rem.CriticalPath)
3927 Rem.CriticalPath = SU->getDepth();
3928 }
3929 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3931 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3932 }
3933}
3934
3935/// Apply a set of heuristics to a new candidate for PostRA scheduling.
3936///
3937/// \param Cand provides the policy and current best candidate.
3938/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3939/// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3941 SchedCandidate &TryCand) {
3942 // Initialize the candidate if needed.
3943 if (!Cand.isValid()) {
3944 TryCand.Reason = NodeOrder;
3945 return true;
3946 }
3947
3948 // Prioritize instructions that read unbuffered resources by stall cycles.
3949 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3950 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3951 return TryCand.Reason != NoCand;
3952
3953 // Keep clustered nodes together.
3954 const SUnit *CandNextClusterSU =
3955 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3956 const SUnit *TryCandNextClusterSU =
3957 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3958 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3959 Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))
3960 return TryCand.Reason != NoCand;
3961
3962 // Avoid critical resource consumption and balance the schedule.
3964 TryCand, Cand, ResourceReduce))
3965 return TryCand.Reason != NoCand;
3968 TryCand, Cand, ResourceDemand))
3969 return TryCand.Reason != NoCand;
3970
3971 // We only compare a subset of features when comparing nodes between
3972 // Top and Bottom boundary.
3973 if (Cand.AtTop == TryCand.AtTop) {
3974 // Avoid serializing long latency dependence chains.
3975 if (Cand.Policy.ReduceLatency &&
3976 tryLatency(TryCand, Cand, Cand.AtTop ? Top : Bot))
3977 return TryCand.Reason != NoCand;
3978 }
3979
3980 // Fall through to original instruction order.
3981 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3982 TryCand.Reason = NodeOrder;
3983 return true;
3984 }
3985
3986 return false;
3987}
3988
3990 SchedCandidate &Cand) {
3991 ReadyQueue &Q = Zone.Available;
3992 for (SUnit *SU : Q) {
3993 SchedCandidate TryCand(Cand.Policy);
3994 TryCand.SU = SU;
3995 TryCand.AtTop = Zone.isTop();
3996 TryCand.initResourceDelta(DAG, SchedModel);
3997 if (tryCandidate(Cand, TryCand)) {
3998 Cand.setBest(TryCand);
4000 }
4001 }
4002}
4003
4004/// Pick the best candidate node from either the top or bottom queue.
4006 // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor
4007 // out common parts.
4008
4009 // Schedule as far as possible in the direction of no choice. This is most
4010 // efficient, but also provides the best heuristics for CriticalPSets.
4011 if (SUnit *SU = Bot.pickOnlyChoice()) {
4012 IsTopNode = false;
4013 tracePick(Only1, false);
4014 return SU;
4015 }
4016 if (SUnit *SU = Top.pickOnlyChoice()) {
4017 IsTopNode = true;
4018 tracePick(Only1, true);
4019 return SU;
4020 }
4021 // Set the bottom-up policy based on the state of the current bottom zone and
4022 // the instructions outside the zone, including the top zone.
4023 CandPolicy BotPolicy;
4024 setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top);
4025 // Set the top-down policy based on the state of the current top zone and
4026 // the instructions outside the zone, including the bottom zone.
4027 CandPolicy TopPolicy;
4028 setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot);
4029
4030 // See if BotCand is still valid (because we previously scheduled from Top).
4031 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
4032 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
4033 BotCand.Policy != BotPolicy) {
4034 BotCand.reset(CandPolicy());
4035 pickNodeFromQueue(Bot, BotCand);
4036 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
4037 } else {
4038 LLVM_DEBUG(traceCandidate(BotCand));
4039#ifndef NDEBUG
4040 if (VerifyScheduling) {
4041 SchedCandidate TCand;
4042 TCand.reset(CandPolicy());
4043 pickNodeFromQueue(Bot, BotCand);
4044 assert(TCand.SU == BotCand.SU &&
4045 "Last pick result should correspond to re-picking right now");
4046 }
4047#endif
4048 }
4049
4050 // Check if the top Q has a better candidate.
4051 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
4052 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
4053 TopCand.Policy != TopPolicy) {
4054 TopCand.reset(CandPolicy());
4055 pickNodeFromQueue(Top, TopCand);
4056 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
4057 } else {
4058 LLVM_DEBUG(traceCandidate(TopCand));
4059#ifndef NDEBUG
4060 if (VerifyScheduling) {
4061 SchedCandidate TCand;
4062 TCand.reset(CandPolicy());
4063 pickNodeFromQueue(Top, TopCand);
4064 assert(TCand.SU == TopCand.SU &&
4065 "Last pick result should correspond to re-picking right now");
4066 }
4067#endif
4068 }
4069
4070 // Pick best from BotCand and TopCand.
4071 assert(BotCand.isValid());
4072 assert(TopCand.isValid());
4073 SchedCandidate Cand = BotCand;
4074 TopCand.Reason = NoCand;
4075 if (tryCandidate(Cand, TopCand)) {
4076 Cand.setBest(TopCand);
4078 }
4079
4080 IsTopNode = Cand.AtTop;
4081 tracePick(Cand);
4082 return Cand.SU;
4083}
4084
4085/// Pick the next node to schedule.
4087 if (DAG->top() == DAG->bottom()) {
4088 assert(Top.Available.empty() && Top.Pending.empty() &&
4089 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
4090 return nullptr;
4091 }
4092 SUnit *SU;
4093 do {
4095 SU = Bot.pickOnlyChoice();
4096 if (SU) {
4097 tracePick(Only1, true);
4098 } else {
4099 CandPolicy NoPolicy;
4100 BotCand.reset(NoPolicy);
4101 // Set the bottom-up policy based on the state of the current bottom
4102 // zone and the instructions outside the zone, including the top zone.
4103 setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr);
4104 pickNodeFromQueue(Bot, BotCand);
4105 assert(BotCand.Reason != NoCand && "failed to find a candidate");
4106 tracePick(BotCand);
4107 SU = BotCand.SU;
4108 }
4109 IsTopNode = false;
4110 } else if (RegionPolicy.OnlyTopDown) {
4111 SU = Top.pickOnlyChoice();
4112 if (SU) {
4113 tracePick(Only1, true);
4114 } else {
4115 CandPolicy NoPolicy;
4116 TopCand.reset(NoPolicy);
4117 // Set the top-down policy based on the state of the current top zone
4118 // and the instructions outside the zone, including the bottom zone.
4119 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
4120 pickNodeFromQueue(Top, TopCand);
4121 assert(TopCand.Reason != NoCand && "failed to find a candidate");
4122 tracePick(TopCand);
4123 SU = TopCand.SU;
4124 }
4125 IsTopNode = true;
4126 } else {
4127 SU = pickNodeBidirectional(IsTopNode);
4128 }
4129 } while (SU->isScheduled);
4130
4131 if (SU->isTopReady())
4132 Top.removeReady(SU);
4133 if (SU->isBottomReady())
4134 Bot.removeReady(SU);
4135
4136 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
4137 << *SU->getInstr());
4138 return SU;
4139}
4140
4141/// Called after ScheduleDAGMI has scheduled an instruction and updated
4142/// scheduled/remaining flags in the DAG nodes.
