LLVM 22.0.0git
InstCombineCalls.cpp
Go to the documentation of this file.
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitCall, visitInvoke, and visitCallBr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/Loads.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/Constant.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DebugInfo.h"
39#include "llvm/IR/Function.h"
41#include "llvm/IR/InlineAsm.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/IntrinsicsAArch64.h"
48#include "llvm/IR/IntrinsicsAMDGPU.h"
49#include "llvm/IR/IntrinsicsARM.h"
50#include "llvm/IR/IntrinsicsHexagon.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Statepoint.h"
55#include "llvm/IR/Type.h"
56#include "llvm/IR/User.h"
57#include "llvm/IR/Value.h"
58#include "llvm/IR/ValueHandle.h"
63#include "llvm/Support/Debug.h"
74#include <algorithm>
75#include <cassert>
76#include <cstdint>
77#include <optional>
78#include <utility>
79#include <vector>
80
81#define DEBUG_TYPE "instcombine"
83
84using namespace llvm;
85using namespace PatternMatch;
86
87STATISTIC(NumSimplified, "Number of library calls simplified");
88
90 "instcombine-guard-widening-window",
91 cl::init(3),
92 cl::desc("How wide an instruction window to bypass looking for "
93 "another guard"));
94
95/// Return the specified type promoted as it would be to pass though a va_arg
96/// area.
98 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
99 if (ITy->getBitWidth() < 32)
100 return Type::getInt32Ty(Ty->getContext());
101 }
102 return Ty;
103}
104
105/// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
106/// TODO: This should probably be integrated with visitAllocSites, but that
107/// requires a deeper change to allow either unread or unwritten objects.
109 auto *Src = MI->getRawSource();
110 while (isa<GetElementPtrInst>(Src)) {
111 if (!Src->hasOneUse())
112 return false;
113 Src = cast<Instruction>(Src)->getOperand(0);
114 }
115 return isa<AllocaInst>(Src) && Src->hasOneUse();
116}
117
119 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
120 MaybeAlign CopyDstAlign = MI->getDestAlign();
121 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
122 MI->setDestAlignment(DstAlign);
123 return MI;
124 }
125
126 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
127 MaybeAlign CopySrcAlign = MI->getSourceAlign();
128 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
129 MI->setSourceAlignment(SrcAlign);
130 return MI;
131 }
132
133 // If we have a store to a location which is known constant, we can conclude
134 // that the store must be storing the constant value (else the memory
135 // wouldn't be constant), and this must be a noop.
136 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
137 // Set the size of the copy to 0, it will be deleted on the next iteration.
138 MI->setLength((uint64_t)0);
139 return MI;
140 }
141
142 // If the source is provably undef, the memcpy/memmove doesn't do anything
143 // (unless the transfer is volatile).
144 if (hasUndefSource(MI) && !MI->isVolatile()) {
145 // Set the size of the copy to 0, it will be deleted on the next iteration.
146 MI->setLength((uint64_t)0);
147 return MI;
148 }
149
150 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
151 // load/store.
152 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
153 if (!MemOpLength) return nullptr;
154
155 // Source and destination pointer types are always "i8*" for intrinsic. See
156 // if the size is something we can handle with a single primitive load/store.
157 // A single load+store correctly handles overlapping memory in the memmove
158 // case.
159 uint64_t Size = MemOpLength->getLimitedValue();
160 assert(Size && "0-sized memory transferring should be removed already.");
161
162 if (Size > 8 || (Size&(Size-1)))
163 return nullptr; // If not 1/2/4/8 bytes, exit.
164
165 // If it is an atomic and alignment is less than the size then we will
166 // introduce the unaligned memory access which will be later transformed
167 // into libcall in CodeGen. This is not evident performance gain so disable
168 // it now.
169 if (MI->isAtomic())
170 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
171 return nullptr;
172
173 // Use an integer load+store unless we can find something better.
174 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
175
176 // If the memcpy has metadata describing the members, see if we can get the
177 // TBAA, scope and noalias tags describing our copy.
178 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
179
180 Value *Src = MI->getArgOperand(1);
181 Value *Dest = MI->getArgOperand(0);
182 LoadInst *L = Builder.CreateLoad(IntType, Src);
183 // Alignment from the mem intrinsic will be better, so use it.
184 L->setAlignment(*CopySrcAlign);
185 L->setAAMetadata(AACopyMD);
186 MDNode *LoopMemParallelMD =
187 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
188 if (LoopMemParallelMD)
189 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
190 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
191 if (AccessGroupMD)
192 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
193
194 StoreInst *S = Builder.CreateStore(L, Dest);
195 // Alignment from the mem intrinsic will be better, so use it.
196 S->setAlignment(*CopyDstAlign);
197 S->setAAMetadata(AACopyMD);
198 if (LoopMemParallelMD)
199 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
200 if (AccessGroupMD)
201 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
202 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
203
204 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
205 // non-atomics can be volatile
206 L->setVolatile(MT->isVolatile());
207 S->setVolatile(MT->isVolatile());
208 }
209 if (MI->isAtomic()) {
210 // atomics have to be unordered
211 L->setOrdering(AtomicOrdering::Unordered);
213 }
214
215 // Set the size of the copy to 0, it will be deleted on the next iteration.
216 MI->setLength((uint64_t)0);
217 return MI;
218}
219
221 const Align KnownAlignment =
222 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
223 MaybeAlign MemSetAlign = MI->getDestAlign();
224 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
225 MI->setDestAlignment(KnownAlignment);
226 return MI;
227 }
228
229 // If we have a store to a location which is known constant, we can conclude
230 // that the store must be storing the constant value (else the memory
231 // wouldn't be constant), and this must be a noop.
232 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
233 // Set the size of the copy to 0, it will be deleted on the next iteration.
234 MI->setLength((uint64_t)0);
235 return MI;
236 }
237
238 // Remove memset with an undef value.
239 // FIXME: This is technically incorrect because it might overwrite a poison
240 // value. Change to PoisonValue once #52930 is resolved.
241 if (isa<UndefValue>(MI->getValue())) {
242 // Set the size of the copy to 0, it will be deleted on the next iteration.
243 MI->setLength((uint64_t)0);
244 return MI;
245 }
246
247 // Extract the length and alignment and fill if they are constant.
248 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
249 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
250 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
251 return nullptr;
252 const uint64_t Len = LenC->getLimitedValue();
253 assert(Len && "0-sized memory setting should be removed already.");
254 const Align Alignment = MI->getDestAlign().valueOrOne();
255
256 // If it is an atomic and alignment is less than the size then we will
257 // introduce the unaligned memory access which will be later transformed
258 // into libcall in CodeGen. This is not evident performance gain so disable
259 // it now.
260 if (MI->isAtomic() && Alignment < Len)
261 return nullptr;
262
263 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
264 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
265 Value *Dest = MI->getDest();
266
267 // Extract the fill value and store.
268 Constant *FillVal = ConstantInt::get(
269 MI->getContext(), APInt::getSplat(Len * 8, FillC->getValue()));
270 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
271 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
272 for (DbgVariableRecord *DbgAssign : at::getDVRAssignmentMarkers(S)) {
273 if (llvm::is_contained(DbgAssign->location_ops(), FillC))
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275 }
276
277 S->setAlignment(Alignment);
278 if (MI->isAtomic())
280
281 // Set the size of the copy to 0, it will be deleted on the next iteration.
282 MI->setLength((uint64_t)0);
283 return MI;
284 }
285
286 return nullptr;
287}
288
289// TODO, Obvious Missing Transforms:
290// * Narrow width by halfs excluding zero/undef lanes
291Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
292 Value *LoadPtr = II.getArgOperand(0);
293 const Align Alignment = II.getParamAlign(0).valueOrOne();
294
295 // If the mask is all ones or undefs, this is a plain vector load of the 1st
296 // argument.
297 if (maskIsAllOneOrUndef(II.getArgOperand(1))) {
298 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
299 "unmaskedload");
300 L->copyMetadata(II);
301 return L;
302 }
303
304 // If we can unconditionally load from this address, replace with a
305 // load/select idiom. TODO: use DT for context sensitive query
306 if (isDereferenceablePointer(LoadPtr, II.getType(),
307 II.getDataLayout(), &II, &AC)) {
308 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
309 "unmaskedload");
310 LI->copyMetadata(II);
311 return Builder.CreateSelect(II.getArgOperand(1), LI, II.getArgOperand(2));
312 }
313
314 return nullptr;
315}
316
317// TODO, Obvious Missing Transforms:
318// * Single constant active lane -> store
319// * Narrow width by halfs excluding zero/undef lanes
320Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
321 Value *StorePtr = II.getArgOperand(1);
322 Align Alignment = II.getParamAlign(1).valueOrOne();
323 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
324 if (!ConstMask)
325 return nullptr;
326
327 // If the mask is all zeros, this instruction does nothing.
328 if (maskIsAllZeroOrUndef(ConstMask))
330
331 // If the mask is all ones, this is a plain vector store of the 1st argument.
332 if (maskIsAllOneOrUndef(ConstMask)) {
333 StoreInst *S =
334 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
335 S->copyMetadata(II);
336 return S;
337 }
338
339 if (isa<ScalableVectorType>(ConstMask->getType()))
340 return nullptr;
341
342 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
343 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
344 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
345 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
346 PoisonElts))
347 return replaceOperand(II, 0, V);
348
349 return nullptr;
350}
351
352// TODO, Obvious Missing Transforms:
353// * Single constant active lane load -> load
354// * Dereferenceable address & few lanes -> scalarize speculative load/selects
355// * Adjacent vector addresses -> masked.load
356// * Narrow width by halfs excluding zero/undef lanes
357// * Vector incrementing address -> vector masked load
358Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
359 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(1));
360 if (!ConstMask)
361 return nullptr;
362
363 // Vector splat address w/known mask -> scalar load
364 // Fold the gather to load the source vector first lane
365 // because it is reloading the same value each time
366 if (ConstMask->isAllOnesValue())
367 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
368 auto *VecTy = cast<VectorType>(II.getType());
369 const Align Alignment = II.getParamAlign(0).valueOrOne();
370 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
371 Alignment, "load.scalar");
372 Value *Shuf =
373 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
375 }
376
377 return nullptr;
378}
379
380// TODO, Obvious Missing Transforms:
381// * Single constant active lane -> store
382// * Adjacent vector addresses -> masked.store
383// * Narrow store width by halfs excluding zero/undef lanes
384// * Vector incrementing address -> vector masked store
385Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
386 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
387 if (!ConstMask)
388 return nullptr;
389
390 // If the mask is all zeros, a scatter does nothing.
391 if (maskIsAllZeroOrUndef(ConstMask))
393
394 // Vector splat address -> scalar store
395 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
396 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
397 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
398 if (maskContainsAllOneOrUndef(ConstMask)) {
399 Align Alignment = II.getParamAlign(1).valueOrOne();
400 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
401 Alignment);
402 S->copyMetadata(II);
403 return S;
404 }
405 }
406 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
407 // lastlane), ptr
408 if (ConstMask->isAllOnesValue()) {
409 Align Alignment = II.getParamAlign(1).valueOrOne();
410 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
411 ElementCount VF = WideLoadTy->getElementCount();
412 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
413 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
414 Value *Extract =
415 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
416 StoreInst *S =
417 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
418 S->copyMetadata(II);
419 return S;
420 }
421 }
422 if (isa<ScalableVectorType>(ConstMask->getType()))
423 return nullptr;
424
425 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
426 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
427 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
428 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
429 PoisonElts))
430 return replaceOperand(II, 0, V);
431 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
432 PoisonElts))
433 return replaceOperand(II, 1, V);
434
435 return nullptr;
436}
437
438/// This function transforms launder.invariant.group and strip.invariant.group
439/// like:
440/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
441/// launder(strip(%x)) -> launder(%x)
442/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
443/// strip(launder(%x)) -> strip(%x)
444/// This is legal because it preserves the most recent information about
445/// the presence or absence of invariant.group.
447 InstCombinerImpl &IC) {
448 auto *Arg = II.getArgOperand(0);
449 auto *StrippedArg = Arg->stripPointerCasts();
450 auto *StrippedInvariantGroupsArg = StrippedArg;
451 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
452 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
453 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
454 break;
455 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
456 }
457 if (StrippedArg == StrippedInvariantGroupsArg)
458 return nullptr; // No launders/strips to remove.
459
460 Value *Result = nullptr;
461
462 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
463 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
464 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
465 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
466 else
468 "simplifyInvariantGroupIntrinsic only handles launder and strip");
469 if (Result->getType()->getPointerAddressSpace() !=
470 II.getType()->getPointerAddressSpace())
471 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
472
473 return cast<Instruction>(Result);
474}
475
477 assert((II.getIntrinsicID() == Intrinsic::cttz ||
478 II.getIntrinsicID() == Intrinsic::ctlz) &&
479 "Expected cttz or ctlz intrinsic");
480 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
481 Value *Op0 = II.getArgOperand(0);
482 Value *Op1 = II.getArgOperand(1);
483 Value *X;
484 // ctlz(bitreverse(x)) -> cttz(x)
485 // cttz(bitreverse(x)) -> ctlz(x)
486 if (match(Op0, m_BitReverse(m_Value(X)))) {
487 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
488 Function *F =
489 Intrinsic::getOrInsertDeclaration(II.getModule(), ID, II.getType());
490 return CallInst::Create(F, {X, II.getArgOperand(1)});
491 }
492
493 if (II.getType()->isIntOrIntVectorTy(1)) {
494 // ctlz/cttz i1 Op0 --> not Op0
495 if (match(Op1, m_Zero()))
496 return BinaryOperator::CreateNot(Op0);
497 // If zero is poison, then the input can be assumed to be "true", so the
498 // instruction simplifies to "false".
499 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
500 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
501 }
502
503 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
504 if (II.hasOneUse() && match(Op1, m_Zero()) &&
505 match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) {
506 II.dropUBImplyingAttrsAndMetadata();
507 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
508 }
509
510 Constant *C;
511
512 if (IsTZ) {
513 // cttz(-x) -> cttz(x)
514 if (match(Op0, m_Neg(m_Value(X))))
515 return IC.replaceOperand(II, 0, X);
516
517 // cttz(-x & x) -> cttz(x)
518 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
519 return IC.replaceOperand(II, 0, X);
520
521 // cttz(sext(x)) -> cttz(zext(x))
522 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
523 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
524 auto *CttzZext =
525 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
526 return IC.replaceInstUsesWith(II, CttzZext);
527 }
528
529 // Zext doesn't change the number of trailing zeros, so narrow:
530 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
531 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
532 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
533 IC.Builder.getTrue());
534 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
535 return IC.replaceInstUsesWith(II, ZextCttz);
536 }
537
538 // cttz(abs(x)) -> cttz(x)
539 // cttz(nabs(x)) -> cttz(x)
540 Value *Y;
542 if (SPF == SPF_ABS || SPF == SPF_NABS)
543 return IC.replaceOperand(II, 0, X);
544
546 return IC.replaceOperand(II, 0, X);
547
548 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
549 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
550 match(Op1, m_One())) {
551 Value *ConstCttz =
552 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
553 return BinaryOperator::CreateAdd(ConstCttz, X);
554 }
555
556 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
557 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
558 match(Op1, m_One())) {
559 Value *ConstCttz =
560 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
561 return BinaryOperator::CreateSub(ConstCttz, X);
562 }
563
564 // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val)
565 if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) {
566 Value *Width =
567 ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits());
568 return BinaryOperator::CreateSub(Width, X);
569 }
570 } else {
571 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
572 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
573 match(Op1, m_One())) {
574 Value *ConstCtlz =
575 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
576 return BinaryOperator::CreateAdd(ConstCtlz, X);
577 }
578
579 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
580 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
581 match(Op1, m_One())) {
582 Value *ConstCtlz =
583 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
584 return BinaryOperator::CreateSub(ConstCtlz, X);
585 }
586
587 // ctlz(~x & (x - 1)) -> bitwidth - cttz(x, false)
588 if (Op0->hasOneUse() &&
589 match(Op0,
591 Type *Ty = II.getType();
592 unsigned BitWidth = Ty->getScalarSizeInBits();
593 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
594 {X, IC.Builder.getFalse()});
595 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
596 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
597 }
598 }
599
600 // cttz(Pow2) -> Log2(Pow2)
601 // ctlz(Pow2) -> BitWidth - 1 - Log2(Pow2)
602 if (auto *R = IC.tryGetLog2(Op0, match(Op1, m_One()))) {
603 if (IsTZ)
604 return IC.replaceInstUsesWith(II, R);
605 BinaryOperator *BO = BinaryOperator::CreateSub(
606 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
607 R);
608 BO->setHasNoSignedWrap();
610 return BO;
611 }
612
613 KnownBits Known = IC.computeKnownBits(Op0, &II);
614
615 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
616 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
617 : Known.countMaxLeadingZeros();
618 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
619 : Known.countMinLeadingZeros();
620
621 // If all bits above (ctlz) or below (cttz) the first known one are known
622 // zero, this value is constant.
623 // FIXME: This should be in InstSimplify because we're replacing an
624 // instruction with a constant.
625 if (PossibleZeros == DefiniteZeros) {
626 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
627 return IC.replaceInstUsesWith(II, C);
628 }
629
630 // If the input to cttz/ctlz is known to be non-zero,
631 // then change the 'ZeroIsPoison' parameter to 'true'
632 // because we know the zero behavior can't affect the result.
633 if (!Known.One.isZero() ||
635 if (!match(II.getArgOperand(1), m_One()))
636 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
637 }
638
639 // Add range attribute since known bits can't completely reflect what we know.
640 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
641 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
642 !II.getMetadata(LLVMContext::MD_range)) {
643 ConstantRange Range(APInt(BitWidth, DefiniteZeros),
644 APInt(BitWidth, PossibleZeros + 1));
645 II.addRangeRetAttr(Range);
646 return &II;
647 }
648
649 return nullptr;
650}
651
653 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
654 "Expected ctpop intrinsic");
655 Type *Ty = II.getType();
656 unsigned BitWidth = Ty->getScalarSizeInBits();
657 Value *Op0 = II.getArgOperand(0);
658 Value *X, *Y;
659
660 // ctpop(bitreverse(x)) -> ctpop(x)
661 // ctpop(bswap(x)) -> ctpop(x)
662 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
663 return IC.replaceOperand(II, 0, X);
664
665 // ctpop(rot(x)) -> ctpop(x)
666 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
667 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
668 X == Y)
669 return IC.replaceOperand(II, 0, X);
670
671 // ctpop(x | -x) -> bitwidth - cttz(x, false)
672 if (Op0->hasOneUse() &&
673 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
674 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
675 {X, IC.Builder.getFalse()});
676 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
677 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
678 }
679
680 // ctpop(~x & (x - 1)) -> cttz(x, false)
681 if (match(Op0,
683 Function *F =
684 Intrinsic::getOrInsertDeclaration(II.getModule(), Intrinsic::cttz, Ty);
685 return CallInst::Create(F, {X, IC.Builder.getFalse()});
686 }
687
688 // Zext doesn't change the number of set bits, so narrow:
689 // ctpop (zext X) --> zext (ctpop X)
690 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
691 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
692 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
693 }
694
695 KnownBits Known(BitWidth);
696 IC.computeKnownBits(Op0, Known, &II);
697
698 // If all bits are zero except for exactly one fixed bit, then the result
699 // must be 0 or 1, and we can get that answer by shifting to LSB:
700 // ctpop (X & 32) --> (X & 32) >> 5
701 // TODO: Investigate removing this as its likely unnecessary given the below
702 // `isKnownToBeAPowerOfTwo` check.
703 if ((~Known.Zero).isPowerOf2())
704 return BinaryOperator::CreateLShr(
705 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
706
707 // More generally we can also handle non-constant power of 2 patterns such as
708 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
709 // ctpop(Pow2OrZero) --> icmp ne X, 0
710 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
711 return CastInst::Create(Instruction::ZExt,
714 Ty);
715
716 // Add range attribute since known bits can't completely reflect what we know.
717 if (BitWidth != 1) {
718 ConstantRange OldRange =
719 II.getRange().value_or(ConstantRange::getFull(BitWidth));
720
721 unsigned Lower = Known.countMinPopulation();
722 unsigned Upper = Known.countMaxPopulation() + 1;
723
724 if (Lower == 0 && OldRange.contains(APInt::getZero(BitWidth)) &&
726 Lower = 1;
727
729 Range = Range.intersectWith(OldRange, ConstantRange::Unsigned);
730
731 if (Range != OldRange) {
732 II.addRangeRetAttr(Range);
733 return &II;
734 }
735 }
736
737 return nullptr;
738}
739
740/// Convert `tbl`/`tbx` intrinsics to shufflevector if the mask is constant, and
741/// at most two source operands are actually referenced.