4143void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
4144 if (IsTopNode) {
4145 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
4146 Top.bumpNode(SU);
4147 } else {
4148 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
4149 Bot.bumpNode(SU);
4150 }
4151}
4152
4154 ScheduleDAGMI *DAG =
4155 new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
4156 /*RemoveKillFlags=*/true);
4157 const TargetSubtargetInfo &STI = C->MF->getSubtarget();
4158 // Add MacroFusion mutation if fusions are not empty.
4159 const auto &MacroFusions = STI.getMacroFusions();
4160 if (!MacroFusions.empty())
4161 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions));
4162 return DAG;
4163}
4164
4165//===----------------------------------------------------------------------===//
4166// ILP Scheduler. Currently for experimental analysis of heuristics.
4167//===----------------------------------------------------------------------===//
4168
4169namespace {
4170
4171/// Order nodes by the ILP metric.
4172struct ILPOrder {
4173 const SchedDFSResult *DFSResult = nullptr;
4174 const BitVector *ScheduledTrees = nullptr;
4175 bool MaximizeILP;
4176
4177 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
4178
4179 /// Apply a less-than relation on node priority.
4180 ///
4181 /// (Return true if A comes after B in the Q.)
4182 bool operator()(const SUnit *A, const SUnit *B) const {
4183 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
4184 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
4185 if (SchedTreeA != SchedTreeB) {
4186 // Unscheduled trees have lower priority.
4187 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
4188 return ScheduledTrees->test(SchedTreeB);
4189
4190 // Trees with shallower connections have lower priority.
4191 if (DFSResult->getSubtreeLevel(SchedTreeA)
4192 != DFSResult->getSubtreeLevel(SchedTreeB)) {
4193 return DFSResult->getSubtreeLevel(SchedTreeA)
4194 < DFSResult->getSubtreeLevel(SchedTreeB);
4195 }
4196 }
4197 if (MaximizeILP)
4198 return DFSResult->getILP(A) < DFSResult->getILP(B);
4199 else
4200 return DFSResult->getILP(A) > DFSResult->getILP(B);
4201 }
4202};
4203
4204/// Schedule based on the ILP metric.
4205class ILPScheduler : public MachineSchedStrategy {
4206 ScheduleDAGMILive *DAG = nullptr;
4207 ILPOrder Cmp;
4208
4209 std::vector<SUnit*> ReadyQ;
4210
4211public:
4212 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
4213
4214 void initialize(ScheduleDAGMI *dag) override {
4215 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
4216 DAG = static_cast<ScheduleDAGMILive*>(dag);
4217 DAG->computeDFSResult();
4218 Cmp.DFSResult = DAG->getDFSResult();
4219 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
4220 ReadyQ.clear();
4221 }
4222
4223 void registerRoots() override {
4224 // Restore the heap in ReadyQ with the updated DFS results.
4225 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4226 }
4227
4228 /// Implement MachineSchedStrategy interface.
4229 /// -----------------------------------------
4230
4231 /// Callback to select the highest priority node from the ready Q.
4232 SUnit *pickNode(bool &IsTopNode) override {
4233 if (ReadyQ.empty()) return nullptr;
4234 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4235 SUnit *SU = ReadyQ.back();
4236 ReadyQ.pop_back();
4237 IsTopNode = false;
4238 LLVM_DEBUG(dbgs() << "Pick node "
4239 << "SU(" << SU->NodeNum << ") "
4240 << " ILP: " << DAG->getDFSResult()->getILP(SU)
4241 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
4242 << " @"
4243 << DAG->getDFSResult()->getSubtreeLevel(
4244 DAG->getDFSResult()->getSubtreeID(SU))
4245 << '\n'
4246 << "Scheduling " << *SU->getInstr());
4247 return SU;
4248 }
4249
4250 /// Scheduler callback to notify that a new subtree is scheduled.
4251 void scheduleTree(unsigned SubtreeID) override {
4252 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4253 }
4254
4255 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
4256 /// DFSResults, and resort the priority Q.
4257 void schedNode(SUnit *SU, bool IsTopNode) override {
4258 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
4259 }
4260
4261 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
4262
4263 void releaseBottomNode(SUnit *SU) override {
4264 ReadyQ.push_back(SU);
4265 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4266 }
4267};
4268
4269} // end anonymous namespace
4270
4272 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
4273}
4275 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
4276}
4277
4279 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
4281 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
4282
4283//===----------------------------------------------------------------------===//
4284// Machine Instruction Shuffler for Correctness Testing
4285//===----------------------------------------------------------------------===//
4286
4287#ifndef NDEBUG
4288namespace {
4289
4290/// Apply a less-than relation on the node order, which corresponds to the
4291/// instruction order prior to scheduling. IsReverse implements greater-than.
4292template<bool IsReverse>
4293struct SUnitOrder {
4294 bool operator()(SUnit *A, SUnit *B) const {
4295 if (IsReverse)
4296 return A->NodeNum > B->NodeNum;
4297 else
4298 return A->NodeNum < B->NodeNum;
4299 }
4300};
4301
4302/// Reorder instructions as much as possible.
4303class InstructionShuffler : public MachineSchedStrategy {
4304 bool IsAlternating;
4305 bool IsTopDown;
4306
4307 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
4308 // gives nodes with a higher number higher priority causing the latest
4309 // instructions to be scheduled first.
4311 TopQ;
4312
4313 // When scheduling bottom-up, use greater-than as the queue priority.
4315 BottomQ;
4316
4317public:
4318 InstructionShuffler(bool alternate, bool topdown)
4319 : IsAlternating(alternate), IsTopDown(topdown) {}
4320
4321 void initialize(ScheduleDAGMI*) override {
4322 TopQ.clear();
4323 BottomQ.clear();
4324 }
4325
4326 /// Implement MachineSchedStrategy interface.
4327 /// -----------------------------------------
4328
4329 SUnit *pickNode(bool &IsTopNode) override {
4330 SUnit *SU;
4331 if (IsTopDown) {
4332 do {
4333 if (TopQ.empty()) return nullptr;
4334 SU = TopQ.top();
4335 TopQ.pop();
4336 } while (SU->isScheduled);
4337 IsTopNode = true;
4338 } else {
4339 do {
4340 if (BottomQ.empty()) return nullptr;
4341 SU = BottomQ.top();
4342 BottomQ.pop();
4343 } while (SU->isScheduled);
4344 IsTopNode = false;
4345 }
4346 if (IsAlternating)
4347 IsTopDown = !IsTopDown;
4348 return SU;
4349 }
4350
4351 void schedNode(SUnit *SU, bool IsTopNode) override {}
4352
4353 void releaseTopNode(SUnit *SU) override {
4354 TopQ.push(SU);
4355 }
4356 void releaseBottomNode(SUnit *SU) override {
4357 BottomQ.push(SU);
4358 }
4359};
4360
4361} // end anonymous namespace
4362
4364 bool Alternate =
4366 bool TopDown = PreRADirection != MISched::BottomUp;
4367 return new ScheduleDAGMILive(
4368 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4369}
4370
4372 "shuffle", "Shuffle machine instructions alternating directions",
4374#endif // !NDEBUG
4375
4376//===----------------------------------------------------------------------===//
4377// GraphWriter support for ScheduleDAGMILive.
4378//===----------------------------------------------------------------------===//
4379
4380#ifndef NDEBUG
4381namespace llvm {
4382
4383template<> struct GraphTraits<
4385
4386template<>
4389
4390 static std::string getGraphName(const ScheduleDAG *G) {
4391 return std::string(G->MF.getName());
4392 }
4393
4395 return true;
4396 }
4397
4398 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4399 if (ViewMISchedCutoff == 0)
4400 return false;
4401 return (Node->Preds.size() > ViewMISchedCutoff
4402 || Node->Succs.size() > ViewMISchedCutoff);
4403 }
4404
4405 /// If you want to override the dot attributes printed for a particular
4406 /// edge, override this method.
4407 static std::string getEdgeAttributes(const SUnit *Node,
4408 SUnitIterator EI,
4409 const ScheduleDAG *Graph) {
4410 if (EI.isArtificialDep())
4411 return "color=cyan,style=dashed";
4412 if (EI.isCtrlDep())
4413 return "color=blue,style=dashed";
4414 return "";
4415 }
4416
4417 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4418 std::string Str;
4419 raw_string_ostream SS(Str);
4420 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4421 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4422 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4423 SS << "SU:" << SU->NodeNum;
4424 if (DFS)
4425 SS << " I:" << DFS->getNumInstrs(SU);
4426 return Str;
4427 }
4428
4429 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4430 return G->getGraphNodeLabel(SU);
4431 }
4432
4433 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4434 std::string Str("shape=Mrecord");
4435 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4436 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4437 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4438 if (DFS) {
4439 Str += ",style=filled,fillcolor=\"#";
4440 Str += DOT::getColorString(DFS->getSubtreeID(N));
4441 Str += '"';
4442 }
4443 return Str;
4444 }
4445};
4446
4447} // end namespace llvm
4448#endif // NDEBUG
4449
4450/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4451/// rendered using 'dot'.
4452void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4453#ifndef NDEBUG
4454 ViewGraph(this, Name, false, Title);
4455#else
4456 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4457 << "systems with Graphviz or gv!\n";
4458#endif // NDEBUG
4459}
4460
4461/// Out-of-line implementation with no arguments is handy for gdb.
4463 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4464}
4465
4466/// Sort predicate for the intervals stored in an instance of
4467/// ResourceSegments. Intervals are always disjoint (no intersection
4468/// for any pairs of intervals), therefore we can sort the totality of
4469/// the intervals by looking only at the left boundary.
4472 return A.first < B.first;
4473}
4474
4475unsigned ResourceSegments::getFirstAvailableAt(
4476 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,
4477 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)>
4478 IntervalBuilder) const {
4479 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),
4480 sortIntervals) &&
4481 "Cannot execute on an un-sorted set of intervals.");
4482
4483 // Zero resource usage is allowed by TargetSchedule.td but we do not construct
4484 // a ResourceSegment interval for that situation.
4485 if (AcquireAtCycle == ReleaseAtCycle)
4486 return CurrCycle;
4487
4488 unsigned RetCycle = CurrCycle;
4489 ResourceSegments::IntervalTy NewInterval =
4490 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4491 for (auto &Interval : _Intervals) {
4492 if (!intersects(NewInterval, Interval))
4493 continue;
4494
4495 // Move the interval right next to the top of the one it
4496 // intersects.
4497 assert(Interval.second > NewInterval.first &&
4498 "Invalid intervals configuration.");
4499 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;
4500 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4501 }
4502 return RetCycle;
4503}
4504
4506 const unsigned CutOff) {
4507 assert(A.first <= A.second && "Cannot add negative resource usage");
4508 assert(CutOff > 0 && "0-size interval history has no use.");
4509 // Zero resource usage is allowed by TargetSchedule.td, in the case that the
4510 // instruction needed the resource to be available but does not use it.
4511 // However, ResourceSegment represents an interval that is closed on the left
4512 // and open on the right. It is impossible to represent an empty interval when
4513 // the left is closed. Do not add it to Intervals.
4514 if (A.first == A.second)
4515 return;
4516
4517 assert(all_of(_Intervals,
4518 [&A](const ResourceSegments::IntervalTy &Interval) -> bool {
4519 return !intersects(A, Interval);
4520 }) &&
4521 "A resource is being overwritten");
4522 _Intervals.push_back(A);
4523
4524 sortAndMerge();
4525
4526 // Do not keep the full history of the intervals, just the
4527 // latest #CutOff.
4528 while (_Intervals.size() > CutOff)
4529 _Intervals.pop_front();
4530}
4531
4534 assert(A.first <= A.second && "Invalid interval");
4535 assert(B.first <= B.second && "Invalid interval");
4536
4537 // Share one boundary.
4538 if ((A.first == B.first) || (A.second == B.second))
4539 return true;
4540
4541 // full intersersect: [ *** ) B
4542 // [***) A
4543 if ((A.first > B.first) && (A.second < B.second))
4544 return true;
4545
4546 // right intersect: [ ***) B
4547 // [*** ) A
4548 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))
4549 return true;
4550
4551 // left intersect: [*** ) B
4552 // [ ***) A
4553 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))
4554 return true;
4555
4556 return false;
4557}
4558
4559void ResourceSegments::sortAndMerge() {
4560 if (_Intervals.size() <= 1)
4561 return;
4562
4563 // First sort the collection.
4564 _Intervals.sort(sortIntervals);
4565
4566 // can use next because I have at least 2 elements in the list
4567 auto next = std::next(std::begin(_Intervals));
4568 auto E = std::end(_Intervals);
4569 for (; next != E; ++next) {
4570 if (std::prev(next)->second >= next->first) {
4571 next->first = std::prev(next)->first;
4572 _Intervals.erase(std::prev(next));
4573 continue;
4574 }
4575 }
4576}
MachineInstrBuilder MachineInstrBuilder & DefMI
MachineBasicBlock & MBB
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static const Function * getParent(const Value *V)
basic Basic Alias true
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:390
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
static std::optional< ArrayRef< InsnRange >::iterator > intersects(const MachineInstr *StartMI, const MachineInstr *EndMI, const ArrayRef< InsnRange > &Ranges, const InstructionOrdering &Ordering)
Check if the instruction range [StartMI, EndMI] intersects any instruction range in Ranges.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
std::string Name
bool End
Definition: ELF_riscv.cpp:480
expand large div rem
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
A common definition of LaneBitmask for use in TableGen and CodeGen.
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
static bool isSchedBoundary(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB, MachineFunction *MF, const TargetInstrInfo *TII)
Return true of the given instruction should not be included in a scheduling region.
static MachineSchedRegistry ILPMaxRegistry("ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler)
static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop)
static cl::opt< bool > EnableMemOpCluster("misched-cluster", cl::Hidden, cl::desc("Enable memop clustering."), cl::init(true))
Machine Instruction Scheduler
static MachineBasicBlock::const_iterator nextIfDebug(MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator End)
If this iterator is a debug value, increment until reaching the End or a non-debug instruction.
static const unsigned MinSubtreeSize
static const unsigned InvalidCycle
static cl::opt< bool > MISchedSortResourcesInTrace("misched-sort-resources-in-trace", cl::Hidden, cl::init(true), cl::desc("Sort the resources printed in the dump trace"))
static cl::opt< bool > EnableCyclicPath("misched-cyclicpath", cl::Hidden, cl::desc("Enable cyclic critical path analysis."), cl::init(true))
static MachineBasicBlock::const_iterator priorNonDebug(MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator Beg)
Decrement this iterator until reaching the top or a non-debug instr.
static cl::opt< MachineSchedRegistry::ScheduleDAGCtor, false, RegisterPassParser< MachineSchedRegistry > > MachineSchedOpt("misched", cl::init(&useDefaultMachineSched), cl::Hidden, cl::desc("Machine instruction scheduler to use"))
MachineSchedOpt allows command line selection of the scheduler.