743 bool IsExtension) {
744 // Bail out if the mask is not a constant.
745 auto *C = dyn_cast<Constant>(II.getArgOperand(II.arg_size() - 1));
746 if (!C)
747 return nullptr;
748
749 auto *RetTy = cast<FixedVectorType>(II.getType());
750 unsigned NumIndexes = RetTy->getNumElements();
751
752 // Only perform this transformation for <8 x i8> and <16 x i8> vector types.
753 if (!RetTy->getElementType()->isIntegerTy(8) ||
754 (NumIndexes != 8 && NumIndexes != 16))
755 return nullptr;
756
757 // For tbx instructions, the first argument is the "fallback" vector, which
758 // has the same length as the mask and return type.
759 unsigned int StartIndex = (unsigned)IsExtension;
760 auto *SourceTy =
761 cast<FixedVectorType>(II.getArgOperand(StartIndex)->getType());
762 // Note that the element count of each source vector does *not* need to be the
763 // same as the element count of the return type and mask! All source vectors
764 // must have the same element count as each other, though.
765 unsigned NumElementsPerSource = SourceTy->getNumElements();
766
767 // There are no tbl/tbx intrinsics for which the destination size exceeds the
768 // source size. However, our definitions of the intrinsics, at least in
769 // IntrinsicsAArch64.td, allow for arbitrary destination vector sizes, so it
770 // *could* technically happen.
771 if (NumIndexes > NumElementsPerSource)
772 return nullptr;
773
774 // The tbl/tbx intrinsics take several source operands followed by a mask
775 // operand.
776 unsigned int NumSourceOperands = II.arg_size() - 1 - (unsigned)IsExtension;
777
778 // Map input operands to shuffle indices. This also helpfully deduplicates the
779 // input arguments, in case the same value is passed as an argument multiple
780 // times.
781 SmallDenseMap<Value *, unsigned, 2> ValueToShuffleSlot;
782 Value *ShuffleOperands[2] = {PoisonValue::get(SourceTy),
783 PoisonValue::get(SourceTy)};
784
785 int Indexes[16];
786 for (unsigned I = 0; I < NumIndexes; ++I) {
787 Constant *COp = C->getAggregateElement(I);
788
789 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
790 return nullptr;
791
792 if (isa<UndefValue>(COp)) {
793 Indexes[I] = -1;
794 continue;
795 }
796
797 uint64_t Index = cast<ConstantInt>(COp)->getZExtValue();
798 // The index of the input argument that this index references (0 = first
799 // source argument, etc).
800 unsigned SourceOperandIndex = Index / NumElementsPerSource;
801 // The index of the element at that source operand.
802 unsigned SourceOperandElementIndex = Index % NumElementsPerSource;
803
804 Value *SourceOperand;
805 if (SourceOperandIndex >= NumSourceOperands) {
806 // This index is out of bounds. Map it to index into either the fallback
807 // vector (tbx) or vector of zeroes (tbl).
808 SourceOperandIndex = NumSourceOperands;
809 if (IsExtension) {
810 // For out-of-bounds indices in tbx, choose the `I`th element of the
811 // fallback.
812 SourceOperand = II.getArgOperand(0);
813 SourceOperandElementIndex = I;
814 } else {
815 // Otherwise, choose some element from the dummy vector of zeroes (we'll
816 // always choose the first).
817 SourceOperand = Constant::getNullValue(SourceTy);
818 SourceOperandElementIndex = 0;
819 }
820 } else {
821 SourceOperand = II.getArgOperand(SourceOperandIndex + StartIndex);
822 }
823
824 // The source operand may be the fallback vector, which may not have the
825 // same number of elements as the source vector. In that case, we *could*
826 // choose to extend its length with another shufflevector, but it's simpler
827 // to just bail instead.
828 if (cast<FixedVectorType>(SourceOperand->getType())->getNumElements() !=
829 NumElementsPerSource)
830 return nullptr;
831
832 // We now know the source operand referenced by this index. Make it a
833 // shufflevector operand, if it isn't already.
834 unsigned NumSlots = ValueToShuffleSlot.size();
835 // This shuffle references more than two sources, and hence cannot be
836 // represented as a shufflevector.
837 if (NumSlots == 2 && !ValueToShuffleSlot.contains(SourceOperand))
838 return nullptr;
839
840 auto [It, Inserted] =
841 ValueToShuffleSlot.try_emplace(SourceOperand, NumSlots);
842 if (Inserted)
843 ShuffleOperands[It->getSecond()] = SourceOperand;
844
845 unsigned RemappedIndex =
846 (It->getSecond() * NumElementsPerSource) + SourceOperandElementIndex;
847 Indexes[I] = RemappedIndex;
848 }
849
851 ShuffleOperands[0], ShuffleOperands[1], ArrayRef(Indexes, NumIndexes));
852 return IC.replaceInstUsesWith(II, Shuf);
853}
854
855// Returns true iff the 2 intrinsics have the same operands, limiting the
856// comparison to the first NumOperands.
857static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
858 unsigned NumOperands) {
859 assert(I.arg_size() >= NumOperands && "Not enough operands");
860 assert(E.arg_size() >= NumOperands && "Not enough operands");
861 for (unsigned i = 0; i < NumOperands; i++)
862 if (I.getArgOperand(i) != E.getArgOperand(i))
863 return false;
864 return true;
865}
866
867// Remove trivially empty start/end intrinsic ranges, i.e. a start
868// immediately followed by an end (ignoring debuginfo or other
869// start/end intrinsics in between). As this handles only the most trivial
870// cases, tracking the nesting level is not needed:
871//
872// call @llvm.foo.start(i1 0)
873// call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
874// call @llvm.foo.end(i1 0)
875// call @llvm.foo.end(i1 0) ; &I
876static bool
878 std::function<bool(const IntrinsicInst &)> IsStart) {
879 // We start from the end intrinsic and scan backwards, so that InstCombine
880 // has already processed (and potentially removed) all the instructions
881 // before the end intrinsic.
882 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
883 for (; BI != BE; ++BI) {
884 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
885 if (I->isDebugOrPseudoInst() ||
886 I->getIntrinsicID() == EndI.getIntrinsicID())
887 continue;
888 if (IsStart(*I)) {
889 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
891 IC.eraseInstFromFunction(EndI);
892 return true;
893 }
894 // Skip start intrinsics that don't pair with this end intrinsic.
895 continue;
896 }
897 }
898 break;
899 }
900
901 return false;
902}
903
905 removeTriviallyEmptyRange(I, *this, [&I](const IntrinsicInst &II) {
906 // Bail out on the case where the source va_list of a va_copy is destroyed
907 // immediately by a follow-up va_end.
908 return II.getIntrinsicID() == Intrinsic::vastart ||
909 (II.getIntrinsicID() == Intrinsic::vacopy &&
910 I.getArgOperand(0) != II.getArgOperand(1));
911 });
912 return nullptr;
913}
914
916 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
917 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
918 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
919 Call.setArgOperand(0, Arg1);
920 Call.setArgOperand(1, Arg0);
921 return &Call;
922 }
923 return nullptr;
924}
925
926/// Creates a result tuple for an overflow intrinsic \p II with a given
927/// \p Result and a constant \p Overflow value.
929 Constant *Overflow) {
930 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
931 StructType *ST = cast<StructType>(II->getType());
932 Constant *Struct = ConstantStruct::get(ST, V);
933 return InsertValueInst::Create(Struct, Result, 0);
934}
935
937InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
938 WithOverflowInst *WO = cast<WithOverflowInst>(II);
939 Value *OperationResult = nullptr;
940 Constant *OverflowResult = nullptr;
941 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
942 WO->getRHS(), *WO, OperationResult, OverflowResult))
943 return createOverflowTuple(WO, OperationResult, OverflowResult);
944
945 // See whether we can optimize the overflow check with assumption information.
946 for (User *U : WO->users()) {
947 if (!match(U, m_ExtractValue<1>(m_Value())))
948 continue;
949
950 for (auto &AssumeVH : AC.assumptionsFor(U)) {
951 if (!AssumeVH)
952 continue;
953 CallInst *I = cast<CallInst>(AssumeVH);
954 if (!match(I->getArgOperand(0), m_Not(m_Specific(U))))
955 continue;
956 if (!isValidAssumeForContext(I, II, /*DT=*/nullptr,
957 /*AllowEphemerals=*/true))
958 continue;
959 Value *Result =
960 Builder.CreateBinOp(WO->getBinaryOp(), WO->getLHS(), WO->getRHS());
961 Result->takeName(WO);
962 if (auto *Inst = dyn_cast<Instruction>(Result)) {
963 if (WO->isSigned())
964 Inst->setHasNoSignedWrap();
965 else
966 Inst->setHasNoUnsignedWrap();
967 }
968 return createOverflowTuple(WO, Result,
969 ConstantInt::getFalse(U->getType()));
970 }
971 }
972
973 return nullptr;
974}
975
976static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
977 Ty = Ty->getScalarType();
978 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
979}
980
981static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
982 Ty = Ty->getScalarType();
983 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
984}
985
986/// \returns the compare predicate type if the test performed by
987/// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
988/// floating-point environment assumed for \p F for type \p Ty
990 const Function &F, Type *Ty) {
991 switch (static_cast<unsigned>(Mask)) {
992 case fcZero:
993 if (inputDenormalIsIEEE(F, Ty))
994 return FCmpInst::FCMP_OEQ;
995 break;
996 case fcZero | fcSubnormal:
997 if (inputDenormalIsDAZ(F, Ty))
998 return FCmpInst::FCMP_OEQ;
999 break;
1000 case fcPositive | fcNegZero:
1001 if (inputDenormalIsIEEE(F, Ty))
1002 return FCmpInst::FCMP_OGE;
1003 break;
1005 if (inputDenormalIsDAZ(F, Ty))
1006 return FCmpInst::FCMP_OGE;
1007 break;
1009 if (inputDenormalIsIEEE(F, Ty))
1010 return FCmpInst::FCMP_OGT;
1011 break;
1012 case fcNegative | fcPosZero:
1013 if (inputDenormalIsIEEE(F, Ty))
1014 return FCmpInst::FCMP_OLE;
1015 break;
1017 if (inputDenormalIsDAZ(F, Ty))
1018 return FCmpInst::FCMP_OLE;
1019 break;
1021 if (inputDenormalIsIEEE(F, Ty))
1022 return FCmpInst::FCMP_OLT;
1023 break;
1024 case fcPosNormal | fcPosInf:
1025 if (inputDenormalIsDAZ(F, Ty))
1026 return FCmpInst::FCMP_OGT;
1027 break;
1028 case fcNegNormal | fcNegInf:
1029 if (inputDenormalIsDAZ(F, Ty))
1030 return FCmpInst::FCMP_OLT;
1031 break;
1032 case ~fcZero & ~fcNan:
1033 if (inputDenormalIsIEEE(F, Ty))
1034 return FCmpInst::FCMP_ONE;
1035 break;
1036 case ~(fcZero | fcSubnormal) & ~fcNan:
1037 if (inputDenormalIsDAZ(F, Ty))
1038 return FCmpInst::FCMP_ONE;
1039 break;
1040 default:
1041 break;
1042 }
1043
1045}
1046
1047Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
1048 Value *Src0 = II.getArgOperand(0);
1049 Value *Src1 = II.getArgOperand(1);
1050 const ConstantInt *CMask = cast<ConstantInt>(Src1);
1051 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
1052 const bool IsUnordered = (Mask & fcNan) == fcNan;
1053 const bool IsOrdered = (Mask & fcNan) == fcNone;
1054 const FPClassTest OrderedMask = Mask & ~fcNan;
1055 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
1056
1057 const bool IsStrict =
1058 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
1059
1060 Value *FNegSrc;
1061 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
1062 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
1063
1064 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
1065 return replaceOperand(II, 0, FNegSrc);
1066 }
1067
1068 Value *FAbsSrc;
1069 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
1070 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
1071 return replaceOperand(II, 0, FAbsSrc);
1072 }
1073
1074 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
1075 (IsOrdered || IsUnordered) && !IsStrict) {
1076 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
1077 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
1078 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
1079 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
1081 FCmpInst::Predicate Pred =
1082 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
1083 if (OrderedInvertedMask == fcInf)
1084 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
1085
1086 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
1087 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
1088 CmpInf->takeName(&II);
1089 return replaceInstUsesWith(II, CmpInf);
1090 }
1091
1092 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
1093 (IsOrdered || IsUnordered) && !IsStrict) {
1094 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
1095 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
1096 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
1097 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
1098 Constant *Inf =
1099 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
1100 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
1101 : Builder.CreateFCmpOEQ(Src0, Inf);
1102
1103 EqInf->takeName(&II);
1104 return replaceInstUsesWith(II, EqInf);
1105 }
1106
1107 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
1108 (IsOrdered || IsUnordered) && !IsStrict) {
1109 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
1110 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
1111 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
1112 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
1114 OrderedInvertedMask == fcNegInf);
1115 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
1116 : Builder.CreateFCmpONE(Src0, Inf);
1117 NeInf->takeName(&II);
1118 return replaceInstUsesWith(II, NeInf);
1119 }
1120
1121 if (Mask == fcNan && !IsStrict) {
1122 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
1123 // exceptions.
1124 Value *IsNan =
1125 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
1126 IsNan->takeName(&II);
1127 return replaceInstUsesWith(II, IsNan);
1128 }
1129
1130 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
1131 // Equivalent of !isnan. Replace with standard fcmp.
1132 Value *FCmp =
1133 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
1134 FCmp->takeName(&II);
1135 return replaceInstUsesWith(II, FCmp);
1136 }
1137
1139
1140 // Try to replace with an fcmp with 0
1141 //
1142 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
1143 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
1144 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1145 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1146 //
1147 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1148 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1149 //
1150 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1151 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1152 //
1153 if (!IsStrict && (IsOrdered || IsUnordered) &&
1154 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1155 Src0->getType())) !=
1158 // Equivalent of == 0.
1159 Value *FCmp = Builder.CreateFCmp(
1160 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1161 Src0, Zero);
1162
1163 FCmp->takeName(&II);
1164 return replaceInstUsesWith(II, FCmp);
1165 }
1166
1167 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1168
1169 // Clear test bits we know must be false from the source value.
1170 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1171 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1172 if ((Mask & Known.KnownFPClasses) != Mask) {
1173 II.setArgOperand(
1174 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1175 return &II;
1176 }
1177
1178 // If none of the tests which can return false are possible, fold to true.
1179 // fp_class (nnan x), ~(qnan|snan) -> true
1180 // fp_class (ninf x), ~(ninf|pinf) -> true
1181 if (Mask == Known.KnownFPClasses)
1182 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1183
1184 return nullptr;
1185}
1186
1187static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) {
1188 KnownBits Known = computeKnownBits(Op, SQ);
1189 if (Known.isNonNegative())
1190 return false;
1191 if (Known.isNegative())
1192 return true;
1193
1194 Value *X, *Y;
1195 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1197
1198 return std::nullopt;
1199}
1200
1201static std::optional<bool> getKnownSignOrZero(Value *Op,
1202 const SimplifyQuery &SQ) {
1203 if (std::optional<bool> Sign = getKnownSign(Op, SQ))
1204 return Sign;
1205
1206 Value *X, *Y;
1207 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1209
1210 return std::nullopt;
1211}
1212
1213/// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1214static bool signBitMustBeTheSame(Value *Op0, Value *Op1,
1215 const SimplifyQuery &SQ) {
1216 std::optional<bool> Known1 = getKnownSign(Op1, SQ);
1217 if (!Known1)
1218 return false;
1219 std::optional<bool> Known0 = getKnownSign(Op0, SQ);
1220 if (!Known0)
1221 return false;
1222 return *Known0 == *Known1;
1223}
1224
1225/// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1226/// can trigger other combines.
1228 InstCombiner::BuilderTy &Builder) {
1229 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1230 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1231 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1232 "Expected a min or max intrinsic");
1233
1234 // TODO: Match vectors with undef elements, but undef may not propagate.
1235 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1236 Value *X;
1237 const APInt *C0, *C1;
1238 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1239 !match(Op1, m_APInt(C1)))
1240 return nullptr;
1241
1242 // Check for necessary no-wrap and overflow constraints.
1243 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1244 auto *Add = cast<BinaryOperator>(Op0);
1245 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1246 (!IsSigned && !Add->hasNoUnsignedWrap()))
1247 return nullptr;
1248
1249 // If the constant difference overflows, then instsimplify should reduce the
1250 // min/max to the add or C1.
1251 bool Overflow;
1252 APInt CDiff =
1253 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1254 assert(!Overflow && "Expected simplify of min/max");
1255
1256 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1257 // Note: the "mismatched" no-overflow setting does not propagate.
1258 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1259 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1260 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1261 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1262}
1263/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1264Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1265 Type *Ty = MinMax1.getType();
1266
1267 // We are looking for a tree of:
1268 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1269 // Where the min and max could be reversed
1270 Instruction *MinMax2;
1271 BinaryOperator *AddSub;
1272 const APInt *MinValue, *MaxValue;
1273 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1274 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1275 return nullptr;
1276 } else if (match(&MinMax1,
1277 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1278 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1279 return nullptr;
1280 } else
1281 return nullptr;
1282
1283 // Check that the constants clamp a saturate, and that the new type would be
1284 // sensible to convert to.
1285 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1286 return nullptr;
1287 // In what bitwidth can this be treated as saturating arithmetics?
1288 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1289 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1290 // good first approximation for what should be done there.
1291 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1292 return nullptr;
1293
1294 // Also make sure that the inner min/max and the add/sub have one use.
1295 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1296 return nullptr;
1297
1298 // Create the new type (which can be a vector type)
1299 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1300
1301 Intrinsic::ID IntrinsicID;
1302 if (AddSub->getOpcode() == Instruction::Add)
1303 IntrinsicID = Intrinsic::sadd_sat;
1304 else if (AddSub->getOpcode() == Instruction::Sub)
1305 IntrinsicID = Intrinsic::ssub_sat;
1306 else
1307 return nullptr;
1308
1309 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1310 // is usually achieved via a sext from a smaller type.
1311 if (ComputeMaxSignificantBits(AddSub->getOperand(0), AddSub) > NewBitWidth ||
1312 ComputeMaxSignificantBits(AddSub->getOperand(1), AddSub) > NewBitWidth)
1313 return nullptr;
1314
1315 // Finally create and return the sat intrinsic, truncated to the new type
1316 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1317 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1318 Value *Sat = Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT, BT});
1319 return CastInst::Create(Instruction::SExt, Sat, Ty);
1320}
1321
1322
1323/// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1324/// can only be one of two possible constant values -- turn that into a select
1325/// of constants.
1327 InstCombiner::BuilderTy &Builder) {
1328 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1329 Value *X;
1330 const APInt *C0, *C1;
1331 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1332 return nullptr;
1333
1335 switch (II->getIntrinsicID()) {
1336 case Intrinsic::smax:
1337 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1338 Pred = ICmpInst::ICMP_SGT;
1339 break;
1340 case Intrinsic::smin:
1341 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1342 Pred = ICmpInst::ICMP_SLT;
1343 break;
1344 case Intrinsic::umax:
1345 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1346 Pred = ICmpInst::ICMP_UGT;
1347 break;
1348 case Intrinsic::umin:
1349 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1350 Pred = ICmpInst::ICMP_ULT;
1351 break;
1352 default:
1353 llvm_unreachable("Expected min/max intrinsic");
1354 }
1355 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1356 return nullptr;
1357
1358 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1359 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1360 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1361 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1362}
1363
1364/// If this min/max has a constant operand and an operand that is a matching
1365/// min/max with a constant operand, constant-fold the 2 constant operands.
1367 IRBuilderBase &Builder,
1368 const SimplifyQuery &SQ) {
1369 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1370 auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0));
1371 if (!LHS)
1372 return nullptr;
1373
1374 Constant *C0, *C1;
1375 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1376 !match(II->getArgOperand(1), m_ImmConstant(C1)))
1377 return nullptr;
1378
1379 // max (max X, C0), C1 --> max X, (max C0, C1)
1380 // min (min X, C0), C1 --> min X, (min C0, C1)
1381 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1382 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1383 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1384 if (InnerMinMaxID != MinMaxID &&
1385 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1386 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1387 isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ)))
1388 return nullptr;
1389
1391 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1392 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1393 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1394 {LHS->getArgOperand(0), NewC});
1395}
1396
1397/// If this min/max has a matching min/max operand with a constant, try to push
1398/// the constant operand into this instruction. This can enable more folds.