static cl::opt< bool > EnableMachineSched("enable-misched", cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), cl::Hidden)
static unsigned computeRemLatency(SchedBoundary &CurrZone)
Compute remaining latency.
static cl::opt< unsigned > MISchedCutoff("misched-cutoff", cl::Hidden, cl::desc("Stop scheduling after N instructions"), cl::init(~0U))
static cl::opt< unsigned > SchedOnlyBlock("misched-only-block", cl::Hidden, cl::desc("Only schedule this MBB#"))
static cl::opt< bool > EnableRegPressure("misched-regpressure", cl::Hidden, cl::desc("Enable register pressure scheduling."), cl::init(true))
static MachineSchedRegistry GenericSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched)
static cl::opt< unsigned > HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, cl::desc("Set width of the columns with " "the resources and schedule units"), cl::init(19))
static cl::opt< bool > ForceFastCluster("force-fast-cluster", cl::Hidden, cl::desc("Switch to fast cluster algorithm with the lost " "of some fusion opportunities"), cl::init(false))
static cl::opt< unsigned > FastClusterThreshold("fast-cluster-threshold", cl::Hidden, cl::desc("The threshold for fast cluster"), cl::init(1000))
static bool checkResourceLimit(unsigned LFactor, unsigned Count, unsigned Latency, bool AfterSchedNode)
Given a Count of resource usage and a Latency value, return true if a SchedBoundary becomes resource ...
static ScheduleDAGInstrs * createInstructionShuffler(MachineSchedContext *C)
static ScheduleDAGInstrs * useDefaultMachineSched(MachineSchedContext *C)
A dummy default scheduler factory indicates whether the scheduler is overridden on the command line.
static bool sortIntervals(const ResourceSegments::IntervalTy &A, const ResourceSegments::IntervalTy &B)
Sort predicate for the intervals stored in an instance of ResourceSegments.
static cl::opt< unsigned > ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, cl::desc("Set width of the columns showing resource booking."), cl::init(5))
static MachineSchedRegistry DefaultSchedRegistry("default", "Use the target's default scheduler choice.", useDefaultMachineSched)
static cl::opt< std::string > SchedOnlyFunc("misched-only-func", cl::Hidden, cl::desc("Only schedule this function"))
static const char * scheduleTableLegend
static ScheduleDAGInstrs * createConvergingSched(MachineSchedContext *C)
static cl::opt< unsigned > ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, cl::desc("Hide nodes with more predecessor/successor than cutoff"))
In some situations a few uninteresting nodes depend on nearly all other nodes in the graph,...
static MachineSchedRegistry ShufflerRegistry("shuffle", "Shuffle machine instructions alternating directions", createInstructionShuffler)
static cl::opt< bool > EnablePostRAMachineSched("enable-post-misched", cl::desc("Enable the post-ra machine instruction scheduling pass."), cl::init(true), cl::Hidden)
static void getSchedRegions(MachineBasicBlock *MBB, MBBRegionsVector &Regions, bool RegionsTopDown)
static cl::opt< unsigned > MIResourceCutOff("misched-resource-cutoff", cl::Hidden, cl::desc("Number of intervals to track"), cl::init(10))
static ScheduleDAGInstrs * createILPMaxScheduler(MachineSchedContext *C)
static cl::opt< unsigned > ReadyListLimit("misched-limit", cl::Hidden, cl::desc("Limit ready list to N instructions"), cl::init(256))
Avoid quadratic complexity in unusually large basic blocks by limiting the size of the ready lists.
static ScheduleDAGInstrs * createILPMinScheduler(MachineSchedContext *C)
static cl::opt< bool > MISchedDumpScheduleTrace("misched-dump-schedule-trace", cl::Hidden, cl::init(false), cl::desc("Dump resource usage at schedule boundary."))
static MachineSchedRegistry ILPMinRegistry("ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler)
unsigned const TargetRegisterInfo * TRI
std::pair< uint64_t, uint64_t > Interval
#define P(N)
if(PassOpts->AAPipeline)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
This file defines the PriorityQueue class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isSimple(Instruction *I)
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)
Initialize the set of available library functions based on the specified target triple.
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
static const X86InstrFMA3Group Groups[]
Value * RHS
Value * LHS
Class recording the (high level) value of a variable.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
Definition: APInt.h:78
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
reverse_iterator rend() const
Definition: ArrayRef.h:160
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
reverse_iterator rbegin() const
Definition: ArrayRef.h:159
bool test(unsigned Idx) const
Definition: BitVector.h:461
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition: BitVector.h:335
BitVector & set()
Definition: BitVector.h:351
This class represents an Operation in the Expression.
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
Register getReg() const
void traceCandidate(const SchedCandidate &Cand)
void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, SchedBoundary *OtherZone)
Set the CandPolicy given a scheduling zone given the current resources and latencies inside and outsi...
MachineSchedPolicy RegionPolicy
const TargetSchedModel * SchedModel
static const char * getReasonStr(GenericSchedulerBase::CandReason Reason)
const MachineSchedContext * Context
CandReason
Represent the type of SchedCandidate found within a single queue.
const TargetRegisterInfo * TRI
void checkAcyclicLatency()
Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic critical path by more cycle...
virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary *Zone) const
Apply a set of heuristics to a new candidate.
void dumpPolicy() const override
void initialize(ScheduleDAGMI *dag) override
Initialize the strategy after building the DAG for a new region.
void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker)
void registerRoots() override
Notify this strategy that all roots have been released (including those that depend on EntrySU or Exi...
void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override
Initialize the per-region scheduling policy.
void reschedulePhysReg(SUnit *SU, bool isTop)
SUnit * pickNode(bool &IsTopNode) override
Pick the best node to balance the schedule. Implements MachineSchedStrategy.
void pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Candidate)
Pick the best candidate from the queue.
void schedNode(SUnit *SU, bool IsTopNode) override
Update the scheduler's state after scheduling a node.
SUnit * pickNodeBidirectional(bool &IsTopNode)
Pick the best candidate node from either the top or bottom queue.
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
Get the base register and byte offset of a load/store instr.
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Test if the given instruction should be considered a scheduling boundary.
Itinerary data supplied by a subtarget to be used by a target.
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
void handleMove(MachineInstr &MI, bool UpdateFlags=false)
Call this method to notify LiveIntervals that instruction MI has been moved within a basic block.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const
Return the last index in the given basic block.
LiveInterval & getInterval(Register Reg)
Result of a LiveRange query.
Definition: LiveInterval.h:90
VNInfo * valueIn() const
Return the value that is live-in to the instruction.
Definition: LiveInterval.h:105
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
Definition: LiveInterval.h:542
iterator end()
Definition: LiveInterval.h:216
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarily including Idx,...
Definition: LiveInterval.h:429
iterator begin()
Definition: LiveInterval.h:215
SlotIndex beginIndex() const
beginIndex - Return the lowest numbered slot covered.
Definition: LiveInterval.h:385
SlotIndex endIndex() const
endNumber - return the maximum point of the range of the whole, exclusive.
Definition: LiveInterval.h:392
bool isLocal(SlotIndex Start, SlotIndex End) const
True iff this segment is a single segment that lies between the specified boundaries,...
Definition: LiveInterval.h:518
iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
bool hasValue() const
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
Analysis pass which computes a MachineDominatorTree.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
void print(raw_ostream &OS, const SlotIndexes *=nullptr) const
print - Print out the MachineFunction in a format suitable for debugging to the specified stream.
nonconst_iterator getNonConstIterator() const
Representation of each machine instruction.
Definition: MachineInstr.h:69
bool isCopy() const
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
MachineOperand class - Representation of each machine instruction operand.
MachinePassRegistry - Track the registration of machine passes.
unsigned getNumVirtRegs() const
getNumVirtRegs - Return the number of virtual registers created.
MachineSchedRegistry provides a selection of available machine instruction schedulers.
static MachinePassRegistry< ScheduleDAGCtor > Registry
ScheduleDAGInstrs *(*)(MachineSchedContext *) ScheduleDAGCtor
MachineSchedStrategy - Interface to the scheduling algorithm used by ScheduleDAGMI.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override
Optionally override the per-region scheduling policy.
virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand)
Apply a set of heuristics to a new candidate for PostRA scheduling.
void schedNode(SUnit *SU, bool IsTopNode) override
Called after ScheduleDAGMI has scheduled an instruction and updated scheduled/remaining flags in the ...
void pickNodeFromQueue(SchedBoundary &Zone, SchedCandidate &Cand)
void initialize(ScheduleDAGMI *Dag) override
Initialize the strategy after building the DAG for a new region.
SUnit * pickNodeBidirectional(bool &IsTopNode)
Pick the best candidate node from either the top or bottom queue.
void registerRoots() override
Notify this strategy that all roots have been released (including those that depend on EntrySU or Exi...
SUnit * pickNode(bool &IsTopNode) override
Pick the next node to schedule.
Capture a change in pressure for a single pressure set.
unsigned getPSetOrMax() const
unsigned getPSet() const
List of PressureChanges in order of increasing, unique PSetID.
void dump(const TargetRegisterInfo &TRI) const
void addPressureChange(Register RegUnit, bool IsDec, const MachineRegisterInfo *MRI)
Add a change in pressure to the pressure diff of a given instruction.
PriorityQueue - This class behaves like std::priority_queue and provides a few additional convenience...
Definition: PriorityQueue.h:28
void clear()
clear - Erase all elements from the queue.
Definition: PriorityQueue.h:76
Helpers for implementing custom MachineSchedStrategy classes.
void push(SUnit *SU)
iterator find(SUnit *SU)
ArrayRef< SUnit * > elements()
bool isInQueue(SUnit *SU) const
std::vector< SUnit * >::iterator iterator
bool empty() const
StringRef getName() const
unsigned size() const
iterator remove(iterator I)
Track the current register pressure at some position in the instruction stream, and remember the high...
void closeRegion()
Finalize the region boundaries and recored live ins and live outs.
void setPos(MachineBasicBlock::const_iterator Pos)
ArrayRef< unsigned > getLiveThru() const
void closeBottom()
Set the boundary for the bottom of the region and summarize live outs.
void recede(SmallVectorImpl< VRegMaskOrUnit > *LiveUses=nullptr)
Recede across the previous instruction.
RegisterPressure & getPressure()
Get the resulting register pressure over the traversed region.
void addLiveRegs(ArrayRef< VRegMaskOrUnit > Regs)
Force liveness of virtual registers or physical register units.
void recedeSkipDebugValues()
Recede until we find an instruction which is not a DebugValue.
void getMaxUpwardPressureDelta(const MachineInstr *MI, PressureDiff *PDiff, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit)
Consider the pressure increase caused by traversing this instruction bottom-up.
void initLiveThru(const RegPressureTracker &RPTracker)
Initialize the LiveThru pressure set based on the untied defs found in RPTracker.
void init(const MachineFunction *mf, const RegisterClassInfo *rci, const LiveIntervals *lis, const MachineBasicBlock *mbb, MachineBasicBlock::const_iterator pos, bool TrackLaneMasks, bool TrackUntiedDefs)
Setup the RegPressureTracker.
MachineBasicBlock::const_iterator getPos() const
Get the MI position corresponding to this register pressure.
void closeTop()
Set the boundary for the top of the region and summarize live ins.
void getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit)
Consider the pressure increase caused by traversing this instruction top-down.
void advance()
Advance across the current instruction.
const std::vector< unsigned > & getRegSetPressureAtPos() const
Get the register set pressure at the current position, which may be less than the pressure across the...
void getUpwardPressureDelta(const MachineInstr *MI, PressureDiff &PDiff, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit) const
This is the fast version of querying register pressure that does not directly depend on current liven...
unsigned getNumAllocatableRegs(const TargetRegisterClass *RC) const
getNumAllocatableRegs - Returns the number of actually allocatable registers in RC in the current fun...
unsigned getRegPressureSetLimit(unsigned Idx) const
Get the register unit limit for the given pressure set index.
List of registers defined and used by a machine instruction.
void collect(const MachineInstr &MI, const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI, bool TrackLaneMasks, bool IgnoreDead)
Analyze the given instruction MI and fill in the Uses, Defs and DeadDefs list based on the MachineOpe...
void adjustLaneLiveness(const LiveIntervals &LIS, const MachineRegisterInfo &MRI, SlotIndex Pos, MachineInstr *AddFlagsMI=nullptr)
Use liveness information to find out which uses/defs are partially undefined/dead and adjust the VReg...
void detectDeadDefs(const MachineInstr &MI, const LiveIntervals &LIS)
Use liveness information to find dead defs not marked with a dead flag and move them to the DeadDefs ...
RegisterPassParser class - Handle the addition of new machine passes.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
static constexpr bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:65
void add(IntervalTy A, const unsigned CutOff=10)
Adds an interval [a, b) to the collection of the instance.
static IntervalTy getResourceIntervalBottom(unsigned C, unsigned AcquireAtCycle, unsigned ReleaseAtCycle)
These function return the interval used by a resource in bottom and top scheduling.
static bool intersects(IntervalTy A, IntervalTy B)
Checks whether intervals intersect.
std::pair< int64_t, int64_t > IntervalTy
Represents an interval of discrete integer values closed on the left and open on the right: [a,...
static IntervalTy getResourceIntervalTop(unsigned C, unsigned AcquireAtCycle, unsigned ReleaseAtCycle)
Scheduling dependency.
Definition: ScheduleDAG.h:49
SUnit * getSUnit() const
Definition: ScheduleDAG.h:498
Kind getKind() const
Returns an enum value representing the kind of the dependence.
Definition: ScheduleDAG.h:504
@ Anti
A register anti-dependence (aka WAR).
Definition: ScheduleDAG.h:54
@ Data
Regular data dependence (aka true-dependence).
Definition: ScheduleDAG.h:53
bool isWeak() const
Tests if this a weak dependence.
Definition: ScheduleDAG.h:194
@ Cluster
Weak DAG edge linking a chain of clustered instrs.
Definition: ScheduleDAG.h:74
@ Artificial
Arbitrary strong DAG edge (no real dependence).
Definition: ScheduleDAG.h:72
@ Weak
Arbitrary weak DAG edge.
Definition: ScheduleDAG.h:73
unsigned getLatency() const
Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...
Definition: ScheduleDAG.h:142
bool isArtificial() const
Tests if this is an Order dependence that is marked as "artificial", meaning it isn't necessary for c...
Definition: ScheduleDAG.h:200
bool isCtrl() const
Shorthand for getKind() != SDep::Data.
Definition: ScheduleDAG.h:161
unsigned getReg() const
Returns the register associated with this edge.