1399static Instruction *
1401 InstCombiner::BuilderTy &Builder) {
1402 // Match and capture a min/max operand candidate.
1403 Value *X, *Y;
1404 Constant *C;
1405 Instruction *Inner;
1407 m_Instruction(Inner),
1409 m_Value(Y))))
1410 return nullptr;
1411
1412 // The inner op must match. Check for constants to avoid infinite loops.
1413 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1414 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1415 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1417 return nullptr;
1418
1419 // max (max X, C), Y --> max (max X, Y), C
1421 MinMaxID, II->getType());
1422 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1423 NewInner->takeName(Inner);
1424 return CallInst::Create(MinMax, {NewInner, C});
1425}
1426
1427/// Reduce a sequence of min/max intrinsics with a common operand.
1429 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1430 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1431 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1432 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1433 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1434 RHS->getIntrinsicID() != MinMaxID ||
1435 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1436 return nullptr;
1437
1438 Value *A = LHS->getArgOperand(0);
1439 Value *B = LHS->getArgOperand(1);
1440 Value *C = RHS->getArgOperand(0);
1441 Value *D = RHS->getArgOperand(1);
1442
1443 // Look for a common operand.
1444 Value *MinMaxOp = nullptr;
1445 Value *ThirdOp = nullptr;
1446 if (LHS->hasOneUse()) {
1447 // If the LHS is only used in this chain and the RHS is used outside of it,
1448 // reuse the RHS min/max because that will eliminate the LHS.
1449 if (D == A || C == A) {
1450 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1451 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1452 MinMaxOp = RHS;
1453 ThirdOp = B;
1454 } else if (D == B || C == B) {
1455 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1456 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1457 MinMaxOp = RHS;
1458 ThirdOp = A;
1459 }
1460 } else {
1461 assert(RHS->hasOneUse() && "Expected one-use operand");
1462 // Reuse the LHS. This will eliminate the RHS.
1463 if (D == A || D == B) {
1464 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1465 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1466 MinMaxOp = LHS;
1467 ThirdOp = C;
1468 } else if (C == A || C == B) {
1469 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1470 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1471 MinMaxOp = LHS;
1472 ThirdOp = D;
1473 }
1474 }
1475
1476 if (!MinMaxOp || !ThirdOp)
1477 return nullptr;
1478
1479 Module *Mod = II->getModule();
1480 Function *MinMax =
1481 Intrinsic::getOrInsertDeclaration(Mod, MinMaxID, II->getType());
1482 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1483}
1484
1485/// If all arguments of the intrinsic are unary shuffles with the same mask,
1486/// try to shuffle after the intrinsic.
1489 if (!isTriviallyVectorizable(II->getIntrinsicID()) ||
1490 !II->getCalledFunction()->isSpeculatable())
1491 return nullptr;
1492
1493 Value *X;
1494 Constant *C;
1495 ArrayRef<int> Mask;
1496 auto *NonConstArg = find_if_not(II->args(), [&II](Use &Arg) {
1497 return isa<Constant>(Arg.get()) ||
1498 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1499 Arg.getOperandNo(), nullptr);
1500 });
1501 if (!NonConstArg ||
1502 !match(NonConstArg, m_Shuffle(m_Value(X), m_Poison(), m_Mask(Mask))))
1503 return nullptr;
1504
1505 // At least 1 operand must be a shuffle with 1 use because we are creating 2
1506 // instructions.
1507 if (none_of(II->args(), match_fn(m_OneUse(m_Shuffle(m_Value(), m_Value())))))
1508 return nullptr;
1509
1510 // See if all arguments are shuffled with the same mask.
1512 Type *SrcTy = X->getType();
1513 for (Use &Arg : II->args()) {
1514 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1515 Arg.getOperandNo(), nullptr))
1516 NewArgs.push_back(Arg);
1517 else if (match(&Arg,
1518 m_Shuffle(m_Value(X), m_Poison(), m_SpecificMask(Mask))) &&
1519 X->getType() == SrcTy)
1520 NewArgs.push_back(X);
1521 else if (match(&Arg, m_ImmConstant(C))) {
1522 // If it's a constant, try find the constant that would be shuffled to C.
1523 if (Constant *ShuffledC =
1524 unshuffleConstant(Mask, C, cast<VectorType>(SrcTy)))
1525 NewArgs.push_back(ShuffledC);
1526 else
1527 return nullptr;
1528 } else
1529 return nullptr;
1530 }
1531
1532 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1533 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1534 // Result type might be a different vector width.
1535 // TODO: Check that the result type isn't widened?
1536 VectorType *ResTy =
1537 VectorType::get(II->getType()->getScalarType(), cast<VectorType>(SrcTy));
1538 Value *NewIntrinsic =
1539 Builder.CreateIntrinsic(ResTy, II->getIntrinsicID(), NewArgs, FPI);
1540 return new ShuffleVectorInst(NewIntrinsic, Mask);
1541}
1542
1543/// If all arguments of the intrinsic are reverses, try to pull the reverse
1544/// after the intrinsic.
1546 if (!isTriviallyVectorizable(II->getIntrinsicID()))
1547 return nullptr;
1548
1549 // At least 1 operand must be a reverse with 1 use because we are creating 2
1550 // instructions.
1551 if (none_of(II->args(), [](Value *V) {
1552 return match(V, m_OneUse(m_VecReverse(m_Value())));
1553 }))
1554 return nullptr;
1555
1556 Value *X;
1557 Constant *C;
1558 SmallVector<Value *> NewArgs;
1559 for (Use &Arg : II->args()) {
1560 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1561 Arg.getOperandNo(), nullptr))
1562 NewArgs.push_back(Arg);
1563 else if (match(&Arg, m_VecReverse(m_Value(X))))
1564 NewArgs.push_back(X);
1565 else if (isSplatValue(Arg))
1566 NewArgs.push_back(Arg);
1567 else if (match(&Arg, m_ImmConstant(C)))
1568 NewArgs.push_back(Builder.CreateVectorReverse(C));
1569 else
1570 return nullptr;
1571 }
1572
1573 // intrinsic (reverse X), (reverse Y), ... --> reverse (intrinsic X, Y, ...)
1574 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1575 Instruction *NewIntrinsic = Builder.CreateIntrinsic(
1576 II->getType(), II->getIntrinsicID(), NewArgs, FPI);
1577 return Builder.CreateVectorReverse(NewIntrinsic);
1578}
1579
1580/// Fold the following cases and accepts bswap and bitreverse intrinsics:
1581/// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1582/// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1583template <Intrinsic::ID IntrID>
1585 InstCombiner::BuilderTy &Builder) {
1586 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1587 "This helper only supports BSWAP and BITREVERSE intrinsics");
1588
1589 Value *X, *Y;
1590 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1591 // don't match ConstantExpr that aren't meaningful for this transform.
1594 Value *OldReorderX, *OldReorderY;
1596
1597 // If both X and Y are bswap/bitreverse, the transform reduces the number
1598 // of instructions even if there's multiuse.
1599 // If only one operand is bswap/bitreverse, we need to ensure the operand
1600 // have only one use.
1601 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1602 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1603 return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1604 }
1605
1606 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1607 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1608 return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1609 }
1610
1611 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1612 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1613 return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1614 }
1615 }
1616 return nullptr;
1617}
1618
1619/// Helper to match idempotent binary intrinsics, namely, intrinsics where
1620/// `f(f(x, y), y) == f(x, y)` holds.
1622 switch (IID) {
1623 case Intrinsic::smax:
1624 case Intrinsic::smin:
1625 case Intrinsic::umax:
1626 case Intrinsic::umin:
1627 case Intrinsic::maximum:
1628 case Intrinsic::minimum:
1629 case Intrinsic::maximumnum:
1630 case Intrinsic::minimumnum:
1631 case Intrinsic::maxnum:
1632 case Intrinsic::minnum:
1633 return true;
1634 default:
1635 return false;
1636 }
1637}
1638
1639/// Attempt to simplify value-accumulating recurrences of kind:
1640/// %umax.acc = phi i8 [ %umax, %backedge ], [ %a, %entry ]
1641/// %umax = call i8 @llvm.umax.i8(i8 %umax.acc, i8 %b)
1642/// And let the idempotent binary intrinsic be hoisted, when the operands are
1643/// known to be loop-invariant.
1645 IntrinsicInst *II) {
1646 PHINode *PN;
1647 Value *Init, *OtherOp;
1648
1649 // A binary intrinsic recurrence with loop-invariant operands is equivalent to
1650 // `call @llvm.binary.intrinsic(Init, OtherOp)`.
1651 auto IID = II->getIntrinsicID();
1652 if (!isIdempotentBinaryIntrinsic(IID) ||
1654 !IC.getDominatorTree().dominates(OtherOp, PN))
1655 return nullptr;
1656
1657 auto *InvariantBinaryInst =
1658 IC.Builder.CreateBinaryIntrinsic(IID, Init, OtherOp);
1659 if (isa<FPMathOperator>(InvariantBinaryInst))
1660 cast<Instruction>(InvariantBinaryInst)->copyFastMathFlags(II);
1661 return InvariantBinaryInst;
1662}
1663
1664static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) {
1665 if (!CanReorderLanes)
1666 return nullptr;
1667
1668 Value *V;
1669 if (match(Arg, m_VecReverse(m_Value(V))))
1670 return V;
1671
1672 ArrayRef<int> Mask;
1673 if (!isa<FixedVectorType>(Arg->getType()) ||
1674 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
1675 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
1676 return nullptr;
1677
1678 int Sz = Mask.size();
1679 SmallBitVector UsedIndices(Sz);
1680 for (int Idx : Mask) {
1681 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
1682 return nullptr;
1683 UsedIndices.set(Idx);
1684 }
1685
1686 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
1687 // other changes.
1688 return UsedIndices.all() ? V : nullptr;
1689}
1690
1691/// Fold an unsigned minimum of trailing or leading zero bits counts:
1692/// umin(cttz(CtOp, ZeroUndef), ConstOp) --> cttz(CtOp | (1 << ConstOp))
1693/// umin(ctlz(CtOp, ZeroUndef), ConstOp) --> ctlz(CtOp | (SignedMin
1694/// >> ConstOp))
1695template <Intrinsic::ID IntrID>
1696static Value *
1698 const DataLayout &DL,
1699 InstCombiner::BuilderTy &Builder) {
1700 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1701 "This helper only supports cttz and ctlz intrinsics");
1702
1703 Value *CtOp;
1704 Value *ZeroUndef;
1705 if (!match(I0,
1706 m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp), m_Value(ZeroUndef)))))
1707 return nullptr;
1708
1709 unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1710 auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); };
1711 if (!match(I1, m_CheckedInt(LessBitWidth)))
1712 // We have a constant >= BitWidth (which can be handled by CVP)
1713 // or a non-splat vector with elements < and >= BitWidth
1714 return nullptr;
1715
1716 Type *Ty = I1->getType();
1718 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1719 IntrID == Intrinsic::cttz
1720 ? ConstantInt::get(Ty, 1)
1721 : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)),
1722 cast<Constant>(I1), DL);
1723 return Builder.CreateBinaryIntrinsic(
1724 IntrID, Builder.CreateOr(CtOp, NewConst),
1725 ConstantInt::getTrue(ZeroUndef->getType()));
1726}
1727
1728/// Return whether "X LOp (Y ROp Z)" is always equal to
1729/// "(X LOp Y) ROp (X LOp Z)".
1731 bool HasNSW, Intrinsic::ID ROp) {
1732 switch (ROp) {
1733 case Intrinsic::umax:
1734 case Intrinsic::umin:
1735 if (HasNUW && LOp == Instruction::Add)
1736 return true;
1737 if (HasNUW && LOp == Instruction::Shl)
1738 return true;
1739 return false;
1740 case Intrinsic::smax:
1741 case Intrinsic::smin:
1742 return HasNSW && LOp == Instruction::Add;
1743 default:
1744 return false;
1745 }
1746}
1747
1748// Attempts to factorise a common term
1749// in an instruction that has the form "(A op' B) op (C op' D)
1750// where op is an intrinsic and op' is a binop
1751static Value *
1753 InstCombiner::BuilderTy &Builder) {
1754 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1755 Intrinsic::ID TopLevelOpcode = II->getIntrinsicID();
1756
1759
1760 if (!Op0 || !Op1)
1761 return nullptr;
1762
1763 if (Op0->getOpcode() != Op1->getOpcode())
1764 return nullptr;
1765
1766 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1767 return nullptr;
1768
1769 Instruction::BinaryOps InnerOpcode =
1770 static_cast<Instruction::BinaryOps>(Op0->getOpcode());
1771 bool HasNUW = Op0->hasNoUnsignedWrap() && Op1->hasNoUnsignedWrap();
1772 bool HasNSW = Op0->hasNoSignedWrap() && Op1->hasNoSignedWrap();
1773
1774 if (!leftDistributesOverRight(InnerOpcode, HasNUW, HasNSW, TopLevelOpcode))
1775 return nullptr;
1776
1777 Value *A = Op0->getOperand(0);
1778 Value *B = Op0->getOperand(1);
1779 Value *C = Op1->getOperand(0);
1780 Value *D = Op1->getOperand(1);
1781
1782 // Attempts to swap variables such that A equals C or B equals D,
1783 // if the inner operation is commutative.
1784 if (Op0->isCommutative() && A != C && B != D) {
1785 if (A == D || B == C)
1786 std::swap(C, D);
1787 else
1788 return nullptr;
1789 }
1790
1791 BinaryOperator *NewBinop;
1792 if (A == C) {
1793 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, B, D);
1794 NewBinop =
1795 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, A, NewIntrinsic));
1796 } else if (B == D) {
1797 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, A, C);
1798 NewBinop =
1799 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, NewIntrinsic, B));
1800 } else {
1801 return nullptr;
1802 }
1803
1804 NewBinop->setHasNoUnsignedWrap(HasNUW);
1805 NewBinop->setHasNoSignedWrap(HasNSW);
1806
1807 return NewBinop;
1808}
1809
1811 Value *Arg0 = II->getArgOperand(0);
1812 auto *ShiftConst = dyn_cast<Constant>(II->getArgOperand(1));
1813 if (!ShiftConst)
1814 return nullptr;
1815
1816 int ElemBits = Arg0->getType()->getScalarSizeInBits();
1817 bool AllPositive = true;
1818 bool AllNegative = true;
1819
1820 auto Check = [&](Constant *C) -> bool {
1821 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
1822 const APInt &V = CI->getValue();
1823 if (V.isNonNegative()) {
1824 AllNegative = false;
1825 return AllPositive && V.ult(ElemBits);
1826 }
1827 AllPositive = false;
1828 return AllNegative && V.sgt(-ElemBits);
1829 }
1830 return false;
1831 };
1832
1833 if (auto *VTy = dyn_cast<FixedVectorType>(Arg0->getType())) {
1834 for (unsigned I = 0, E = VTy->getNumElements(); I < E; ++I) {
1835 if (!Check(ShiftConst->getAggregateElement(I)))
1836 return nullptr;
1837 }
1838
1839 } else if (!Check(ShiftConst))
1840 return nullptr;
1841
1842 IRBuilderBase &B = IC.Builder;
1843 if (AllPositive)
1844 return IC.replaceInstUsesWith(*II, B.CreateShl(Arg0, ShiftConst));
1845
1846 Value *NegAmt = B.CreateNeg(ShiftConst);
1847 Intrinsic::ID IID = II->getIntrinsicID();
1848 const bool IsSigned =
1849 IID == Intrinsic::arm_neon_vshifts || IID == Intrinsic::aarch64_neon_sshl;
1850 Value *Result =
1851 IsSigned ? B.CreateAShr(Arg0, NegAmt) : B.CreateLShr(Arg0, NegAmt);
1852 return IC.replaceInstUsesWith(*II, Result);
1853}
1854
1855/// CallInst simplification. This mostly only handles folding of intrinsic
1856/// instructions. For normal calls, it allows visitCallBase to do the heavy
1857/// lifting.
1859 // Don't try to simplify calls without uses. It will not do anything useful,
1860 // but will result in the following folds being skipped.
1861 if (!CI.use_empty()) {
1862 SmallVector<Value *, 8> Args(CI.args());
1863 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1864 SQ.getWithInstruction(&CI)))
1865 return replaceInstUsesWith(CI, V);
1866 }
1867
1868 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1869 return visitFree(CI, FreedOp);
1870
1871 // If the caller function (i.e. us, the function that contains this CallInst)
1872 // is nounwind, mark the call as nounwind, even if the callee isn't.
1873 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1874 CI.setDoesNotThrow();
1875 return &CI;
1876 }
1877
1879 if (!II)
1880 return visitCallBase(CI);
1881
1882 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1883 // instead of in visitCallBase.
1884 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1885 if (auto NumBytes = MI->getLengthInBytes()) {
1886 // memmove/cpy/set of zero bytes is a noop.
1887 if (NumBytes->isZero())
1888 return eraseInstFromFunction(CI);
1889
1890 // For atomic unordered mem intrinsics if len is not a positive or
1891 // not a multiple of element size then behavior is undefined.
1892 if (MI->isAtomic() &&
1893 (NumBytes->isNegative() ||
1894 (NumBytes->getZExtValue() % MI->getElementSizeInBytes() != 0))) {
1896 assert(MI->getType()->isVoidTy() &&
1897 "non void atomic unordered mem intrinsic");
1898 return eraseInstFromFunction(*MI);
1899 }
1900 }
1901
1902 // No other transformations apply to volatile transfers.
1903 if (MI->isVolatile())
1904 return nullptr;
1905
1907 // memmove(x,x,size) -> noop.
1908 if (MTI->getSource() == MTI->getDest())
1909 return eraseInstFromFunction(CI);
1910 }
1911
1912 auto IsPointerUndefined = [MI](Value *Ptr) {
1913 return isa<ConstantPointerNull>(Ptr) &&
1915 MI->getFunction(),
1916 cast<PointerType>(Ptr->getType())->getAddressSpace());
1917 };
1918 bool SrcIsUndefined = false;
1919 // If we can determine a pointer alignment that is bigger than currently
1920 // set, update the alignment.
1921 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1923 return I;
1924 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1925 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1926 if (Instruction *I = SimplifyAnyMemSet(MSI))
1927 return I;
1928 }
1929
1930 // If src/dest is null, this memory intrinsic must be a noop.
1931 if (SrcIsUndefined || IsPointerUndefined(MI->getRawDest())) {
1932 Builder.CreateAssumption(Builder.CreateIsNull(MI->getLength()));
1933 return eraseInstFromFunction(CI);
1934 }
1935
1936 // If we have a memmove and the source operation is a constant global,
1937 // then the source and dest pointers can't alias, so we can change this
1938 // into a call to memcpy.
1939 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1940 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1941 if (GVSrc->isConstant()) {
1942 Module *M = CI.getModule();
1943 Intrinsic::ID MemCpyID =
1944 MMI->isAtomic()
1945 ? Intrinsic::memcpy_element_unordered_atomic
1946 : Intrinsic::memcpy;
1947 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1948 CI.getArgOperand(1)->getType(),
1949 CI.getArgOperand(2)->getType() };
1951 Intrinsic::getOrInsertDeclaration(M, MemCpyID, Tys));
1952 return II;
1953 }
1954 }
1955 }
1956
1957 // For fixed width vector result intrinsics, use the generic demanded vector
1958 // support.
1959 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1960 auto VWidth = IIFVTy->getNumElements();
1961 APInt PoisonElts(VWidth, 0);
1962 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1963 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1964 if (V != II)
1965 return replaceInstUsesWith(*II, V);
1966 return II;
1967 }
1968 }
1969
1970 if (II->isCommutative()) {
1971 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1972 replaceOperand(*II, 0, Pair->first);
1973 replaceOperand(*II, 1, Pair->second);
1974 return II;
1975 }
1976
1977 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1978 return NewCall;
1979 }
1980
1981 // Unused constrained FP intrinsic calls may have declared side effect, which
1982 // prevents it from being removed. In some cases however the side effect is
1983 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1984 // returns a replacement, the call may be removed.