Definition: ScheduleDAG.h:218
bool isCluster() const
Tests if this is an Order dependence that is marked as "cluster", meaning it is artificial and wants ...
Definition: ScheduleDAG.h:206
bool isArtificialDep() const
Definition: ScheduleDAG.h:686
bool isCtrlDep() const
Tests if this is not an SDep::Data dependence.
Definition: ScheduleDAG.h:683
Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:242
bool isCall
Is a function call.
Definition: ScheduleDAG.h:287
unsigned TopReadyCycle
Cycle relative to start when node is ready.
Definition: ScheduleDAG.h:278
unsigned NodeNum
Entry # of node in the node vector.
Definition: ScheduleDAG.h:270
unsigned NumSuccsLeft
Definition: ScheduleDAG.h:275
void biasCriticalPath()
Orders this node's predecessor edges such that the critical path edge occurs first.
bool isUnbuffered
Uses an unbuffered resource.
Definition: ScheduleDAG.h:300
unsigned getHeight() const
Returns the height of this node, which is the length of the maximum path down to any node which has n...
Definition: ScheduleDAG.h:424
unsigned short Latency
Node latency.
Definition: ScheduleDAG.h:303
unsigned getDepth() const
Returns the depth of this node, which is the length of the maximum path up to any node which has no p...
Definition: ScheduleDAG.h:416
bool isScheduled
True once scheduled.
Definition: ScheduleDAG.h:296
unsigned NumPredsLeft
Definition: ScheduleDAG.h:274
bool hasPhysRegDefs
Has physreg defs that are being used.
Definition: ScheduleDAG.h:292
unsigned BotReadyCycle
Cycle relative to end when node is ready.
Definition: ScheduleDAG.h:279
SmallVector< SDep, 4 > Succs
All sunit successors.
Definition: ScheduleDAG.h:263
bool hasReservedResource
Uses a reserved resource.
Definition: ScheduleDAG.h:301
unsigned WeakPredsLeft
Definition: ScheduleDAG.h:276
bool isBottomReady() const
Definition: ScheduleDAG.h:467
bool hasPhysRegUses
Has physreg uses.
Definition: ScheduleDAG.h:291
bool isTopReady() const
Definition: ScheduleDAG.h:464
SmallVector< SDep, 4 > Preds
All sunit predecessors.
Definition: ScheduleDAG.h:262
unsigned WeakSuccsLeft
Definition: ScheduleDAG.h:277
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
Definition: ScheduleDAG.h:390
Each Scheduling boundary is associated with ready queues.
unsigned getNextResourceCycleByInstance(unsigned InstanceIndex, unsigned ReleaseAtCycle, unsigned AcquireAtCycle)
Compute the next cycle at which the given processor resource unit can be scheduled.
void releasePending()
Release pending ready nodes in to the available queue.
unsigned getDependentLatency() const
unsigned getScheduledLatency() const
Get the number of latency cycles "covered" by the scheduled instructions.
void incExecutedResources(unsigned PIdx, unsigned Count)
bool isResourceLimited() const
const TargetSchedModel * SchedModel
unsigned getExecutedCount() const
Get a scaled count for the minimum execution time of the scheduled micro-ops that are ready to execut...
unsigned getLatencyStallCycles(SUnit *SU)
Get the difference between the given SUnit's ready time and the current cycle.
unsigned findMaxLatency(ArrayRef< SUnit * > ReadySUs)
ScheduleDAGMI * DAG
void dumpReservedCycles() const
Dump the state of the information that tracks resource usage.
unsigned getOtherResourceCount(unsigned &OtherCritIdx)
SchedRemainder * Rem
void bumpNode(SUnit *SU)
Move the boundary of scheduled code by one SUnit.
unsigned getCriticalCount() const
Get the scaled count of scheduled micro-ops and resources, including executed resources.
SUnit * pickOnlyChoice()
Call this before applying any other heuristics to the Available queue.
void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, unsigned Idx=0)
Release SU to make it ready.
unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx, unsigned Cycles, unsigned ReadyCycle, unsigned StartAtCycle)
Add the given processor resource to this scheduled zone.
ScheduleHazardRecognizer * HazardRec
bool isUnbufferedGroup(unsigned PIdx) const
void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem)
unsigned getResourceCount(unsigned ResIdx) const
void bumpCycle(unsigned NextCycle)
Move the boundary of scheduled code by one cycle.
unsigned getCurrMOps() const
Micro-ops issued in the current cycle.
unsigned getCurrCycle() const
Number of cycles to issue the instructions scheduled in this zone.
bool checkHazard(SUnit *SU)
Does this SU have a hazard within the current instruction group.
std::pair< unsigned, unsigned > getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, unsigned ReleaseAtCycle, unsigned AcquireAtCycle)
Compute the next cycle at which the given processor resource can be scheduled.
void dumpScheduledState() const
void removeReady(SUnit *SU)
Remove SU from the ready set for this boundary.
unsigned getZoneCritResIdx() const
unsigned getUnscheduledLatency(SUnit *SU) const
Compute the values of each DAG node for various metrics during DFS.
Definition: ScheduleDFS.h:65
unsigned getNumInstrs(const SUnit *SU) const
Get the number of instructions in the given subtree and its children.
Definition: ScheduleDFS.h:145
unsigned getSubtreeID(const SUnit *SU) const
Get the ID of the subtree the given DAG node belongs to.
Definition: ScheduleDFS.h:169
void clear()
Clear the results.
Definition: ScheduleDFS.h:128
ILPValue getILP(const SUnit *SU) const
Get the ILP value for a DAG node.
Definition: ScheduleDFS.h:158
void compute(ArrayRef< SUnit > SUnits)
Compute various metrics for the DAG with given roots.
unsigned getNumSubtrees() const
The number of subtrees detected in this DAG.
Definition: ScheduleDFS.h:163
unsigned getSubtreeLevel(unsigned SubtreeID) const
Get the connection level of a subtree.
Definition: ScheduleDFS.h:180
void resize(unsigned NumSUnits)
Initialize the result data with the size of the DAG.
Definition: ScheduleDFS.h:136
void scheduleTree(unsigned SubtreeID)
Scheduler callback to update SubtreeConnectLevels when a tree is initially scheduled.
A ScheduleDAG for scheduling lists of MachineInstr.
virtual void finishBlock()
Cleans up after scheduling in the given block.
MachineBasicBlock::iterator end() const
Returns an iterator to the bottom of the current scheduling region.
MachineBasicBlock * BB
The block in which to insert instructions.
virtual void startBlock(MachineBasicBlock *BB)
Prepares to perform scheduling in the given block.
const TargetSchedModel * getSchedModel() const
Gets the machine model for instruction scheduling.
MachineBasicBlock::iterator RegionEnd
The end of the range to be scheduled.
const MCSchedClassDesc * getSchedClass(SUnit *SU) const
Resolves and cache a resolved scheduling class for an SUnit.
DbgValueVector DbgValues
Remember instruction that precedes DBG_VALUE.
bool addEdge(SUnit *SuccSU, const SDep &PredDep)
Add a DAG edge to the given SU with the given predecessor dependence data.
DumpDirection
The direction that should be used to dump the scheduled Sequence.
bool TrackLaneMasks
Whether lane masks should get tracked.
void dumpNode(const SUnit &SU) const override
bool IsReachable(SUnit *SU, SUnit *TargetSU)
IsReachable - Checks if SU is reachable from TargetSU.