1985 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1986 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1987 return eraseInstFromFunction(CI);
1988 }
1989
1990 Intrinsic::ID IID = II->getIntrinsicID();
1991 switch (IID) {
1992 case Intrinsic::objectsize: {
1993 SmallVector<Instruction *> InsertedInstructions;
1994 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1995 &InsertedInstructions)) {
1996 for (Instruction *Inserted : InsertedInstructions)
1997 Worklist.add(Inserted);
1998 return replaceInstUsesWith(CI, V);
1999 }
2000 return nullptr;
2001 }
2002 case Intrinsic::abs: {
2003 Value *IIOperand = II->getArgOperand(0);
2004 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
2005
2006 // abs(-x) -> abs(x)
2007 Value *X;
2008 if (match(IIOperand, m_Neg(m_Value(X)))) {
2009 if (cast<Instruction>(IIOperand)->hasNoSignedWrap() || IntMinIsPoison)
2010 replaceOperand(*II, 1, Builder.getTrue());
2011 return replaceOperand(*II, 0, X);
2012 }
2013 if (match(IIOperand, m_c_Select(m_Neg(m_Value(X)), m_Deferred(X))))
2014 return replaceOperand(*II, 0, X);
2015
2016 Value *Y;
2017 // abs(a * abs(b)) -> abs(a * b)
2018 if (match(IIOperand,
2021 bool NSW =
2022 cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
2023 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
2024 return replaceOperand(*II, 0, XY);
2025 }
2026
2027 if (std::optional<bool> Known =
2028 getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) {
2029 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
2030 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
2031 if (!*Known)
2032 return replaceInstUsesWith(*II, IIOperand);
2033
2034 // abs(x) -> -x if x < 0
2035 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
2036 if (IntMinIsPoison)
2037 return BinaryOperator::CreateNSWNeg(IIOperand);
2038 return BinaryOperator::CreateNeg(IIOperand);
2039 }
2040
2041 // abs (sext X) --> zext (abs X*)
2042 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
2043 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
2044 Value *NarrowAbs =
2045 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
2046 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
2047 }
2048
2049 // Match a complicated way to check if a number is odd/even:
2050 // abs (srem X, 2) --> and X, 1
2051 const APInt *C;
2052 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
2053 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
2054
2055 break;
2056 }
2057 case Intrinsic::umin: {
2058 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2059 // umin(x, 1) == zext(x != 0)
2060 if (match(I1, m_One())) {
2061 assert(II->getType()->getScalarSizeInBits() != 1 &&
2062 "Expected simplify of umin with max constant");
2063 Value *Zero = Constant::getNullValue(I0->getType());
2064 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
2065 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
2066 }
2067 // umin(cttz(x), const) --> cttz(x | (1 << const))
2068 if (Value *FoldedCttz =
2070 I0, I1, DL, Builder))
2071 return replaceInstUsesWith(*II, FoldedCttz);
2072 // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const))
2073 if (Value *FoldedCtlz =
2075 I0, I1, DL, Builder))
2076 return replaceInstUsesWith(*II, FoldedCtlz);
2077 [[fallthrough]];
2078 }
2079 case Intrinsic::umax: {
2080 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2081 Value *X, *Y;
2082 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
2083 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2084 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2085 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
2086 }
2087 Constant *C;
2088 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
2089 I0->hasOneUse()) {
2090 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType(), DL)) {
2091 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2092 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
2093 }
2094 }
2095 // If C is not 0:
2096 // umax(nuw_shl(x, C), x + 1) -> x == 0 ? 1 : nuw_shl(x, C)
2097 // If C is not 0 or 1:
2098 // umax(nuw_mul(x, C), x + 1) -> x == 0 ? 1 : nuw_mul(x, C)
2099 auto foldMaxMulShift = [&](Value *A, Value *B) -> Instruction * {
2100 const APInt *C;
2101 Value *X;
2102 if (!match(A, m_NUWShl(m_Value(X), m_APInt(C))) &&
2103 !(match(A, m_NUWMul(m_Value(X), m_APInt(C))) && !C->isOne()))
2104 return nullptr;
2105 if (C->isZero())
2106 return nullptr;
2107 if (!match(B, m_OneUse(m_Add(m_Specific(X), m_One()))))
2108 return nullptr;
2109
2110 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(X->getType(), 0));
2111 Value *NewSelect =
2112 Builder.CreateSelect(Cmp, ConstantInt::get(X->getType(), 1), A);
2113 return replaceInstUsesWith(*II, NewSelect);
2114 };
2115
2116 if (IID == Intrinsic::umax) {
2117 if (Instruction *I = foldMaxMulShift(I0, I1))
2118 return I;
2119 if (Instruction *I = foldMaxMulShift(I1, I0))
2120 return I;
2121 }
2122
2123 // If both operands of unsigned min/max are sign-extended, it is still ok
2124 // to narrow the operation.
2125 [[fallthrough]];
2126 }
2127 case Intrinsic::smax:
2128 case Intrinsic::smin: {
2129 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2130 Value *X, *Y;
2131 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
2132 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2133 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2134 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2135 }
2136
2137 Constant *C;
2138 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
2139 I0->hasOneUse()) {
2140 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType(), DL)) {
2141 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2142 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2143 }
2144 }
2145
2146 // smax(smin(X, MinC), MaxC) -> smin(smax(X, MaxC), MinC) if MinC s>= MaxC
2147 // umax(umin(X, MinC), MaxC) -> umin(umax(X, MaxC), MinC) if MinC u>= MaxC
2148 const APInt *MinC, *MaxC;
2149 auto CreateCanonicalClampForm = [&](bool IsSigned) {
2150 auto MaxIID = IsSigned ? Intrinsic::smax : Intrinsic::umax;
2151 auto MinIID = IsSigned ? Intrinsic::smin : Intrinsic::umin;
2152 Value *NewMax = Builder.CreateBinaryIntrinsic(
2153 MaxIID, X, ConstantInt::get(X->getType(), *MaxC));
2154 return replaceInstUsesWith(
2155 *II, Builder.CreateBinaryIntrinsic(
2156 MinIID, NewMax, ConstantInt::get(X->getType(), *MinC)));
2157 };
2158 if (IID == Intrinsic::smax &&
2160 m_APInt(MinC)))) &&
2161 match(I1, m_APInt(MaxC)) && MinC->sgt(*MaxC))
2162 return CreateCanonicalClampForm(true);
2163 if (IID == Intrinsic::umax &&
2165 m_APInt(MinC)))) &&
2166 match(I1, m_APInt(MaxC)) && MinC->ugt(*MaxC))
2167 return CreateCanonicalClampForm(false);
2168
2169 // umin(i1 X, i1 Y) -> and i1 X, Y
2170 // smax(i1 X, i1 Y) -> and i1 X, Y
2171 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
2172 II->getType()->isIntOrIntVectorTy(1)) {
2173 return BinaryOperator::CreateAnd(I0, I1);
2174 }
2175
2176 // umax(i1 X, i1 Y) -> or i1 X, Y
2177 // smin(i1 X, i1 Y) -> or i1 X, Y
2178 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
2179 II->getType()->isIntOrIntVectorTy(1)) {
2180 return BinaryOperator::CreateOr(I0, I1);
2181 }
2182
2183 // smin(smax(X, -1), 1) -> scmp(X, 0)
2184 // smax(smin(X, 1), -1) -> scmp(X, 0)
2185 // At this point, smax(smin(X, 1), -1) is changed to smin(smax(X, -1)
2186 // And i1's have been changed to and/ors
2187 // So we only need to check for smin
2188 if (IID == Intrinsic::smin) {
2189 if (match(I0, m_OneUse(m_SMax(m_Value(X), m_AllOnes()))) &&
2190 match(I1, m_One())) {
2191 Value *Zero = ConstantInt::get(X->getType(), 0);
2192 return replaceInstUsesWith(
2193 CI,
2194 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {X, Zero}));
2195 }
2196 }
2197
2198 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2199 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
2200 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
2201 // TODO: Canonicalize neg after min/max if I1 is constant.
2202 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
2203 (I0->hasOneUse() || I1->hasOneUse())) {
2205 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
2206 return BinaryOperator::CreateNSWNeg(InvMaxMin);
2207 }
2208 }
2209
2210 // (umax X, (xor X, Pow2))
2211 // -> (or X, Pow2)
2212 // (umin X, (xor X, Pow2))
2213 // -> (and X, ~Pow2)
2214 // (smax X, (xor X, Pos_Pow2))
2215 // -> (or X, Pos_Pow2)
2216 // (smin X, (xor X, Pos_Pow2))
2217 // -> (and X, ~Pos_Pow2)
2218 // (smax X, (xor X, Neg_Pow2))
2219 // -> (and X, ~Neg_Pow2)
2220 // (smin X, (xor X, Neg_Pow2))
2221 // -> (or X, Neg_Pow2)
2222 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
2223 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
2224 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
2225 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
2226 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
2227
2228 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2229 auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II));
2230 if (KnownSign == std::nullopt) {
2231 UseOr = false;
2232 UseAndN = false;
2233 } else if (*KnownSign /* true is Signed. */) {
2234 UseOr ^= true;
2235 UseAndN ^= true;
2236 Type *Ty = I0->getType();
2237 // Negative power of 2 must be IntMin. It's possible to be able to
2238 // prove negative / power of 2 without actually having known bits, so
2239 // just get the value by hand.
2241 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
2242 }
2243 }
2244 if (UseOr)
2245 return BinaryOperator::CreateOr(I0, X);
2246 else if (UseAndN)
2247 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
2248 }
2249
2250 // If we can eliminate ~A and Y is free to invert:
2251 // max ~A, Y --> ~(min A, ~Y)
2252 //
2253 // Examples:
2254 // max ~A, ~Y --> ~(min A, Y)
2255 // max ~A, C --> ~(min A, ~C)
2256 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
2257 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2258 Value *A;
2259 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
2260 !isFreeToInvert(A, A->hasOneUse())) {
2261 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
2263 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
2264 return BinaryOperator::CreateNot(InvMaxMin);
2265 }
2266 }
2267 return nullptr;
2268 };
2269
2270 if (Instruction *I = moveNotAfterMinMax(I0, I1))
2271 return I;
2272 if (Instruction *I = moveNotAfterMinMax(I1, I0))
2273 return I;
2274
2276 return I;
2277
2278 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
2279 const APInt *RHSC;
2280 if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) &&
2281 match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC)))))
2282 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
2283 ConstantInt::get(II->getType(), *RHSC));
2284
2285 // smax(X, -X) --> abs(X)
2286 // smin(X, -X) --> -abs(X)
2287 // umax(X, -X) --> -abs(X)
2288 // umin(X, -X) --> abs(X)
2289 if (isKnownNegation(I0, I1)) {
2290 // We can choose either operand as the input to abs(), but if we can
2291 // eliminate the only use of a value, that's better for subsequent
2292 // transforms/analysis.
2293 if (I0->hasOneUse() && !I1->hasOneUse())
2294 std::swap(I0, I1);
2295
2296 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
2297 // operation and potentially its negation.
2298 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
2299 Value *Abs = Builder.CreateBinaryIntrinsic(
2300 Intrinsic::abs, I0,
2301 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
2302
2303 // We don't have a "nabs" intrinsic, so negate if needed based on the
2304 // max/min operation.
2305 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2306 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
2307 return replaceInstUsesWith(CI, Abs);
2308 }
2309
2311 return Sel;
2312
2313 if (Instruction *SAdd = matchSAddSubSat(*II))
2314 return SAdd;
2315
2316 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
2317 return replaceInstUsesWith(*II, NewMinMax);
2318
2320 return R;
2321
2322 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
2323 return NewMinMax;
2324
2325 // Try to fold minmax with constant RHS based on range information
2326 if (match(I1, m_APIntAllowPoison(RHSC))) {
2327 ICmpInst::Predicate Pred =
2329 bool IsSigned = MinMaxIntrinsic::isSigned(IID);
2331 I0, IsSigned, SQ.getWithInstruction(II));
2332 if (!LHS_CR.isFullSet()) {
2333 if (LHS_CR.icmp(Pred, *RHSC))
2334 return replaceInstUsesWith(*II, I0);
2335 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
2336 return replaceInstUsesWith(*II,
2337 ConstantInt::get(II->getType(), *RHSC));
2338 }
2339 }
2340
2342 return replaceInstUsesWith(*II, V);
2343
2344 break;
2345 }
2346 case Intrinsic::scmp: {
2347 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2348 Value *LHS, *RHS;
2349 if (match(I0, m_NSWSub(m_Value(LHS), m_Value(RHS))) && match(I1, m_Zero()))
2350 return replaceInstUsesWith(
2351 CI,
2352 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {LHS, RHS}));
2353 break;
2354 }
2355 case Intrinsic::bitreverse: {
2356 Value *IIOperand = II->getArgOperand(0);
2357 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
2358 Value *X;
2359 if (match(IIOperand, m_ZExt(m_Value(X))) &&
2360 X->getType()->isIntOrIntVectorTy(1)) {
2361 Type *Ty = II->getType();
2362 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
2363 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
2365 }
2366
2367 if (Instruction *crossLogicOpFold =
2369 return crossLogicOpFold;
2370
2371 break;
2372 }
2373 case Intrinsic::bswap: {
2374 Value *IIOperand = II->getArgOperand(0);
2375
2376 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
2377 // inverse-shift-of-bswap:
2378 // bswap (shl X, Y) --> lshr (bswap X), Y
2379 // bswap (lshr X, Y) --> shl (bswap X), Y
2380 Value *X, *Y;
2381 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
2382 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
2384 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
2385 BinaryOperator::BinaryOps InverseShift =
2386 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
2387 ? Instruction::LShr
2388 : Instruction::Shl;
2389 return BinaryOperator::Create(InverseShift, NewSwap, Y);
2390 }
2391 }
2392
2393 KnownBits Known = computeKnownBits(IIOperand, II);
2394 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
2395 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
2396 unsigned BW = Known.getBitWidth();
2397
2398 // bswap(x) -> shift(x) if x has exactly one "active byte"
2399 if (BW - LZ - TZ == 8) {
2400 assert(LZ != TZ && "active byte cannot be in the middle");
2401 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
2402 return BinaryOperator::CreateNUWShl(
2403 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
2404 // -> lshr(x) if the "active byte" is in the high part of x
2405 return BinaryOperator::CreateExactLShr(
2406 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
2407 }
2408
2409 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
2410 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
2411 unsigned C = X->getType()->getScalarSizeInBits() - BW;
2412 Value *CV = ConstantInt::get(X->getType(), C);
2413 Value *V = Builder.CreateLShr(X, CV);
2414 return new TruncInst(V, IIOperand->getType());
2415 }
2416
2417 if (Instruction *crossLogicOpFold =
2419 return crossLogicOpFold;
2420 }
2421
2422 // Try to fold into bitreverse if bswap is the root of the expression tree.
2423 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
2424 /*MatchBitReversals*/ true))
2425 return BitOp;
2426 break;
2427 }
2428 case Intrinsic::masked_load:
2429 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
2430 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
2431 break;
2432 case Intrinsic::masked_store:
2433 return simplifyMaskedStore(*II);
2434 case Intrinsic::masked_gather:
2435 return simplifyMaskedGather(*II);
2436 case Intrinsic::masked_scatter:
2437 return simplifyMaskedScatter(*II);
2438 case Intrinsic::launder_invariant_group:
2439 case Intrinsic::strip_invariant_group:
2440 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
2441 return replaceInstUsesWith(*II, SkippedBarrier);
2442 break;
2443 case Intrinsic::powi:
2444 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2445 // 0 and 1 are handled in instsimplify
2446 // powi(x, -1) -> 1/x
2447 if (Power->isMinusOne())
2448 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
2449 II->getArgOperand(0), II);
2450 // powi(x, 2) -> x*x
2451 if (Power->equalsInt(2))
2452 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
2453 II->getArgOperand(0), II);
2454
2455 if (!Power->getValue()[0]) {
2456 Value *X;
2457 // If power is even:
2458 // powi(-x, p) -> powi(x, p)
2459 // powi(fabs(x), p) -> powi(x, p)
2460 // powi(copysign(x, y), p) -> powi(x, p)
2461 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
2462 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
2463 match(II->getArgOperand(0),
2465 return replaceOperand(*II, 0, X);
2466 }
2467 }
2468 break;
2469
2470 case Intrinsic::cttz:
2471 case Intrinsic::ctlz:
2472 if (auto *I = foldCttzCtlz(*II, *this))
2473 return I;
2474 break;
2475
2476 case Intrinsic::ctpop:
2477 if (auto *I = foldCtpop(*II, *this))
2478 return I;
2479 break;
2480
2481 case Intrinsic::fshl:
2482 case Intrinsic::fshr: {
2483 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2484 Type *Ty = II->getType();
2485 unsigned BitWidth = Ty->getScalarSizeInBits();
2486 Constant *ShAmtC;
2487 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
2488 // Canonicalize a shift amount constant operand to modulo the bit-width.
2489 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
2490 Constant *ModuloC =
2491 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
2492 if (!ModuloC)
2493 return nullptr;
2494 if (ModuloC != ShAmtC)
2495 return replaceOperand(*II, 2, ModuloC);
2496
2498 ShAmtC, DL),
2499 m_One()) &&
2500 "Shift amount expected to be modulo bitwidth");
2501
2502 // Canonicalize funnel shift right by constant to funnel shift left. This
2503 // is not entirely arbitrary. For historical reasons, the backend may
2504 // recognize rotate left patterns but miss rotate right patterns.
2505 if (IID == Intrinsic::fshr) {
2506 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero.
2507 if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II)))
2508 return nullptr;
2509
2510 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
2511 Module *Mod = II->getModule();
2512 Function *Fshl =
2513 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::fshl, Ty);
2514 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2515 }
2516 assert(IID == Intrinsic::fshl &&
2517 "All funnel shifts by simple constants should go left");
2518
2519 // fshl(X, 0, C) --> shl X, C
2520 // fshl(X, undef, C) --> shl X, C
2521 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2522 return BinaryOperator::CreateShl(Op0, ShAmtC);
2523
2524 // fshl(0, X, C) --> lshr X, (BW-C)
2525 // fshl(undef, X, C) --> lshr X, (BW-C)
2526 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2527 return BinaryOperator::CreateLShr(Op1,
2528 ConstantExpr::getSub(WidthC, ShAmtC));
2529
2530 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2531 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2532 Module *Mod = II->getModule();
2533 Function *Bswap =
2534 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::bswap, Ty);
2535 return CallInst::Create(Bswap, { Op0 });
2536 }
2537 if (Instruction *BitOp =
2538 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2539 /*MatchBitReversals*/ true))
2540 return BitOp;
2541
2542 // R = fshl(X, X, C2)
2543 // fshl(R, R, C1) --> fshl(X, X, (C1 + C2) % bitsize)
2544 Value *InnerOp;
2545 const APInt *ShAmtInnerC, *ShAmtOuterC;
2546 if (match(Op0, m_FShl(m_Value(InnerOp), m_Deferred(InnerOp),
2547 m_APInt(ShAmtInnerC))) &&
2548 match(ShAmtC, m_APInt(ShAmtOuterC)) && Op0 == Op1) {
2549 APInt Sum = *ShAmtOuterC + *ShAmtInnerC;
2550 APInt Modulo = Sum.urem(APInt(Sum.getBitWidth(), BitWidth));
2551 if (Modulo.isZero())
2552 return replaceInstUsesWith(*II, InnerOp);
2553 Constant *ModuloC = ConstantInt::get(Ty, Modulo);
2555 {InnerOp, InnerOp, ModuloC});
2556 }
2557 }
2558
2559 // fshl(X, X, Neg(Y)) --> fshr(X, X, Y)
2560 // fshr(X, X, Neg(Y)) --> fshl(X, X, Y)
2561 // if BitWidth is a power-of-2
2562 Value *Y;
2563 if (Op0 == Op1 && isPowerOf2_32(BitWidth) &&
2564 match(II->getArgOperand(2), m_Neg(m_Value(Y)))) {
2565 Module *Mod = II->getModule();
2567 Mod, IID == Intrinsic::fshl ? Intrinsic::fshr : Intrinsic::fshl, Ty);
2568 return CallInst::Create(OppositeShift, {Op0, Op1, Y});
2569 }
2570
2571 // fshl(X, 0, Y) --> shl(X, and(Y, BitWidth - 1)) if bitwidth is a
2572 // power-of-2
2573 if (IID == Intrinsic::fshl && isPowerOf2_32(BitWidth) &&
2574 match(Op1, m_ZeroInt())) {
2575 Value *Op2 = II->getArgOperand(2);
2576 Value *And = Builder.CreateAnd(Op2, ConstantInt::get(Ty, BitWidth - 1));
2577 return BinaryOperator::CreateShl(Op0, And);
2578 }
2579
2580 // Left or right might be masked.
2582 return &CI;
2583
2584 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2585 // so only the low bits of the shift amount are demanded if the bitwidth is
2586 // a power-of-2.
2587 if (!isPowerOf2_32(BitWidth))
2588 break;
2590 KnownBits Op2Known(BitWidth);
2591 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2592 return &CI;
2593 break;
2594 }
2595 case Intrinsic::ptrmask: {
2596 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2597 KnownBits Known(BitWidth);
2599 return II;
2600
2601 Value *InnerPtr, *InnerMask;
2602 bool Changed = false;
2603 // Combine:
2604 // (ptrmask (ptrmask p, A), B)
2605 // -> (ptrmask p, (and A, B))
2606 if (match(II->getArgOperand(0),
2608 m_Value(InnerMask))))) {
2609 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2610 "Mask types must match");
2611 // TODO: If InnerMask == Op1, we could copy attributes from inner
2612 // callsite -> outer callsite.
2613 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2614 replaceOperand(CI, 0, InnerPtr);
2615 replaceOperand(CI, 1, NewMask);
2616 Changed = true;
2617 }
2618
2619 // See if we can deduce non-null.
2620 if (!CI.hasRetAttr(Attribute::NonNull) &&
2621 (Known.isNonZero() ||
2622 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2623 CI.addRetAttr(Attribute::NonNull);
2624 Changed = true;
2625 }
2626
2627 unsigned NewAlignmentLog =
2629 std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2630 // Known bits will capture if we had alignment information associated with
2631 // the pointer argument.
2632 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2634 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2635 Changed = true;
2636 }
2637 if (Changed)
2638 return &CI;
2639 break;
2640 }
2641 case Intrinsic::uadd_with_overflow:
2642 case Intrinsic::sadd_with_overflow: {
2643 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2644 return I;
2645
2646 // Given 2 constant operands whose sum does not overflow:
2647 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2648 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2649 Value *X;
2650 const APInt *C0, *C1;
2651 Value *Arg0 = II->getArgOperand(0);
2652 Value *Arg1 = II->getArgOperand(1);
2653 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2654 bool HasNWAdd = IsSigned
2655 ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0)))
2656 : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0)));
2657 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2658 bool Overflow;
2659 APInt NewC =
2660 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2661 if (!Overflow)
2662 return replaceInstUsesWith(
2663 *II, Builder.CreateBinaryIntrinsic(
2664 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2665 }
2666 break;
2667 }
2668
2669 case Intrinsic::umul_with_overflow:
2670 case Intrinsic::smul_with_overflow:
2671 case Intrinsic::usub_with_overflow:
2672 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2673 return I;
2674 break;
2675
2676 case Intrinsic::ssub_with_overflow: {
2677 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2678 return I;
2679
2680 Constant *C;
2681 Value *Arg0 = II->getArgOperand(0);
2682 Value *Arg1 = II->getArgOperand(1);
2683 // Given a constant C that is not the minimum signed value
2684 // for an integer of a given bit width:
2685 //
2686 // ssubo X, C -> saddo X, -C
2687 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2688 Value *NegVal = ConstantExpr::getNeg(C);
2689 // Build a saddo call that is equivalent to the discovered
2690 // ssubo call.
2691 return replaceInstUsesWith(
2692 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2693 Arg0, NegVal));
2694 }
2695
2696 break;
2697 }
2698
2699 case Intrinsic::uadd_sat:
2700 case Intrinsic::sadd_sat:
2701 case Intrinsic::usub_sat:
2702 case Intrinsic::ssub_sat: {
2704 Type *Ty = SI->getType();
2705 Value *Arg0 = SI->getLHS();
2706 Value *Arg1 = SI->getRHS();
2707
2708 // Make use of known overflow information.
2709 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2710 Arg0, Arg1, SI);
2711 switch (OR) {
2713 break;
2715 if (SI->isSigned())
2716 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2717 else
2718 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2720 unsigned BitWidth = Ty->getScalarSizeInBits();
2721 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2722 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2723 }
2725 unsigned BitWidth = Ty->getScalarSizeInBits();
2726 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2727 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2728 }
2729 }
2730
2731 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2732 // which after that:
2733 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2734 // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2735 Constant *C, *C1;
2736 Value *A;
2737 if (IID == Intrinsic::usub_sat &&
2738 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2739 match(Arg1, m_ImmConstant(C1))) {
2740 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2741 auto *NewSub =
2742 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2743 return replaceInstUsesWith(*SI, NewSub);
2744 }
2745
2746 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2747 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2748 C->isNotMinSignedValue()) {
2749 Value *NegVal = ConstantExpr::getNeg(C);
2750 return replaceInstUsesWith(
2751 *II, Builder.CreateBinaryIntrinsic(
2752 Intrinsic::sadd_sat, Arg0, NegVal));
2753 }
2754
2755 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2756 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2757 // if Val and Val2 have the same sign
2758 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2759 Value *X;
2760 const APInt *Val, *Val2;
2761 APInt NewVal;
2762 bool IsUnsigned =
2763 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2764 if (Other->getIntrinsicID() == IID &&
2765 match(Arg1, m_APInt(Val)) &&
2766 match(Other->getArgOperand(0), m_Value(X)) &&
2767 match(Other->getArgOperand(1), m_APInt(Val2))) {
2768 if (IsUnsigned)
2769 NewVal = Val->uadd_sat(*Val2);
2770 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2771 bool Overflow;
2772 NewVal = Val->sadd_ov(*Val2, Overflow);
2773 if (Overflow) {
2774 // Both adds together may add more than SignedMaxValue
2775 // without saturating the final result.
2776 break;
2777 }
2778 } else {
2779 // Cannot fold saturated addition with different signs.
2780 break;
2781 }
2782
2783 return replaceInstUsesWith(
2784 *II, Builder.CreateBinaryIntrinsic(
2785 IID, X, ConstantInt::get(II->getType(), NewVal)));
2786 }
2787 }
2788 break;
2789 }
2790
2791 case Intrinsic::minnum:
2792 case Intrinsic::maxnum:
2793 case Intrinsic::minimum:
2794 case Intrinsic::maximum: {
2795 Value *Arg0 = II->getArgOperand(0);
2796 Value *Arg1 = II->getArgOperand(1);
2797 Value *X, *Y;
2798 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2799 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2800 // If both operands are negated, invert the call and negate the result:
2801 // min(-X, -Y) --> -(max(X, Y))
2802 // max(-X, -Y) --> -(min(X, Y))
2803 Intrinsic::ID NewIID;
2804 switch (IID) {
2805 case Intrinsic::maxnum:
2806 NewIID = Intrinsic::minnum;
2807 break;
2808 case Intrinsic::minnum:
2809 NewIID = Intrinsic::maxnum;
2810 break;
2811 case Intrinsic::maximum:
2812 NewIID = Intrinsic::minimum;
2813 break;
2814 case Intrinsic::minimum:
2815 NewIID = Intrinsic::maximum;
2816 break;
2817 default:
2818 llvm_unreachable("unexpected intrinsic ID");
2819 }
2820 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2821 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2822 FNeg->copyIRFlags(II);
2823 return FNeg;
2824 }
2825
2826 // m(m(X, C2), C1) -> m(X, C)
2827 const APFloat *C1, *C2;
2828 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2829 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2830 ((match(M->getArgOperand(0), m_Value(X)) &&
2831 match(M->getArgOperand(1), m_APFloat(C2))) ||
2832 (match(M->getArgOperand(1), m_Value(X)) &&
2833 match(M->getArgOperand(0), m_APFloat(C2))))) {
2834 APFloat Res(0.0);
2835 switch (IID) {
2836 case Intrinsic::maxnum:
2837 Res = maxnum(*C1, *C2);
2838 break;
2839 case Intrinsic::minnum:
2840 Res = minnum(*C1, *C2);
2841 break;
2842 case Intrinsic::maximum:
2843 Res = maximum(*C1, *C2);
2844 break;
2845 case Intrinsic::minimum:
2846 Res = minimum(*C1, *C2);
2847 break;
2848 default:
2849 llvm_unreachable("unexpected intrinsic ID");
2850 }
2851 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2852 // was a simplification (so Arg0 and its original flags could
2853 // propagate?)
2854 Value *V = Builder.CreateBinaryIntrinsic(
2855 IID, X, ConstantFP::get(Arg0->getType(), Res),
2857 return replaceInstUsesWith(*II, V);
2858 }
2859 }
2860
2861 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2862 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2863 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2864 X->getType() == Y->getType()) {
2865 Value *NewCall =
2866 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2867 return new FPExtInst(NewCall, II->getType());
2868 }
2869
2870 // max X, -X --> fabs X
2871 // min X, -X --> -(fabs X)
2872 // TODO: Remove one-use limitation? That is obviously better for max,
2873 // hence why we don't check for one-use for that. However,
2874 // it would be an extra instruction for min (fnabs), but
2875 // that is still likely better for analysis and codegen.
2876 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2877 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2878 return Op0->hasOneUse() ||
2879 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2880 return false;
2881 };
2882
2883 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2884 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2885 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2886 R = Builder.CreateFNegFMF(R, II);
2887 return replaceInstUsesWith(*II, R);
2888 }
2889
2890 break;
2891 }
2892 case Intrinsic::matrix_multiply: {
2893 // Optimize negation in matrix multiplication.
2894
2895 // -A * -B -> A * B
2896 Value *A, *B;
2897 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2898 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2899 replaceOperand(*II, 0, A);
2900 replaceOperand(*II, 1, B);
2901 return II;
2902 }
2903
2904 Value *Op0 = II->getOperand(0);
2905 Value *Op1 = II->getOperand(1);
2906 Value *OpNotNeg, *NegatedOp;
2907 unsigned NegatedOpArg, OtherOpArg;
2908 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2909 NegatedOp = Op0;
2910 NegatedOpArg = 0;
2911 OtherOpArg = 1;
2912 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2913 NegatedOp = Op1;
2914 NegatedOpArg = 1;
2915 OtherOpArg = 0;
2916 } else
2917 // Multiplication doesn't have a negated operand.
2918 break;
2919
2920 // Only optimize if the negated operand has only one use.
2921 if (!NegatedOp->hasOneUse())
2922 break;
2923
2924 Value *OtherOp = II->getOperand(OtherOpArg);
2925 VectorType *RetTy = cast<VectorType>(II->getType());
2926 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2927 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2928 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2929 ElementCount OtherCount = OtherOpTy->getElementCount();
2930 ElementCount RetCount = RetTy->getElementCount();
2931 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2932 if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2933 ElementCount::isKnownLT(OtherCount, RetCount)) {
2934 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2935 replaceOperand(*II, NegatedOpArg, OpNotNeg);
2936 replaceOperand(*II, OtherOpArg, InverseOtherOp);
2937 return II;
2938 }
2939 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2940 if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2941 SmallVector<Value *, 5> NewArgs(II->args());
2942 NewArgs[NegatedOpArg] = OpNotNeg;
2943 Instruction *NewMul =
2944 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2945 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2946 }
2947 break;
2948 }
2949 case Intrinsic::fmuladd: {
2950 // Try to simplify the underlying FMul.
2951 if (Value *V =
2952 simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2953 II->getFastMathFlags(), SQ.getWithInstruction(II)))
2954 return BinaryOperator::CreateFAddFMF(V, II->getArgOperand(2),
2955 II->getFastMathFlags());
2956
2957 [[fallthrough]];
2958 }
2959 case Intrinsic::fma: {
2960 // fma fneg(x), fneg(y), z -> fma x, y, z
2961 Value *Src0 = II->getArgOperand(0);
2962 Value *Src1 = II->getArgOperand(1);
2963 Value *Src2 = II->getArgOperand(2);
2964 Value *X, *Y;
2965 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2966 replaceOperand(*II, 0, X);
2967 replaceOperand(*II, 1, Y);
2968 return II;
2969 }
2970
2971 // fma fabs(x), fabs(x), z -> fma x, x, z
2972 if (match(Src0, m_FAbs(m_Value(X))) &&
2973 match(Src1, m_FAbs(m_Specific(X)))) {
2974 replaceOperand(*II, 0, X);
2975 replaceOperand(*II, 1, X);
2976 return II;
2977 }
2978
2979 // Try to simplify the underlying FMul. We can only apply simplifications
2980 // that do not require rounding.
2981 if (Value *V = simplifyFMAFMul(Src0, Src1, II->getFastMathFlags(),
2982 SQ.getWithInstruction(II)))
2983 return BinaryOperator::CreateFAddFMF(V, Src2, II->getFastMathFlags());
2984
2985 // fma x, y, 0 -> fmul x, y
2986 // This is always valid for -0.0, but requires nsz for +0.0 as
2987 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2988 if (match(Src2, m_NegZeroFP()) ||
2989 (match(Src2, m_PosZeroFP()) && II->getFastMathFlags().noSignedZeros()))
2990 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2991
2992 // fma x, -1.0, y -> fsub y, x
2993 if (match(Src1, m_SpecificFP(-1.0)))
2994 return BinaryOperator::CreateFSubFMF(Src2, Src0, II);
2995
2996 break;
2997 }
2998 case Intrinsic::copysign: {
2999 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
3000 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
3001 Sign, getSimplifyQuery().getWithInstruction(II))) {
3002 if (*KnownSignBit) {
3003 // If we know that the sign argument is negative, reduce to FNABS:
3004 // copysign Mag, -Sign --> fneg (fabs Mag)
3005 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
3006 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
3007 }
3008
3009 // If we know that the sign argument is positive, reduce to FABS:
3010 // copysign Mag, +Sign --> fabs Mag
3011 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
3012 return replaceInstUsesWith(*II, Fabs);
3013 }
3014
3015 // Propagate sign argument through nested calls:
3016 // copysign Mag, (copysign ?, X) --> copysign Mag, X
3017 Value *X;
3019 Value *CopySign =
3020 Builder.CreateCopySign(Mag, X, FMFSource::intersect(II, Sign));
3021 return replaceInstUsesWith(*II, CopySign);
3022 }
3023
3024 // Clear sign-bit of constant magnitude:
3025 // copysign -MagC, X --> copysign MagC, X
3026 // TODO: Support constant folding for fabs
3027 const APFloat *MagC;
3028 if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) {
3029 APFloat PosMagC = *MagC;
3030 PosMagC.clearSign();
3031 return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC));
3032 }
3033
3034 // Peek through changes of magnitude's sign-bit. This call rewrites those:
3035 // copysign (fabs X), Sign --> copysign X, Sign
3036 // copysign (fneg X), Sign --> copysign X, Sign
3037 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
3038 return replaceOperand(*II, 0, X);
3039
3040 break;
3041 }
3042 case Intrinsic::fabs: {
3043 Value *Cond, *TVal, *FVal;
3044 Value *Arg = II->getArgOperand(0);
3045 Value *X;
3046 // fabs (-X) --> fabs (X)
3047 if (match(Arg, m_FNeg(m_Value(X)))) {
3048 CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
3049 return replaceInstUsesWith(CI, Fabs);
3050 }
3051
3052 if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
3053 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
3054 if (Arg->hasOneUse() ? (isa<Constant>(TVal) || isa<Constant>(FVal))
3055 : (isa<Constant>(TVal) && isa<Constant>(FVal))) {
3056 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
3057 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
3058 SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF);
3059 FastMathFlags FMF1 = II->getFastMathFlags();
3060 FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags();
3061 FMF2.setNoSignedZeros(false);
3062 SI->setFastMathFlags(FMF1 | FMF2);
3063 return SI;
3064 }
3065 // fabs (select Cond, -FVal, FVal) --> fabs FVal
3066 if (match(TVal, m_FNeg(m_Specific(FVal))))
3067 return replaceOperand(*II, 0, FVal);
3068 // fabs (select Cond, TVal, -TVal) --> fabs TVal
3069 if (match(FVal, m_FNeg(m_Specific(TVal))))
3070 return replaceOperand(*II, 0, TVal);
3071 }
3072
3073 Value *Magnitude, *Sign;
3074 if (match(II->getArgOperand(0),
3075 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
3076 // fabs (copysign x, y) -> (fabs x)
3077 CallInst *AbsSign =
3078 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude, II);
3079 return replaceInstUsesWith(*II, AbsSign);
3080 }
3081
3082 [[fallthrough]];
3083 }
3084 case Intrinsic::ceil:
3085 case Intrinsic::floor:
3086 case Intrinsic::round:
3087 case Intrinsic::roundeven:
3088 case Intrinsic::nearbyint:
3089 case Intrinsic::rint:
3090 case Intrinsic::trunc: {
3091 Value *ExtSrc;
3092 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
3093 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
3094 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
3095 return new FPExtInst(NarrowII, II->getType());
3096 }
3097 break;
3098 }
3099 case Intrinsic::cos:
3100 case Intrinsic::amdgcn_cos: {
3101 Value *X, *Sign;
3102 Value *Src = II->getArgOperand(0);
3103 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) ||
3104 match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) {
3105 // cos(-x) --> cos(x)
3106 // cos(fabs(x)) --> cos(x)
3107 // cos(copysign(x, y)) --> cos(x)
3108 return replaceOperand(*II, 0, X);
3109 }
3110 break;
3111 }
3112 case Intrinsic::sin:
3113 case Intrinsic::amdgcn_sin: {
3114 Value *X;
3115 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
3116 // sin(-x) --> -sin(x)
3117 Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II);
3118 return UnaryOperator::CreateFNegFMF(NewSin, II);
3119 }
3120 break;
3121 }
3122 case Intrinsic::ldexp: {
3123 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
3124 //
3125 // The danger is if the first ldexp would overflow to infinity or underflow
3126 // to zero, but the combined exponent avoids it. We ignore this with
3127 // reassoc.
3128 //
3129 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
3130 // it would just double down on the overflow/underflow which would occur
3131 // anyway.
3132 //
3133 // TODO: Could do better if we had range tracking for the input value
3134 // exponent. Also could broaden sign check to cover == 0 case.
3135 Value *Src = II->getArgOperand(0);
3136 Value *Exp = II->getArgOperand(1);
3137
3138 uint64_t ConstExp;
3139 if (match(Exp, m_ConstantInt(ConstExp))) {
3140 // ldexp(x, K) -> fmul x, 2^K
3141 const fltSemantics &FPTy =
3142 Src->getType()->getScalarType()->getFltSemantics();
3143
3144 APFloat Scaled = scalbn(APFloat::getOne(FPTy), static_cast<int>(ConstExp),
3146 if (!Scaled.isZero() && !Scaled.isInfinity()) {
3147 // Skip overflow and underflow cases.
3148 Constant *FPConst = ConstantFP::get(Src->getType(), Scaled);
3149 return BinaryOperator::CreateFMulFMF(Src, FPConst, II);
3150 }
3151 }
3152
3153 Value *InnerSrc;
3154 Value *InnerExp;
3156 m_Value(InnerSrc), m_Value(InnerExp)))) &&
3157 Exp->getType() == InnerExp->getType()) {
3158 FastMathFlags FMF = II->getFastMathFlags();
3159 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
3160
3161 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
3162 signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) {
3163 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
3164 // width.