MachineBasicBlock::iterator begin() const
Returns an iterator to the top of the current scheduling region.
void buildSchedGraph(AAResults *AA, RegPressureTracker *RPTracker=nullptr, PressureDiffs *PDiffs=nullptr, LiveIntervals *LIS=nullptr, bool TrackLaneMasks=false)
Builds SUnits for the current region.
SUnit * getSUnit(MachineInstr *MI) const
Returns an existing SUnit for this MI, or nullptr.
TargetSchedModel SchedModel
TargetSchedModel provides an interface to the machine model.
bool canAddEdge(SUnit *SuccSU, SUnit *PredSU)
True if an edge can be added from PredSU to SuccSU without creating a cycle.
MachineBasicBlock::iterator RegionBegin
The beginning of the range to be scheduled.
virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs)
Initialize the DAG and common scheduler state for a new scheduling region.
void dump() const override
void setDumpDirection(DumpDirection D)
ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules machine instructions while...
void scheduleMI(SUnit *SU, bool IsTopNode)
Move an instruction and update register pressure.
void schedule() override
Implement ScheduleDAGInstrs interface for scheduling a sequence of reorderable instructions.
VReg2SUnitMultiMap VRegUses
Maps vregs to the SUnits of their uses in the current scheduling region.
void computeDFSResult()
Compute a DFSResult after DAG building is complete, and before any queue comparisons.
PressureDiff & getPressureDiff(const SUnit *SU)
SchedDFSResult * DFSResult
Information about DAG subtrees.
void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override
Implement the ScheduleDAGInstrs interface for handling the next scheduling region.
void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)
Release ExitSU predecessors and setup scheduler queues.
RegPressureTracker BotRPTracker
void buildDAGWithRegPressure()
Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking enabled.
std::vector< PressureChange > RegionCriticalPSets
List of pressure sets that exceed the target's pressure limit before scheduling, listed in increasing...
void updateScheduledPressure(const SUnit *SU, const std::vector< unsigned > &NewMaxPressure)
unsigned computeCyclicCriticalPath()
Compute the cyclic critical path through the DAG.
void updatePressureDiffs(ArrayRef< VRegMaskOrUnit > LiveUses)
Update the PressureDiff array for liveness after scheduling this instruction.
RegisterClassInfo * RegClassInfo
const SchedDFSResult * getDFSResult() const
Return a non-null DFS result if the scheduling strategy initialized it.
RegPressureTracker RPTracker
bool ShouldTrackPressure
Register pressure in this region computed by initRegPressure.
void dump() const override
BitVector & getScheduledTrees()
MachineBasicBlock::iterator LiveRegionEnd
RegPressureTracker TopRPTracker
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
void dumpSchedule() const
dump the scheduled Sequence.
std::unique_ptr< MachineSchedStrategy > SchedImpl
void startBlock(MachineBasicBlock *bb) override
Prepares to perform scheduling in the given block.
void releasePred(SUnit *SU, SDep *PredEdge)
ReleasePred - Decrement the NumSuccsLeft count of a predecessor.
void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)
Release ExitSU predecessors and setup scheduler queues.
void addMutation(std::unique_ptr< ScheduleDAGMutation > Mutation)
Add a postprocessing step to the DAG builder.
void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos)
Change the position of an instruction within the basic block and update live ranges and region bounda...
void releasePredecessors(SUnit *SU)
releasePredecessors - Call releasePred on each of SU's predecessors.
void postProcessDAG()
Apply each ScheduleDAGMutation step in order.
const SUnit * NextClusterSucc
void dumpScheduleTraceTopDown() const
Print execution trace of the schedule top-down or bottom-up.
const SUnit * NextClusterPred
Record the next node in a scheduled cluster.
MachineBasicBlock::iterator top() const
void schedule() override
Implement ScheduleDAGInstrs interface for scheduling a sequence of reorderable instructions.
void findRootsAndBiasEdges(SmallVectorImpl< SUnit * > &TopRoots, SmallVectorImpl< SUnit * > &BotRoots)
MachineBasicBlock::iterator bottom() const
MachineBasicBlock::iterator CurrentBottom
The bottom of the unscheduled zone.
virtual bool hasVRegLiveness() const
Return true if this DAG supports VReg liveness and RegPressure.
void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override
Implement the ScheduleDAGInstrs interface for handling the next scheduling region.
LiveIntervals * getLIS() const
void viewGraph() override
Out-of-line implementation with no arguments is handy for gdb.
void releaseSucc(SUnit *SU, SDep *SuccEdge)
ReleaseSucc - Decrement the NumPredsLeft count of a successor.
void dumpScheduleTraceBottomUp() const
~ScheduleDAGMI() override
void finishBlock() override
Cleans up after scheduling in the given block.
LiveIntervals * LIS
const SUnit * getNextClusterPred() const
void updateQueues(SUnit *SU, bool IsTopNode)
Update scheduler DAG and queues after scheduling an instruction.
void placeDebugValues()
Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
MachineBasicBlock::iterator CurrentTop
The top of the unscheduled zone.
void releaseSuccessors(SUnit *SU)
releaseSuccessors - Call releaseSucc on each of SU's successors.
const SUnit * getNextClusterSucc() const
std::vector< std::unique_ptr< ScheduleDAGMutation > > Mutations
Ordered list of DAG postprocessing steps.
Mutate the DAG as a postpass after normal DAG building.
MachineRegisterInfo & MRI
Virtual/real register map.
Definition: ScheduleDAG.h:578
const TargetInstrInfo * TII
Target instruction information.
Definition: ScheduleDAG.h:575
std::vector< SUnit > SUnits
The scheduling units.
Definition: ScheduleDAG.h:579
const TargetRegisterInfo * TRI
Target processor register info.
Definition: ScheduleDAG.h:576
SUnit EntrySU
Special node for the region entry.
Definition: ScheduleDAG.h:580
MachineFunction & MF
Machine function.
Definition: ScheduleDAG.h:577
void dumpNodeAll(const SUnit &SU) const
SUnit ExitSU
Special node for the region exit.
Definition: ScheduleDAG.h:581
virtual void RecedeCycle()
RecedeCycle - This callback is invoked whenever the next bottom-up instruction to be scheduled cannot...
virtual void Reset()
Reset - This callback is invoked when a new block of instructions is about to be schedule.
virtual void EmitInstruction(SUnit *)
EmitInstruction - This callback is invoked when an instruction is emitted, to advance the hazard stat...
virtual void AdvanceCycle()
AdvanceCycle - This callback is invoked whenever the next top-down instruction to be scheduled cannot...
virtual HazardType getHazardType(SUnit *, int Stalls=0)
getHazardType - Return the hazard type of emitting this node.
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:65
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:176
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
Definition: SlotIndexes.h:237
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: SmallVector.h:254
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
iterator find(const KeyT &Key)
Find an element by its key.
void clear()
Clears the set.
iterator end()
Returns an iterator past this container.
iterator insert(const ValueT &Val)
Insert a new element at the tail of the subset list.
void setUniverse(unsigned U)
Set the universe size which determines the largest key the set can hold.
Register getReg() const
Information about stack frame layout on the target.
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
TargetInstrInfo - Interface to description of machine instruction set.
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAGMI *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Target-Independent Code Generator Pass Configuration Options.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const char * getRegPressureSetName(unsigned Idx) const =0
Get the name of this register unit pressure set.