3165 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
3166 II->setArgOperand(1, NewExp);
3167 II->setFastMathFlags(InnerFlags); // Or the inner flags.
3168 return replaceOperand(*II, 0, InnerSrc);
3169 }
3170 }
3171
3172 // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0)
3173 // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0)
3174 Value *ExtSrc;
3175 if (match(Exp, m_ZExt(m_Value(ExtSrc))) &&
3176 ExtSrc->getType()->getScalarSizeInBits() == 1) {
3177 Value *Select =
3178 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0),
3179 ConstantFP::get(II->getType(), 1.0));
3181 }
3182 if (match(Exp, m_SExt(m_Value(ExtSrc))) &&
3183 ExtSrc->getType()->getScalarSizeInBits() == 1) {
3184 Value *Select =
3185 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5),
3186 ConstantFP::get(II->getType(), 1.0));
3188 }
3189
3190 // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x
3191 // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp)
3192 ///
3193 // TODO: If we cared, should insert a canonicalize for x
3194 Value *SelectCond, *SelectLHS, *SelectRHS;
3195 if (match(II->getArgOperand(1),
3196 m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS),
3197 m_Value(SelectRHS))))) {
3198 Value *NewLdexp = nullptr;
3199 Value *Select = nullptr;
3200 if (match(SelectRHS, m_ZeroInt())) {
3201 NewLdexp = Builder.CreateLdexp(Src, SelectLHS, II);
3202 Select = Builder.CreateSelect(SelectCond, NewLdexp, Src);
3203 } else if (match(SelectLHS, m_ZeroInt())) {
3204 NewLdexp = Builder.CreateLdexp(Src, SelectRHS, II);
3205 Select = Builder.CreateSelect(SelectCond, Src, NewLdexp);
3206 }
3207
3208 if (NewLdexp) {
3209 Select->takeName(II);
3210 return replaceInstUsesWith(*II, Select);
3211 }
3212 }
3213
3214 break;
3215 }
3216 case Intrinsic::ptrauth_auth:
3217 case Intrinsic::ptrauth_resign: {
3218 // We don't support this optimization on intrinsic calls with deactivation
3219 // symbols, which are represented using operand bundles.
3220 if (II->hasOperandBundles())
3221 break;
3222
3223 // (sign|resign) + (auth|resign) can be folded by omitting the middle
3224 // sign+auth component if the key and discriminator match.
3225 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
3226 Value *Ptr = II->getArgOperand(0);
3227 Value *Key = II->getArgOperand(1);
3228 Value *Disc = II->getArgOperand(2);
3229
3230 // AuthKey will be the key we need to end up authenticating against in
3231 // whatever we replace this sequence with.
3232 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
3233 if (const auto *CI = dyn_cast<CallBase>(Ptr)) {
3234 // We don't support this optimization on intrinsic calls with deactivation
3235 // symbols, which are represented using operand bundles.
3236 if (CI->hasOperandBundles())
3237 break;
3238
3239 BasePtr = CI->getArgOperand(0);
3240 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
3241 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
3242 break;
3243 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
3244 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
3245 break;
3246 AuthKey = CI->getArgOperand(1);
3247 AuthDisc = CI->getArgOperand(2);
3248 } else
3249 break;
3250 } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) {
3251 // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for
3252 // our purposes, so check for that too.
3253 const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0));
3254 if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL))
3255 break;
3256
3257 // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr)
3258 if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) {
3259 auto *SignKey = cast<ConstantInt>(II->getArgOperand(3));
3260 auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4));
3261 auto *Null = ConstantPointerNull::get(Builder.getPtrTy());
3262 auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey,
3263 SignDisc, /*AddrDisc=*/Null,
3264 /*DeactivationSymbol=*/Null);
3266 *II, ConstantExpr::getPointerCast(NewCPA, II->getType()));
3267 return eraseInstFromFunction(*II);
3268 }
3269
3270 // auth(ptrauth(p,k,d),k,d) -> p
3271 BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType());
3272 } else
3273 break;
3274
3275 unsigned NewIntrin;
3276 if (AuthKey && NeedSign) {
3277 // resign(0,1) + resign(1,2) = resign(0, 2)
3278 NewIntrin = Intrinsic::ptrauth_resign;
3279 } else if (AuthKey) {
3280 // resign(0,1) + auth(1) = auth(0)
3281 NewIntrin = Intrinsic::ptrauth_auth;
3282 } else if (NeedSign) {
3283 // sign(0) + resign(0, 1) = sign(1)
3284 NewIntrin = Intrinsic::ptrauth_sign;
3285 } else {
3286 // sign(0) + auth(0) = nop
3287 replaceInstUsesWith(*II, BasePtr);
3288 return eraseInstFromFunction(*II);
3289 }
3290
3291 SmallVector<Value *, 4> CallArgs;
3292 CallArgs.push_back(BasePtr);
3293 if (AuthKey) {
3294 CallArgs.push_back(AuthKey);
3295 CallArgs.push_back(AuthDisc);
3296 }
3297
3298 if (NeedSign) {
3299 CallArgs.push_back(II->getArgOperand(3));
3300 CallArgs.push_back(II->getArgOperand(4));
3301 }
3302
3303 Function *NewFn =
3304 Intrinsic::getOrInsertDeclaration(II->getModule(), NewIntrin);
3305 return CallInst::Create(NewFn, CallArgs);
3306 }
3307 case Intrinsic::arm_neon_vtbl1:
3308 case Intrinsic::arm_neon_vtbl2:
3309 case Intrinsic::arm_neon_vtbl3:
3310 case Intrinsic::arm_neon_vtbl4:
3311 case Intrinsic::aarch64_neon_tbl1:
3312 case Intrinsic::aarch64_neon_tbl2:
3313 case Intrinsic::aarch64_neon_tbl3:
3314 case Intrinsic::aarch64_neon_tbl4:
3315 return simplifyNeonTbl(*II, *this, /*IsExtension=*/false);
3316 case Intrinsic::arm_neon_vtbx1:
3317 case Intrinsic::arm_neon_vtbx2:
3318 case Intrinsic::arm_neon_vtbx3:
3319 case Intrinsic::arm_neon_vtbx4:
3320 case Intrinsic::aarch64_neon_tbx1:
3321 case Intrinsic::aarch64_neon_tbx2:
3322 case Intrinsic::aarch64_neon_tbx3:
3323 case Intrinsic::aarch64_neon_tbx4:
3324 return simplifyNeonTbl(*II, *this, /*IsExtension=*/true);
3325
3326 case Intrinsic::arm_neon_vmulls:
3327 case Intrinsic::arm_neon_vmullu:
3328 case Intrinsic::aarch64_neon_smull:
3329 case Intrinsic::aarch64_neon_umull: {
3330 Value *Arg0 = II->getArgOperand(0);
3331 Value *Arg1 = II->getArgOperand(1);
3332
3333 // Handle mul by zero first:
3335 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3336 }
3337
3338 // Check for constant LHS & RHS - in this case we just simplify.
3339 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3340 IID == Intrinsic::aarch64_neon_umull);
3341 VectorType *NewVT = cast<VectorType>(II->getType());
3342 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3343 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3344 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
3345 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
3346 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
3347 }
3348
3349 // Couldn't simplify - canonicalize constant to the RHS.
3350 std::swap(Arg0, Arg1);
3351 }
3352
3353 // Handle mul by one:
3354 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3355 if (ConstantInt *Splat =
3356 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3357 if (Splat->isOne())
3358 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3359 /*isSigned=*/!Zext);
3360
3361 break;
3362 }
3363 case Intrinsic::arm_neon_aesd:
3364 case Intrinsic::arm_neon_aese:
3365 case Intrinsic::aarch64_crypto_aesd:
3366 case Intrinsic::aarch64_crypto_aese:
3367 case Intrinsic::aarch64_sve_aesd:
3368 case Intrinsic::aarch64_sve_aese: {
3369 Value *DataArg = II->getArgOperand(0);
3370 Value *KeyArg = II->getArgOperand(1);
3371
3372 // Accept zero on either operand.
3373 if (!match(KeyArg, m_ZeroInt()))
3374 std::swap(KeyArg, DataArg);
3375
3376 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3377 Value *Data, *Key;
3378 if (match(KeyArg, m_ZeroInt()) &&
3379 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3380 replaceOperand(*II, 0, Data);
3381 replaceOperand(*II, 1, Key);
3382 return II;
3383 }
3384 break;
3385 }
3386 case Intrinsic::arm_neon_vshifts:
3387 case Intrinsic::arm_neon_vshiftu:
3388 case Intrinsic::aarch64_neon_sshl:
3389 case Intrinsic::aarch64_neon_ushl:
3390 return foldNeonShift(II, *this);
3391 case Intrinsic::hexagon_V6_vandvrt:
3392 case Intrinsic::hexagon_V6_vandvrt_128B: {
3393 // Simplify Q -> V -> Q conversion.
3394 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3395 Intrinsic::ID ID0 = Op0->getIntrinsicID();
3396 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3397 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3398 break;
3399 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
3400 uint64_t Bytes1 = computeKnownBits(Bytes, Op0).One.getZExtValue();
3401 uint64_t Mask1 = computeKnownBits(Mask, II).One.getZExtValue();
3402 // Check if every byte has common bits in Bytes and Mask.
3403 uint64_t C = Bytes1 & Mask1;
3404 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
3405 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
3406 }
3407 break;
3408 }
3409 case Intrinsic::stackrestore: {
3410 enum class ClassifyResult {
3411 None,
3412 Alloca,
3413 StackRestore,
3414 CallWithSideEffects,
3415 };
3416 auto Classify = [](const Instruction *I) {
3417 if (isa<AllocaInst>(I))
3418 return ClassifyResult::Alloca;
3419
3420 if (auto *CI = dyn_cast<CallInst>(I)) {
3421 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
3422 if (II->getIntrinsicID() == Intrinsic::stackrestore)
3423 return ClassifyResult::StackRestore;
3424
3425 if (II->mayHaveSideEffects())
3426 return ClassifyResult::CallWithSideEffects;
3427 } else {
3428 // Consider all non-intrinsic calls to be side effects
3429 return ClassifyResult::CallWithSideEffects;
3430 }
3431 }
3432
3433 return ClassifyResult::None;
3434 };
3435
3436 // If the stacksave and the stackrestore are in the same BB, and there is
3437 // no intervening call, alloca, or stackrestore of a different stacksave,
3438 // remove the restore. This can happen when variable allocas are DCE'd.
3439 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3440 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3441 SS->getParent() == II->getParent()) {
3442 BasicBlock::iterator BI(SS);
3443 bool CannotRemove = false;
3444 for (++BI; &*BI != II; ++BI) {
3445 switch (Classify(&*BI)) {
3446 case ClassifyResult::None:
3447 // So far so good, look at next instructions.
3448 break;
3449
3450 case ClassifyResult::StackRestore:
3451 // If we found an intervening stackrestore for a different
3452 // stacksave, we can't remove the stackrestore. Otherwise, continue.
3453 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
3454 CannotRemove = true;
3455 break;
3456
3457 case ClassifyResult::Alloca:
3458 case ClassifyResult::CallWithSideEffects:
3459 // If we found an alloca, a non-intrinsic call, or an intrinsic
3460 // call with side effects, we can't remove the stackrestore.
3461 CannotRemove = true;
3462 break;
3463 }
3464 if (CannotRemove)
3465 break;
3466 }
3467
3468 if (!CannotRemove)
3469 return eraseInstFromFunction(CI);
3470 }
3471 }
3472
3473 // Scan down this block to see if there is another stack restore in the
3474 // same block without an intervening call/alloca.
3476 Instruction *TI = II->getParent()->getTerminator();
3477 bool CannotRemove = false;
3478 for (++BI; &*BI != TI; ++BI) {
3479 switch (Classify(&*BI)) {
3480 case ClassifyResult::None:
3481 // So far so good, look at next instructions.
3482 break;
3483
3484 case ClassifyResult::StackRestore:
3485 // If there is a stackrestore below this one, remove this one.
3486 return eraseInstFromFunction(CI);
3487
3488 case ClassifyResult::Alloca:
3489 case ClassifyResult::CallWithSideEffects:
3490 // If we found an alloca, a non-intrinsic call, or an intrinsic call
3491 // with side effects (such as llvm.stacksave and llvm.read_register),
3492 // we can't remove the stack restore.
3493 CannotRemove = true;
3494 break;
3495 }
3496 if (CannotRemove)
3497 break;
3498 }
3499
3500 // If the stack restore is in a return, resume, or unwind block and if there
3501 // are no allocas or calls between the restore and the return, nuke the
3502 // restore.
3503 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3504 return eraseInstFromFunction(CI);
3505 break;
3506 }
3507 case Intrinsic::lifetime_end:
3508 // Asan needs to poison memory to detect invalid access which is possible
3509 // even for empty lifetime range.
3510 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3511 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3512 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3513 break;
3514
3515 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
3516 return I.getIntrinsicID() == Intrinsic::lifetime_start;
3517 }))
3518 return nullptr;
3519 break;
3520 case Intrinsic::assume: {
3521 Value *IIOperand = II->getArgOperand(0);
3523 II->getOperandBundlesAsDefs(OpBundles);
3524
3525 /// This will remove the boolean Condition from the assume given as
3526 /// argument and remove the assume if it becomes useless.
3527 /// always returns nullptr for use as a return values.
3528 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
3529 assert(isa<AssumeInst>(Assume));
3531 return eraseInstFromFunction(CI);
3532 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
3533 return nullptr;
3534 };
3535 // Remove an assume if it is followed by an identical assume.
3536 // TODO: Do we need this? Unless there are conflicting assumptions, the
3537 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3538 Instruction *Next = II->getNextNode();
3540 return RemoveConditionFromAssume(Next);
3541
3542 // Canonicalize assume(a && b) -> assume(a); assume(b);
3543 // Note: New assumption intrinsics created here are registered by
3544 // the InstCombineIRInserter object.
3545 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3546 Value *AssumeIntrinsic = II->getCalledOperand();
3547 Value *A, *B;
3548 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3549 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
3550 II->getName());
3551 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3552 return eraseInstFromFunction(*II);
3553 }
3554 // assume(!(a || b)) -> assume(!a); assume(!b);
3555 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
3556 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3557 Builder.CreateNot(A), OpBundles, II->getName());
3558 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3559 Builder.CreateNot(B), II->getName());
3560 return eraseInstFromFunction(*II);
3561 }
3562
3563 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3564 // (if assume is valid at the load)
3565 Instruction *LHS;
3567 m_Zero())) &&
3568 LHS->getOpcode() == Instruction::Load &&
3569 LHS->getType()->isPointerTy() &&
3570 isValidAssumeForContext(II, LHS, &DT)) {
3571 MDNode *MD = MDNode::get(II->getContext(), {});
3572 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3573 LHS->setMetadata(LLVMContext::MD_noundef, MD);
3574 return RemoveConditionFromAssume(II);
3575
3576 // TODO: apply nonnull return attributes to calls and invokes
3577 // TODO: apply range metadata for range check patterns?
3578 }
3579
3580 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3581 OperandBundleUse OBU = II->getOperandBundleAt(Idx);
3582
3583 // Separate storage assumptions apply to the underlying allocations, not
3584 // any particular pointer within them. When evaluating the hints for AA
3585 // purposes we getUnderlyingObject them; by precomputing the answers here
3586 // we can avoid having to do so repeatedly there.
3587 if (OBU.getTagName() == "separate_storage") {
3588 assert(OBU.Inputs.size() == 2);
3589 auto MaybeSimplifyHint = [&](const Use &U) {
3590 Value *Hint = U.get();
3591 // Not having a limit is safe because InstCombine removes unreachable
3592 // code.
3593 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
3594 if (Hint != UnderlyingObject)
3595 replaceUse(const_cast<Use &>(U), UnderlyingObject);
3596 };
3597 MaybeSimplifyHint(OBU.Inputs[0]);
3598 MaybeSimplifyHint(OBU.Inputs[1]);
3599 }
3600
3601 // Try to remove redundant alignment assumptions.
3602 if (OBU.getTagName() == "align" && OBU.Inputs.size() == 2) {
3604 *cast<AssumeInst>(II), II->arg_size() + Idx);
3605 if (!RK || RK.AttrKind != Attribute::Alignment ||
3607 continue;
3608
3609 // Remove align 1 bundles; they don't add any useful information.
3610 if (RK.ArgValue == 1)
3612
3613 // Don't try to remove align assumptions for pointers derived from
3614 // arguments. We might lose information if the function gets inline and
3615 // the align argument attribute disappears.
3617 if (!UO || isa<Argument>(UO))
3618 continue;
3619
3620 // Compute known bits for the pointer, passing nullptr as context to
3621 // avoid computeKnownBits using the assumption we are about to remove
3622 // for reasoning.
3623 KnownBits Known = computeKnownBits(RK.WasOn, /*CtxI=*/nullptr);
3624 unsigned TZ = std::min(Known.countMinTrailingZeros(),
3626 if ((1ULL << TZ) < RK.ArgValue)
3627 continue;
3629 }
3630 }
3631
3632 // Convert nonnull assume like:
3633 // %A = icmp ne i32* %PTR, null
3634 // call void @llvm.assume(i1 %A)
3635 // into
3636 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
3638 match(IIOperand,
3640 A->getType()->isPointerTy()) {
3641 if (auto *Replacement = buildAssumeFromKnowledge(
3642 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
3643
3644 Replacement->insertBefore(Next->getIterator());
3645 AC.registerAssumption(Replacement);
3646 return RemoveConditionFromAssume(II);
3647 }
3648 }
3649
3650 // Convert alignment assume like:
3651 // %B = ptrtoint i32* %A to i64
3652 // %C = and i64 %B, Constant
3653 // %D = icmp eq i64 %C, 0
3654 // call void @llvm.assume(i1 %D)
3655 // into
3656 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
3657 uint64_t AlignMask = 1;
3659 (match(IIOperand, m_Not(m_Trunc(m_Value(A)))) ||
3660 match(IIOperand,
3662 m_And(m_Value(A), m_ConstantInt(AlignMask)),
3663 m_Zero())))) {
3664 if (isPowerOf2_64(AlignMask + 1)) {
3665 uint64_t Offset = 0;
3667 if (match(A, m_PtrToIntOrAddr(m_Value(A)))) {
3668 /// Note: this doesn't preserve the offset information but merges
3669 /// offset and alignment.
3670 /// TODO: we can generate a GEP instead of merging the alignment with
3671 /// the offset.
3672 RetainedKnowledge RK{Attribute::Alignment,
3673 (unsigned)MinAlign(Offset, AlignMask + 1), A};
3674 if (auto *Replacement =
3676
3677 Replacement->insertAfter(II->getIterator());
3678 AC.registerAssumption(Replacement);
3679 }
3680 return RemoveConditionFromAssume(II);
3681 }
3682 }
3683 }
3684
3685 /// Canonicalize Knowledge in operand bundles.
3686 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
3687 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3688 auto &BOI = II->bundle_op_info_begin()[Idx];
3691 if (BOI.End - BOI.Begin > 2)
3692 continue; // Prevent reducing knowledge in an align with offset since
3693 // extracting a RetainedKnowledge from them looses offset
3694 // information
3695 RetainedKnowledge CanonRK =
3698 &getDominatorTree());
3699 if (CanonRK == RK)
3700 continue;
3701 if (!CanonRK) {
3702 if (BOI.End - BOI.Begin > 0) {
3703 Worklist.pushValue(II->op_begin()[BOI.Begin]);
3704 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
3705 }
3706 continue;
3707 }
3708 assert(RK.AttrKind == CanonRK.AttrKind);
3709 if (BOI.End - BOI.Begin > 0)
3710 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3711 if (BOI.End - BOI.Begin > 1)
3712 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3713 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
3714 if (RK.WasOn)
3715 Worklist.pushValue(RK.WasOn);
3716 return II;
3717 }
3718 }
3719
3720 // If there is a dominating assume with the same condition as this one,
3721 // then this one is redundant, and should be removed.
3722 KnownBits Known(1);
3723 computeKnownBits(IIOperand, Known, II);
3725 return eraseInstFromFunction(*II);
3726
3727 // assume(false) is unreachable.
3728 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
3730 return eraseInstFromFunction(*II);
3731 }
3732
3733 // Update the cache of affected values for this assumption (we might be
3734 // here because we just simplified the condition).
3735 AC.updateAffectedValues(cast<AssumeInst>(II));
3736 break;
3737 }
3738 case Intrinsic::experimental_guard: {
3739 // Is this guard followed by another guard? We scan forward over a small
3740 // fixed window of instructions to handle common cases with conditions
3741 // computed between guards.
3742 Instruction *NextInst = II->getNextNode();
3743 for (unsigned i = 0; i < GuardWideningWindow; i++) {
3744 // Note: Using context-free form to avoid compile time blow up
3745 if (!isSafeToSpeculativelyExecute(NextInst))
3746 break;
3747 NextInst = NextInst->getNextNode();
3748 }
3749 Value *NextCond = nullptr;
3750 if (match(NextInst,
3752 Value *CurrCond = II->getArgOperand(0);
3753
3754 // Remove a guard that it is immediately preceded by an identical guard.
3755 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3756 if (CurrCond != NextCond) {
3757 Instruction *MoveI = II->getNextNode();
3758 while (MoveI != NextInst) {
3759 auto *Temp = MoveI;
3760 MoveI = MoveI->getNextNode();
3761 Temp->moveBefore(II->getIterator());
3762 }
3763 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3764 }
3765 eraseInstFromFunction(*NextInst);
3766 return II;
3767 }
3768 break;
3769 }
3770 case Intrinsic::vector_insert: {
3771 Value *Vec = II->getArgOperand(0);
3772 Value *SubVec = II->getArgOperand(1);
3773 Value *Idx = II->getArgOperand(2);
3774 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3775 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3776 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3777
3778 // Only canonicalize if the destination vector, Vec, and SubVec are all
3779 // fixed vectors.
3780 if (DstTy && VecTy && SubVecTy) {
3781 unsigned DstNumElts = DstTy->getNumElements();
3782 unsigned VecNumElts = VecTy->getNumElements();
3783 unsigned SubVecNumElts = SubVecTy->getNumElements();
3784 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3785
3786 // An insert that entirely overwrites Vec with SubVec is a nop.
3787 if (VecNumElts == SubVecNumElts)
3788 return replaceInstUsesWith(CI, SubVec);
3789
3790 // Widen SubVec into a vector of the same width as Vec, since
3791 // shufflevector requires the two input vectors to be the same width.
3792 // Elements beyond the bounds of SubVec within the widened vector are
3793 // undefined.
3794 SmallVector<int, 8> WidenMask;
3795 unsigned i;
3796 for (i = 0; i != SubVecNumElts; ++i)
3797 WidenMask.push_back(i);
3798 for (; i != VecNumElts; ++i)
3799 WidenMask.push_back(PoisonMaskElem);
3800
3801 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3802
3804 for (unsigned i = 0; i != IdxN; ++i)
3805 Mask.push_back(i);
3806 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3807 Mask.push_back(i);
3808 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3809 Mask.push_back(i);
3810
3811 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3812 return replaceInstUsesWith(CI, Shuffle);
3813 }
3814 break;
3815 }
3816 case Intrinsic::vector_extract: {
3817 Value *Vec = II->getArgOperand(0);
3818 Value *Idx = II->getArgOperand(1);
3819
3820 Type *ReturnType = II->getType();
3821 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3822 // ExtractIdx)
3823 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3824 Value *InsertTuple, *InsertIdx, *InsertValue;
3826 m_Value(InsertValue),
3827 m_Value(InsertIdx))) &&
3828 InsertValue->getType() == ReturnType) {
3829 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3830 // Case where we get the same index right after setting it.
3831 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3832 // InsertValue
3833 if (ExtractIdx == Index)
3834 return replaceInstUsesWith(CI, InsertValue);
3835 // If we are getting a different index than what was set in the
3836 // insert.vector intrinsic. We can just set the input tuple to the one up
3837 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3838 // InsertIndex), ExtractIndex)
3839 // --> extract.vector(InsertTuple, ExtractIndex)
3840 else
3841 return replaceOperand(CI, 0, InsertTuple);
3842 }
3843
3844 auto *DstTy = dyn_cast<VectorType>(ReturnType);
3845 auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3846
3847 if (DstTy && VecTy) {
3848 auto DstEltCnt = DstTy->getElementCount();
3849 auto VecEltCnt = VecTy->getElementCount();
3850 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3851
3852 // Extracting the entirety of Vec is a nop.
3853 if (DstEltCnt == VecTy->getElementCount()) {
3854 replaceInstUsesWith(CI, Vec);
3855 return eraseInstFromFunction(CI);
3856 }
3857
3858 // Only canonicalize to shufflevector if the destination vector and
3859 // Vec are fixed vectors.
3860 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3861 break;
3862
3864 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3865 Mask.push_back(IdxN + i);
3866
3867 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3868 return replaceInstUsesWith(CI, Shuffle);
3869 }
3870 break;
3871 }
3872 case Intrinsic::experimental_vp_reverse: {
3873 Value *X;
3874 Value *Vec = II->getArgOperand(0);
3875 Value *Mask = II->getArgOperand(1);
3876 if (!match(Mask, m_AllOnes()))
3877 break;
3878 Value *EVL = II->getArgOperand(2);
3879 // TODO: Canonicalize experimental.vp.reverse after unop/binops?
3880 // rev(unop rev(X)) --> unop X
3881 if (match(Vec,
3883 m_Value(X), m_AllOnes(), m_Specific(EVL)))))) {
3884 auto *OldUnOp = cast<UnaryOperator>(Vec);
3886 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3887 II->getIterator());
3888 return replaceInstUsesWith(CI, NewUnOp);
3889 }
3890 break;
3891 }
3892 case Intrinsic::vector_reduce_or:
3893 case Intrinsic::vector_reduce_and: {
3894 // Canonicalize logical or/and reductions:
3895 // Or reduction for i1 is represented as:
3896 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3897 // %res = cmp ne iReduxWidth %val, 0
3898 // And reduction for i1 is represented as:
3899 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3900 // %res = cmp eq iReduxWidth %val, 11111
3901 Value *Arg = II->getArgOperand(0);
3902 Value *Vect;
3903
3904 if (Value *NewOp =
3905 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3906 replaceUse(II->getOperandUse(0), NewOp);
3907 return II;
3908 }
3909
3910 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3911 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3912 if (FTy->getElementType() == Builder.getInt1Ty()) {
3913 Value *Res = Builder.CreateBitCast(
3914 Vect, Builder.getIntNTy(FTy->getNumElements()));
3915 if (IID == Intrinsic::vector_reduce_and) {
3916 Res = Builder.CreateICmpEQ(
3918 } else {
3919 assert(IID == Intrinsic::vector_reduce_or &&
3920 "Expected or reduction.");
3921 Res = Builder.CreateIsNotNull(Res);
3922 }
3923 if (Arg != Vect)
3924 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3925 II->getType());
3926 return replaceInstUsesWith(CI, Res);
3927 }
3928 }
3929 [[fallthrough]];
3930 }
3931 case Intrinsic::vector_reduce_add: {
3932 if (IID == Intrinsic::vector_reduce_add) {
3933 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3934 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3935 // Convert vector_reduce_add(SExt(<n x i1>)) to
3936 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3937 // Convert vector_reduce_add(<n x i1>) to
3938 // Trunc(ctpop(bitcast <n x i1> to in)).
3939 Value *Arg = II->getArgOperand(0);
3940 Value *Vect;
3941
3942 if (Value *NewOp =
3943 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3944 replaceUse(II->getOperandUse(0), NewOp);
3945 return II;
3946 }
3947
3948 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3949 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3950 if (FTy->getElementType() == Builder.getInt1Ty()) {
3951 Value *V = Builder.CreateBitCast(
3952 Vect, Builder.getIntNTy(FTy->getNumElements()));
3953 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3954 if (Res->getType() != II->getType())
3955 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3956 if (Arg != Vect &&
3957 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3958 Res = Builder.CreateNeg(Res);
3959 return replaceInstUsesWith(CI, Res);
3960 }
3961 }
3962
3963 // vector.reduce.add.vNiM(splat(%x)) -> mul(%x, N)
3964 if (Value *Splat = getSplatValue(Arg)) {
3965 ElementCount VecToReduceCount =
3966 cast<VectorType>(Arg->getType())->getElementCount();
3967 if (VecToReduceCount.isFixed()) {
3968 unsigned VectorSize = VecToReduceCount.getFixedValue();
3969 return BinaryOperator::CreateMul(
3970 Splat,
3971 ConstantInt::get(Splat->getType(), VectorSize, /*IsSigned=*/false,
3972 /*ImplicitTrunc=*/true));
3973 }
3974 }
3975 }
3976 [[fallthrough]];
3977 }
3978 case Intrinsic::vector_reduce_xor: {
3979 if (IID == Intrinsic::vector_reduce_xor) {
3980 // Exclusive disjunction reduction over the vector with
3981 // (potentially-extended) i1 element type is actually a
3982 // (potentially-extended) arithmetic `add` reduction over the original
3983 // non-extended value:
3984 // vector_reduce_xor(?ext(<n x i1>))
3985 // -->
3986 // ?ext(vector_reduce_add(<n x i1>))
3987 Value *Arg = II->getArgOperand(0);
3988 Value *Vect;
3989
3990 if (Value *NewOp =
3991 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3992 replaceUse(II->getOperandUse(0), NewOp);
3993 return II;
3994 }
3995
3996 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3997 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3998 if (VTy->getElementType() == Builder.getInt1Ty()) {
3999 Value *Res = Builder.CreateAddReduce(Vect);
4000 if (Arg != Vect)
4001 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
4002 II->getType());
4003 return replaceInstUsesWith(CI, Res);
4004 }
4005 }
4006 }
4007 [[fallthrough]];
4008 }
4009 case Intrinsic::vector_reduce_mul: {
4010 if (IID == Intrinsic::vector_reduce_mul) {
4011 // Multiplicative reduction over the vector with (potentially-extended)
4012 // i1 element type is actually a (potentially zero-extended)
4013 // logical `and` reduction over the original non-extended value:
4014 // vector_reduce_mul(?ext(<n x i1>))
4015 // -->
4016 // zext(vector_reduce_and(<n x i1>))
4017 Value *Arg = II->getArgOperand(0);
4018 Value *Vect;
4019
4020 if (Value *NewOp =
4021 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4022 replaceUse(II->getOperandUse(0), NewOp);
4023 return II;
4024 }
4025
4026 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4027 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4028 if (VTy->getElementType() == Builder.getInt1Ty()) {
4029 Value *Res = Builder.CreateAndReduce(Vect);
4030 if (Res->getType() != II->getType())
4031 Res = Builder.CreateZExt(Res, II->getType());
4032 return replaceInstUsesWith(CI, Res);
4033 }
4034 }
4035 }
4036 [[fallthrough]];
4037 }
4038 case Intrinsic::vector_reduce_umin:
4039 case Intrinsic::vector_reduce_umax: {
4040 if (IID == Intrinsic::vector_reduce_umin ||
4041 IID == Intrinsic::vector_reduce_umax) {
4042 // UMin/UMax reduction over the vector with (potentially-extended)
4043 // i1 element type is actually a (potentially-extended)
4044 // logical `and`/`or` reduction over the original non-extended value:
4045 // vector_reduce_u{min,max}(?ext(<n x i1>))
4046 // -->
4047 // ?ext(vector_reduce_{and,or}(<n x i1>))
4048 Value *Arg = II->getArgOperand(0);
4049 Value *Vect;
4050
4051 if (Value *NewOp =
4052 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4053 replaceUse(II->getOperandUse(0), NewOp);
4054 return II;
4055 }
4056
4057 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4058 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4059 if (VTy->getElementType() == Builder.getInt1Ty()) {
4060 Value *Res = IID == Intrinsic::vector_reduce_umin
4061 ? Builder.CreateAndReduce(Vect)
4062 : Builder.CreateOrReduce(Vect);
4063 if (Arg != Vect)
4064 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
4065 II->getType());
4066 return replaceInstUsesWith(CI, Res);
4067 }
4068 }
4069 }
4070 [[fallthrough]];
4071 }
4072 case Intrinsic::vector_reduce_smin:
4073 case Intrinsic::vector_reduce_smax: {
4074 if (IID == Intrinsic::vector_reduce_smin ||
4075 IID == Intrinsic::vector_reduce_smax) {
4076 // SMin/SMax reduction over the vector with (potentially-extended)
4077 // i1 element type is actually a (potentially-extended)
4078 // logical `and`/`or` reduction over the original non-extended value:
4079 // vector_reduce_s{min,max}(<n x i1>)
4080 // -->
4081 // vector_reduce_{or,and}(<n x i1>)
4082 // and
4083 // vector_reduce_s{min,max}(sext(<n x i1>))
4084 // -->
4085 // sext(vector_reduce_{or,and}(<n x i1>))
4086 // and
4087 // vector_reduce_s{min,max}(zext(<n x i1>))
4088 // -->
4089 // zext(vector_reduce_{and,or}(<n x i1>))
4090 Value *Arg = II->getArgOperand(0);
4091 Value *Vect;
4092
4093 if (Value *NewOp =
4094 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4095 replaceUse(II->getOperandUse(0), NewOp);
4096 return II;
4097 }
4098
4099 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4100 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4101 if (VTy->getElementType() == Builder.getInt1Ty()) {
4102 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
4103 if (Arg != Vect)
4104 ExtOpc = cast<CastInst>(Arg)->getOpcode();
4105 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
4106 (ExtOpc == Instruction::CastOps::ZExt))
4107 ? Builder.CreateAndReduce(Vect)
4108 : Builder.CreateOrReduce(Vect);
4109 if (Arg != Vect)
4110 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
4111 return replaceInstUsesWith(CI, Res);
4112 }
4113 }
4114 }
4115 [[fallthrough]];
4116 }
4117 case Intrinsic::vector_reduce_fmax:
4118 case Intrinsic::vector_reduce_fmin:
4119 case Intrinsic::vector_reduce_fadd:
4120 case Intrinsic::vector_reduce_fmul: {
4121 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
4122 IID != Intrinsic::vector_reduce_fmul) ||
4123 II->hasAllowReassoc();
4124 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
4125 IID == Intrinsic::vector_reduce_fmul)
4126 ? 1
4127 : 0;
4128 Value *Arg = II->getArgOperand(ArgIdx);
4129 if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) {
4130 replaceUse(II->getOperandUse(ArgIdx), NewOp);
4131 return nullptr;
4132 }
4133 break;
4134 }
4135 case Intrinsic::is_fpclass: {
4136 if (Instruction *I = foldIntrinsicIsFPClass(*II))
4137 return I;
4138 break;
4139 }
4140 case Intrinsic::threadlocal_address: {
4141 Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
4142 MaybeAlign Align = II->getRetAlign();
4143 if (MinAlign > Align.valueOrOne()) {
4144 II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign));
4145 return II;
4146 }
4147 break;
4148 }
4149 case Intrinsic::frexp: {
4150 Value *X;
4151 // The first result is idempotent with the added complication of the struct
4152 // return, and the second result is zero because the value is already
4153 // normalized.
4154 if (match(II->getArgOperand(0), m_ExtractValue<0>(m_Value(X)))) {
4156 X = Builder.CreateInsertValue(
4157 X, Constant::getNullValue(II->getType()->getStructElementType(1)),
4158 1);
4159 return replaceInstUsesWith(*II, X);
4160 }
4161 }
4162 break;
4163 }
4164 case Intrinsic::get_active_lane_mask: {
4165 const APInt *Op0, *Op1;
4166 if (match(II->getOperand(0), m_StrictlyPositive(Op0)) &&
4167 match(II->getOperand(1), m_APInt(Op1))) {
4168 Type *OpTy = II->getOperand(0)->getType();
4169 return replaceInstUsesWith(
4170 *II, Builder.CreateIntrinsic(
4171 II->getType(), Intrinsic::get_active_lane_mask,
4172 {Constant::getNullValue(OpTy),
4173 ConstantInt::get(OpTy, Op1->usub_sat(*Op0))}));
4174 }
4175 break;
4176 }
4177 case Intrinsic::experimental_get_vector_length: {
4178 // get.vector.length(Cnt, MaxLanes) --> Cnt when Cnt <= MaxLanes
4179 unsigned BitWidth =
4180 std::max(II->getArgOperand(0)->getType()->getScalarSizeInBits(),
4181 II->getType()->getScalarSizeInBits());
4182 ConstantRange Cnt =
4183 computeConstantRangeIncludingKnownBits(II->getArgOperand(0), false,
4184 SQ.getWithInstruction(II))
4186 ConstantRange MaxLanes = cast<ConstantInt>(II->getArgOperand(1))
4187 ->getValue()
4188 .zextOrTrunc(Cnt.getBitWidth());
4189 if (cast<ConstantInt>(II->getArgOperand(2))->isOne())
4190 MaxLanes = MaxLanes.multiply(
4191 getVScaleRange(II->getFunction(), Cnt.getBitWidth()));
4192
4193 if (Cnt.icmp(CmpInst::ICMP_ULE, MaxLanes))
4194 return replaceInstUsesWith(
4195 *II, Builder.CreateZExtOrTrunc(II->getArgOperand(0), II->getType()));
4196 return nullptr;
4197 }
4198 default: {
4199 // Handle target specific intrinsics
4200 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
4201 if (V)
4202 return *V;
4203 break;
4204 }
4205 }
4206
4207 // Try to fold intrinsic into select/phi operands. This is legal if:
4208 // * The intrinsic is speculatable.
4209 // * The operand is one of the following:
4210 // - a phi.
4211 // - a select with a scalar condition.
4212 // - a select with a vector condition and II is not a cross lane operation.
4214 for (Value *Op : II->args()) {
4215 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
4216 bool IsVectorCond = Sel->getCondition()->getType()->isVectorTy();
4217 if (IsVectorCond &&
4218 (!isNotCrossLaneOperation(II) || !II->getType()->isVectorTy()))
4219 continue;
4220 // Don't replace a scalar select with a more expensive vector select if
4221 // we can't simplify both arms of the select.
4222 bool SimplifyBothArms =
4223 !Op->getType()->isVectorTy() && II->getType()->isVectorTy();
4225 *II, Sel, /*FoldWithMultiUse=*/false, SimplifyBothArms))
4226 return R;
4227 }
4228 if (auto *Phi = dyn_cast<PHINode>(Op))
4229 if (Instruction *R = foldOpIntoPhi(*II, Phi))
4230 return R;
4231 }
4232 }
4233
4235 return Shuf;
4236
4238 return replaceInstUsesWith(*II, Reverse);
4239
4241 return replaceInstUsesWith(*II, Res);
4242
4243 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
4244 // context, so it is handled in visitCallBase and we should trigger it.
4245 return visitCallBase(*II);
4246}
4247
4248// Fence instruction simplification
4250 auto *NFI = dyn_cast<FenceInst>(FI.getNextNode());
4251 // This check is solely here to handle arbitrary target-dependent syncscopes.
4252 // TODO: Can remove if does not matter in practice.
4253 if (NFI && FI.isIdenticalTo(NFI))
4254 return eraseInstFromFunction(FI);
4255
4256 // Returns true if FI1 is identical or stronger fence than FI2.
4257 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
4258 auto FI1SyncScope = FI1->getSyncScopeID();
4259 // Consider same scope, where scope is global or single-thread.
4260 if (FI1SyncScope != FI2->getSyncScopeID() ||
4261 (FI1SyncScope != SyncScope::System &&
4262 FI1SyncScope != SyncScope::SingleThread))
4263 return false;
4264
4265 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
4266 };
4267 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
4268 return eraseInstFromFunction(FI);
4269
4270 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNode()))
4271 if (isIdenticalOrStrongerFence(PFI, &FI))
4272 return eraseInstFromFunction(FI);
4273 return nullptr;
4274}
4275
4276// InvokeInst simplification
4278 return visitCallBase(II);
4279}
4280
4281// CallBrInst simplification
4283 return visitCallBase(CBI);
4284}
4285
4287 if (!CI->hasFnAttr("modular-format"))
4288 return nullptr;
4289
4291 llvm::split(CI->getFnAttr("modular-format").getValueAsString(), ','));
4292 // TODO: Make use of the first two arguments
4293 unsigned FirstArgIdx;
4294 [[maybe_unused]] bool Error;
4295 Error = Args[2].getAsInteger(10, FirstArgIdx);
4296 assert(!Error && "invalid first arg index");
4297 --FirstArgIdx;
4298 StringRef FnName = Args[3];
4299 StringRef ImplName = Args[4];
4301
4302 if (AllAspects.empty())
4303 return nullptr;
4304
4305 SmallVector<StringRef> NeededAspects;
4306 for (StringRef Aspect : AllAspects) {
4307 if (Aspect == "float") {
4308 if (llvm::any_of(
4309 llvm::make_range(std::next(CI->arg_begin(), FirstArgIdx),
4310 CI->arg_end()),
4311 [](Value *V) { return V->getType()->isFloatingPointTy(); }))
4312 NeededAspects.push_back("float");
4313 } else {
4314 // Unknown aspects are always considered to be needed.