Provide an instruction scheduling machine model to CodeGen passes.
const char * getResourceName(unsigned PIdx) const
bool mustEndGroup(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const
Return true if current group must end.
unsigned getIssueWidth() const
Maximum number of micro-ops that may be scheduled per cycle.
unsigned getMicroOpFactor() const
Multiply number of micro-ops by this factor to normalize it relative to other resources.
ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const
bool hasInstrSchedModel() const
Return true if this machine model includes an instruction-level scheduling model.
bool mustBeginGroup(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const
Return true if new group must begin.
unsigned getLatencyFactor() const
Multiply cycle count by this factor to normalize it relative to other resources.
unsigned getResourceFactor(unsigned ResIdx) const
Multiply the number of units consumed for a resource by this factor to normalize it relative to other...
unsigned getMicroOpBufferSize() const
Number of micro-ops that may be buffered for OOO execution.
unsigned getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const
Return the number of issue slots required for this MI.
const MCProcResourceDesc * getProcResource(unsigned PIdx) const
Get a processor resource by ID for convenience.
unsigned getNumProcResourceKinds() const
Get the number of kinds of resources for this target.
const InstrItineraryData * getInstrItineraries() const
ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual std::vector< MacroFusionPredTy > getMacroFusions() const
Get the list of MacroFusion predicates.
virtual bool enableMachineScheduler() const
True if the subtarget should run MachineScheduler after aggressive coalescing.
virtual void overridePostRASchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const
Override generic post-ra scheduling policy within a region.
virtual void overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const
Override generic scheduling policy within a region.
virtual bool enablePostRAMachineScheduler() const
True if the subtarget should run a machine scheduler after register allocation.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Definition: LiveInterval.h:78
int getNumOccurrences() const
Definition: CommandLine.h:399
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
StringRef getColorString(unsigned NodeNumber)
Get a color string for this node number.
Definition: GraphWriter.cpp:91
void apply(Opt *O, const Mod &M, const Mods &... Ms)
Definition: CommandLine.h:1309
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:361
void stable_sort(R &&Range)
Definition: STLExtras.h:2037
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
cl::opt< bool > PrintDAGs
unsigned getWeakLeft(const SUnit *SU, bool isTop)
std::unique_ptr< ScheduleDAGMutation > createMacroFusionDAGMutation(ArrayRef< MacroFusionPredTy > Predicates, bool BranchOnly=false)
Create a DAG scheduling mutation to pair instructions back to back for instructions that benefit acco...
FormattedString right_justify(StringRef Str, unsigned Width)
right_justify - add spaces before string so total output is Width characters.
Definition: Format.h:153
cl::opt< MISched::Direction > PostRADirection("misched-postra-direction", cl::Hidden, cl::desc("Post reg-alloc list scheduling direction"), cl::init(MISched::Unspecified), cl::values(clEnumValN(MISched::TopDown, "topdown", "Force top-down post reg-alloc list scheduling"), clEnumValN(MISched::BottomUp, "bottomup", "Force bottom-up post reg-alloc list scheduling"), clEnumValN(MISched::Bidirectional, "bidirectional", "Force bidirectional post reg-alloc list scheduling")))
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Printable PrintLaneMask(LaneBitmask LaneMask)
Create Printable object to print LaneBitmasks on a raw_ostream.
Definition: LaneBitmask.h:92
cl::opt< bool > MISchedDumpReservedCycles("misched-dump-reserved-cycles", cl::Hidden, cl::init(false), cl::desc("Dump resource usage at schedule boundary."))
void initializePostMachineSchedulerPass(PassRegistry &)
cl::opt< bool > VerifyScheduling
char & MachineSchedulerID
MachineScheduler - This pass schedules machine instructions.
char & PostMachineSchedulerID
PostMachineScheduler - This pass schedules machine instructions postRA.
ScheduleDAGMILive * createGenericSchedLive(MachineSchedContext *C)
Create the standard converging machine scheduler.
cl::opt< bool > ViewMISchedDAGs
bool tryPressure(const PressureChange &TryP, const PressureChange &CandP, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason, const TargetRegisterInfo *TRI, const MachineFunction &MF)
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI)
Create Printable object to print virtual registers and physical registers on a raw_ostream.
std::unique_ptr< ScheduleDAGMutation > createStoreClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ReorderWhileClustering=false)
If ReorderWhileClustering is set to true, no attempt will be made to reduce reordering due to store c...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
cl::opt< bool > DumpCriticalPathLength("misched-dcpl", cl::Hidden, cl::desc("Print critical path length to stdout"))
bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, SchedBoundary &Zone)
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
void initializeMachineSchedulerPass(PassRegistry &)
ScheduleDAGMI * createGenericSchedPostRA(MachineSchedContext *C)
Create a generic scheduler with no vreg liveness or DAG mutation passes.
FormattedString left_justify(StringRef Str, unsigned Width)
left_justify - append spaces after string so total output is Width characters.
Definition: Format.h:146
cl::opt< MISched::Direction > PreRADirection
std::unique_ptr< ScheduleDAGMutation > createLoadClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ReorderWhileClustering=false)
If ReorderWhileClustering is set to true, no attempt will be made to reduce reordering due to store c...
bool tryGreater(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason)
void ViewGraph(const GraphType &G, const Twine &Name, bool ShortNames=false, const Twine &Title="", GraphProgram::Name Program=GraphProgram::DOT)
ViewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, then cleanup.
Definition: GraphWriter.h:427
void dumpRegSetPressure(ArrayRef< unsigned > SetPressure, const TargetRegisterInfo *TRI)
bool tryLess(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason)
Return true if this heuristic determines order.
std::unique_ptr< ScheduleDAGMutation > createCopyConstrainDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI)
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
cl::opt< bool > MischedDetailResourceBooking("misched-detail-resource-booking", cl::Hidden, cl::init(false), cl::desc("Show details of invoking getNextResoufceCycle."))
int biasPhysReg(const SUnit *SU, bool isTop)
Minimize physical register live ranges.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G)
static std::string getEdgeAttributes(const SUnit *Node, SUnitIterator EI, const ScheduleDAG *Graph)
If you want to override the dot attributes printed for a particular edge, override this method.
static std::string getGraphName(const ScheduleDAG *G)
static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G)
static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G)
static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G)
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
Policy for scheduling the next instruction in the candidate's zone.
Store the state used by GenericScheduler heuristics, required for the lifetime of one invocation of p...
void reset(const CandPolicy &NewPolicy)
void initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel)
Status of an instruction's critical resource consumption.
static constexpr LaneBitmask getNone()
Definition: LaneBitmask.h:81
const unsigned * SubUnitsIdxBegin
Definition: MCSchedule.h:56
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Definition: MCSchedule.h:121
Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...
Definition: MCSchedule.h:66
MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...
RegisterClassInfo * RegClassInfo
bool ShouldTrackLaneMasks
Track LaneMasks to allow reordering of independent subregister writes of the same vreg.
PressureChange CriticalMax
RegisterPressure computed within a region of instructions delimited by TopPos and BottomPos.
SmallVector< VRegMaskOrUnit, 8 > LiveOutRegs
SmallVector< VRegMaskOrUnit, 8 > LiveInRegs
List of live in virtual registers or physical register units.
std::vector< unsigned > MaxSetPressure
Map of max reg pressure indexed by pressure set ID, not class ID.
Summarize the unscheduled region.
void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel)
SmallVector< unsigned, 16 > RemainingCounts
An individual mapping from virtual register number to SUnit.