4315 NeededAspects.push_back(Aspect);
4316 }
4317 }
4318
4319 if (NeededAspects.size() == AllAspects.size())
4320 return nullptr;
4321
4322 Module *M = CI->getModule();
4323 LLVMContext &Ctx = M->getContext();
4324 Function *Callee = CI->getCalledFunction();
4325 FunctionCallee ModularFn = M->getOrInsertFunction(
4326 FnName, Callee->getFunctionType(),
4327 Callee->getAttributes().removeFnAttribute(Ctx, "modular-format"));
4328 CallInst *New = cast<CallInst>(CI->clone());
4329 New->setCalledFunction(ModularFn);
4330 New->removeFnAttr("modular-format");
4331 B.Insert(New);
4332
4333 const auto ReferenceAspect = [&](StringRef Aspect) {
4334 SmallString<20> Name = ImplName;
4335 Name += '_';
4336 Name += Aspect;
4337 Function *RelocNoneFn =
4338 Intrinsic::getOrInsertDeclaration(M, Intrinsic::reloc_none);
4339 B.CreateCall(RelocNoneFn,
4340 {MetadataAsValue::get(Ctx, MDString::get(Ctx, Name))});
4341 };
4342
4343 llvm::sort(NeededAspects);
4344 for (StringRef Request : NeededAspects)
4345 ReferenceAspect(Request);
4346
4347 return New;
4348}
4349
4350Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
4351 if (!CI->getCalledFunction()) return nullptr;
4352
4353 // Skip optimizing notail and musttail calls so
4354 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
4355 // LibCallSimplifier::optimizeCall should try to preserve tail calls though.
4356 if (CI->isMustTailCall() || CI->isNoTailCall())
4357 return nullptr;
4358
4359 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4360 replaceInstUsesWith(*From, With);
4361 };
4362 auto InstCombineErase = [this](Instruction *I) {
4364 };
4365 LibCallSimplifier Simplifier(DL, &TLI, &DT, &DC, &AC, ORE, BFI, PSI,
4366 InstCombineRAUW, InstCombineErase);
4367 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
4368 ++NumSimplified;
4369 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4370 }
4371 if (Value *With = optimizeModularFormat(CI, Builder)) {
4372 ++NumSimplified;
4373 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4374 }
4375
4376 return nullptr;
4377}
4378
4380 // Strip off at most one level of pointer casts, looking for an alloca. This
4381 // is good enough in practice and simpler than handling any number of casts.
4382 Value *Underlying = TrampMem->stripPointerCasts();
4383 if (Underlying != TrampMem &&
4384 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4385 return nullptr;
4386 if (!isa<AllocaInst>(Underlying))
4387 return nullptr;
4388
4389 IntrinsicInst *InitTrampoline = nullptr;
4390 for (User *U : TrampMem->users()) {
4392 if (!II)
4393 return nullptr;
4394 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4395 if (InitTrampoline)
4396 // More than one init_trampoline writes to this value. Give up.
4397 return nullptr;
4398 InitTrampoline = II;
4399 continue;
4400 }
4401 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4402 // Allow any number of calls to adjust.trampoline.
4403 continue;
4404 return nullptr;
4405 }
4406
4407 // No call to init.trampoline found.
4408 if (!InitTrampoline)
4409 return nullptr;
4410
4411 // Check that the alloca is being used in the expected way.
4412 if (InitTrampoline->getOperand(0) != TrampMem)
4413 return nullptr;
4414
4415 return InitTrampoline;
4416}
4417
4419 Value *TrampMem) {
4420 // Visit all the previous instructions in the basic block, and try to find a
4421 // init.trampoline which has a direct path to the adjust.trampoline.
4422 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4423 E = AdjustTramp->getParent()->begin();
4424 I != E;) {
4425 Instruction *Inst = &*--I;
4427 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4428 II->getOperand(0) == TrampMem)
4429 return II;
4430 if (Inst->mayWriteToMemory())
4431 return nullptr;
4432 }
4433 return nullptr;
4434}
4435
4436// Given a call to llvm.adjust.trampoline, find and return the corresponding
4437// call to llvm.init.trampoline if the call to the trampoline can be optimized
4438// to a direct call to a function. Otherwise return NULL.
4440 Callee = Callee->stripPointerCasts();
4441 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4442 if (!AdjustTramp ||
4443 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4444 return nullptr;
4445
4446 Value *TrampMem = AdjustTramp->getOperand(0);
4447
4449 return IT;
4450 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4451 return IT;
4452 return nullptr;
4453}
4454
4455Instruction *InstCombinerImpl::foldPtrAuthIntrinsicCallee(CallBase &Call) {
4456 const Value *Callee = Call.getCalledOperand();
4457 const auto *IPC = dyn_cast<IntToPtrInst>(Callee);
4458 if (!IPC || !IPC->isNoopCast(DL))
4459 return nullptr;
4460
4461 const auto *II = dyn_cast<IntrinsicInst>(IPC->getOperand(0));
4462 if (!II)
4463 return nullptr;
4464
4465 Intrinsic::ID IIID = II->getIntrinsicID();
4466 if (IIID != Intrinsic::ptrauth_resign && IIID != Intrinsic::ptrauth_sign)
4467 return nullptr;
4468
4469 // Isolate the ptrauth bundle from the others.
4470 std::optional<OperandBundleUse> PtrAuthBundleOrNone;
4472 for (unsigned BI = 0, BE = Call.getNumOperandBundles(); BI != BE; ++BI) {
4473 OperandBundleUse Bundle = Call.getOperandBundleAt(BI);
4474 if (Bundle.getTagID() == LLVMContext::OB_ptrauth)
4475 PtrAuthBundleOrNone = Bundle;
4476 else
4477 NewBundles.emplace_back(Bundle);
4478 }
4479
4480 if (!PtrAuthBundleOrNone)
4481 return nullptr;
4482
4483 Value *NewCallee = nullptr;
4484 switch (IIID) {
4485 // call(ptrauth.resign(p)), ["ptrauth"()] -> call p, ["ptrauth"()]
4486 // assuming the call bundle and the sign operands match.
4487 case Intrinsic::ptrauth_resign: {
4488 // Resign result key should match bundle.
4489 if (II->getOperand(3) != PtrAuthBundleOrNone->Inputs[0])
4490 return nullptr;
4491 // Resign result discriminator should match bundle.
4492 if (II->getOperand(4) != PtrAuthBundleOrNone->Inputs[1])
4493 return nullptr;
4494
4495 // Resign input (auth) key should also match: we can't change the key on
4496 // the new call we're generating, because we don't know what keys are valid.
4497 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4498 return nullptr;
4499
4500 Value *NewBundleOps[] = {II->getOperand(1), II->getOperand(2)};
4501 NewBundles.emplace_back("ptrauth", NewBundleOps);
4502 NewCallee = II->getOperand(0);
4503 break;
4504 }
4505
4506 // call(ptrauth.sign(p)), ["ptrauth"()] -> call p
4507 // assuming the call bundle and the sign operands match.
4508 // Non-ptrauth indirect calls are undesirable, but so is ptrauth.sign.
4509 case Intrinsic::ptrauth_sign: {
4510 // Sign key should match bundle.
4511 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4512 return nullptr;
4513 // Sign discriminator should match bundle.
4514 if (II->getOperand(2) != PtrAuthBundleOrNone->Inputs[1])
4515 return nullptr;
4516 NewCallee = II->getOperand(0);
4517 break;
4518 }
4519 default:
4520 llvm_unreachable("unexpected intrinsic ID");
4521 }
4522
4523 if (!NewCallee)
4524 return nullptr;
4525
4526 NewCallee = Builder.CreateBitOrPointerCast(NewCallee, Callee->getType());
4527 CallBase *NewCall = CallBase::Create(&Call, NewBundles);
4528 NewCall->setCalledOperand(NewCallee);
4529 return NewCall;
4530}
4531
4532Instruction *InstCombinerImpl::foldPtrAuthConstantCallee(CallBase &Call) {
4534 if (!CPA)
4535 return nullptr;
4536
4537 auto *CalleeF = dyn_cast<Function>(CPA->getPointer());
4538 // If the ptrauth constant isn't based on a function pointer, bail out.
4539 if (!CalleeF)
4540 return nullptr;
4541
4542 // Inspect the call ptrauth bundle to check it matches the ptrauth constant.
4544 if (!PAB)
4545 return nullptr;
4546
4547 auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
4548 Value *Discriminator = PAB->Inputs[1];
4549
4550 // If the bundle doesn't match, this is probably going to fail to auth.
4551 if (!CPA->isKnownCompatibleWith(Key, Discriminator, DL))
4552 return nullptr;
4553
4554 // If the bundle matches the constant, proceed in making this a direct call.
4556 NewCall->setCalledOperand(CalleeF);
4557 return NewCall;
4558}
4559
4560bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
4561 const TargetLibraryInfo *TLI) {
4562 // Note: We only handle cases which can't be driven from generic attributes
4563 // here. So, for example, nonnull and noalias (which are common properties
4564 // of some allocation functions) are expected to be handled via annotation
4565 // of the respective allocator declaration with generic attributes.
4566 bool Changed = false;
4567
4568 if (!Call.getType()->isPointerTy())
4569 return Changed;
4570
4571 std::optional<APInt> Size = getAllocSize(&Call, TLI);
4572 if (Size && *Size != 0) {
4573 // TODO: We really should just emit deref_or_null here and then
4574 // let the generic inference code combine that with nonnull.
4575 if (Call.hasRetAttr(Attribute::NonNull)) {
4576 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
4578 Call.getContext(), Size->getLimitedValue()));
4579 } else {
4580 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
4582 Call.getContext(), Size->getLimitedValue()));
4583 }
4584 }
4585
4586 // Add alignment attribute if alignment is a power of two constant.
4587 Value *Alignment = getAllocAlignment(&Call, TLI);
4588 if (!Alignment)
4589 return Changed;
4590
4591 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
4592 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
4593 uint64_t AlignmentVal = AlignOpC->getZExtValue();
4594 if (llvm::isPowerOf2_64(AlignmentVal)) {
4595 Align ExistingAlign = Call.getRetAlign().valueOrOne();
4596 Align NewAlign = Align(AlignmentVal);
4597 if (NewAlign > ExistingAlign) {
4600 Changed = true;
4601 }
4602 }
4603 }
4604 return Changed;
4605}
4606
4607/// Improvements for call, callbr and invoke instructions.
4608Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
4609 bool Changed = annotateAnyAllocSite(Call, &TLI);
4610
4611 // Mark any parameters that are known to be non-null with the nonnull
4612 // attribute. This is helpful for inlining calls to functions with null
4613 // checks on their arguments.
4614 SmallVector<unsigned, 4> ArgNos;
4615 unsigned ArgNo = 0;
4616
4617 for (Value *V : Call.args()) {
4618 if (V->getType()->isPointerTy()) {
4619 // Simplify the nonnull operand if the parameter is known to be nonnull.
4620 // Otherwise, try to infer nonnull for it.
4621 bool HasDereferenceable = Call.getParamDereferenceableBytes(ArgNo) > 0;
4622 if (Call.paramHasAttr(ArgNo, Attribute::NonNull) ||
4623 (HasDereferenceable &&
4625 V->getType()->getPointerAddressSpace()))) {
4626 if (Value *Res = simplifyNonNullOperand(V, HasDereferenceable)) {
4627 replaceOperand(Call, ArgNo, Res);
4628 Changed = true;
4629 }
4630 } else if (isKnownNonZero(V,
4631 getSimplifyQuery().getWithInstruction(&Call))) {
4632 ArgNos.push_back(ArgNo);
4633 }
4634 }
4635 ArgNo++;
4636 }
4637
4638 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
4639
4640 if (!ArgNos.empty()) {
4641 AttributeList AS = Call.getAttributes();
4642 LLVMContext &Ctx = Call.getContext();
4643 AS = AS.addParamAttribute(Ctx, ArgNos,
4644 Attribute::get(Ctx, Attribute::NonNull));
4645 Call.setAttributes(AS);
4646 Changed = true;
4647 }
4648
4649 // If the callee is a pointer to a function, attempt to move any casts to the
4650 // arguments of the call/callbr/invoke.
4652 Function *CalleeF = dyn_cast<Function>(Callee);
4653 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
4654 transformConstExprCastCall(Call))
4655 return nullptr;
4656
4657 if (CalleeF) {
4658 // Remove the convergent attr on calls when the callee is not convergent.
4659 if (Call.isConvergent() && !CalleeF->isConvergent() &&
4660 !CalleeF->isIntrinsic()) {
4661 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4662 << "\n");
4664 return &Call;
4665 }
4666
4667 // If the call and callee calling conventions don't match, and neither one
4668 // of the calling conventions is compatible with C calling convention
4669 // this call must be unreachable, as the call is undefined.
4670 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
4671 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
4675 // Only do this for calls to a function with a body. A prototype may
4676 // not actually end up matching the implementation's calling conv for a
4677 // variety of reasons (e.g. it may be written in assembly).
4678 !CalleeF->isDeclaration()) {
4679 Instruction *OldCall = &Call;
4681 // If OldCall does not return void then replaceInstUsesWith poison.
4682 // This allows ValueHandlers and custom metadata to adjust itself.
4683 if (!OldCall->getType()->isVoidTy())
4684 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
4685 if (isa<CallInst>(OldCall))
4686 return eraseInstFromFunction(*OldCall);
4687
4688 // We cannot remove an invoke or a callbr, because it would change thexi
4689 // CFG, just change the callee to a null pointer.
4690 cast<CallBase>(OldCall)->setCalledFunction(
4691 CalleeF->getFunctionType(),
4692 Constant::getNullValue(CalleeF->getType()));
4693 return nullptr;
4694 }
4695 }
4696
4697 // Calling a null function pointer is undefined if a null address isn't
4698 // dereferenceable.
4699 if ((isa<ConstantPointerNull>(Callee) &&
4701 isa<UndefValue>(Callee)) {
4702 // If Call does not return void then replaceInstUsesWith poison.
4703 // This allows ValueHandlers and custom metadata to adjust itself.
4704 if (!Call.getType()->isVoidTy())
4706
4707 if (Call.isTerminator()) {
4708 // Can't remove an invoke or callbr because we cannot change the CFG.
4709 return nullptr;
4710 }
4711
4712 // This instruction is not reachable, just remove it.
4715 }
4716
4717 if (IntrinsicInst *II = findInitTrampoline(Callee))
4718 return transformCallThroughTrampoline(Call, *II);
4719
4720 // Combine calls involving pointer authentication intrinsics.
4721 if (Instruction *NewCall = foldPtrAuthIntrinsicCallee(Call))
4722 return NewCall;
4723
4724 // Combine calls to ptrauth constants.
4725 if (Instruction *NewCall = foldPtrAuthConstantCallee(Call))
4726 return NewCall;
4727
4728 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4729 InlineAsm *IA = cast<InlineAsm>(Callee);
4730 if (!IA->canThrow()) {
4731 // Normal inline asm calls cannot throw - mark them
4732 // 'nounwind'.
4734 Changed = true;
4735 }
4736 }
4737
4738 // Try to optimize the call if possible, we require DataLayout for most of
4739 // this. None of these calls are seen as possibly dead so go ahead and
4740 // delete the instruction now.
4741 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4742 Instruction *I = tryOptimizeCall(CI);
4743 // If we changed something return the result, etc. Otherwise let
4744 // the fallthrough check.
4745 if (I) return eraseInstFromFunction(*I);
4746 }
4747
4748 if (!Call.use_empty() && !Call.isMustTailCall())
4749 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
4750 Type *CallTy = Call.getType();
4751 Type *RetArgTy = ReturnedArg->getType();
4752 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
4753 return replaceInstUsesWith(
4754 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4755 }
4756
4757 // Drop unnecessary callee_type metadata from calls that were converted
4758 // into direct calls.
4759 if (Call.getMetadata(LLVMContext::MD_callee_type) && !Call.isIndirectCall()) {
4760 Call.setMetadata(LLVMContext::MD_callee_type, nullptr);
4761 Changed = true;
4762 }
4763
4764 // Drop unnecessary kcfi operand bundles from calls that were converted
4765 // into direct calls.
4767 if (Bundle && !Call.isIndirectCall()) {
4768 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
4769 if (CalleeF) {
4770 ConstantInt *FunctionType = nullptr;
4771 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
4772
4773 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
4774 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
4775
4776 if (FunctionType &&
4777 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
4778 dbgs() << Call.getModule()->getName()
4779 << ": warning: kcfi: " << Call.getCaller()->getName()
4780 << ": call to " << CalleeF->getName()
4781 << " using a mismatching function pointer type\n";
4782 }
4783 });
4784
4786 }
4787
4788 if (isRemovableAlloc(&Call, &TLI))
4789 return visitAllocSite(Call);
4790
4791 // Handle intrinsics which can be used in both call and invoke context.
4792 switch (Call.getIntrinsicID()) {
4793 case Intrinsic::experimental_gc_statepoint: {
4794 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
4795 SmallPtrSet<Value *, 32> LiveGcValues;
4796 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4797 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4798
4799 // Remove the relocation if unused.
4800 if (GCR.use_empty()) {
4802 continue;
4803 }
4804
4805 Value *DerivedPtr = GCR.getDerivedPtr();
4806 Value *BasePtr = GCR.getBasePtr();
4807
4808 // Undef is undef, even after relocation.
4809 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
4812 continue;
4813 }
4814
4815 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
4816 // The relocation of null will be null for most any collector.
4817 // TODO: provide a hook for this in GCStrategy. There might be some
4818 // weird collector this property does not hold for.
4819 if (isa<ConstantPointerNull>(DerivedPtr)) {
4820 // Use null-pointer of gc_relocate's type to replace it.
4823 continue;
4824 }
4825
4826 // isKnownNonNull -> nonnull attribute
4827 if (!GCR.hasRetAttr(Attribute::NonNull) &&
4828 isKnownNonZero(DerivedPtr,
4829 getSimplifyQuery().getWithInstruction(&Call))) {
4830 GCR.addRetAttr(Attribute::NonNull);
4831 // We discovered new fact, re-check users.
4832 Worklist.pushUsersToWorkList(GCR);
4833 }
4834 }
4835
4836 // If we have two copies of the same pointer in the statepoint argument
4837 // list, canonicalize to one. This may let us common gc.relocates.
4838 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
4839 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
4840 auto *OpIntTy = GCR.getOperand(2)->getType();
4841 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
4842 }
4843
4844 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4845 // Canonicalize on the type from the uses to the defs
4846
4847 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4848 LiveGcValues.insert(BasePtr);
4849 LiveGcValues.insert(DerivedPtr);
4850 }
4851 std::optional<OperandBundleUse> Bundle =
4853 unsigned NumOfGCLives = LiveGcValues.size();
4854 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4855 break;
4856 // We can reduce the size of gc live bundle.
4857 DenseMap<Value *, unsigned> Val2Idx;
4858 std::vector<Value *> NewLiveGc;
4859 for (Value *V : Bundle->Inputs) {
4860 auto [It, Inserted] = Val2Idx.try_emplace(V);
4861 if (!Inserted)
4862 continue;
4863 if (LiveGcValues.count(V)) {
4864 It->second = NewLiveGc.size();
4865 NewLiveGc.push_back(V);
4866 } else
4867 It->second = NumOfGCLives;
4868 }
4869 // Update all gc.relocates
4870 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4871 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4872 Value *BasePtr = GCR.getBasePtr();
4873 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4874 "Missed live gc for base pointer");
4875 auto *OpIntTy1 = GCR.getOperand(1)->getType();
4876 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4877 Value *DerivedPtr = GCR.getDerivedPtr();
4878 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4879 "Missed live gc for derived pointer");
4880 auto *OpIntTy2 = GCR.getOperand(2)->getType();
4881 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4882 }
4883 // Create new statepoint instruction.
4884 OperandBundleDef NewBundle("gc-live", NewLiveGc);
4885 return CallBase::Create(&Call, NewBundle);
4886 }
4887 default: { break; }
4888 }
4889
4890 return Changed ? &Call : nullptr;
4891}
4892
4893/// If the callee is a constexpr cast of a function, attempt to move the cast to
4894/// the arguments of the call/invoke.
4895/// CallBrInst is not supported.
4896bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
4897 auto *Callee =
4899 if (!Callee)
4900 return false;
4901
4903 "CallBr's don't have a single point after a def to insert at");
4904
4905 // Don't perform the transform for declarations, which may not be fully
4906 // accurate. For example, void @foo() is commonly used as a placeholder for
4907 // unknown prototypes.
4908 if (Callee->isDeclaration())
4909 return false;
4910
4911 // If this is a call to a thunk function, don't remove the cast. Thunks are
4912 // used to transparently forward all incoming parameters and outgoing return
4913 // values, so it's important to leave the cast in place.
4914 if (Callee->hasFnAttribute("thunk"))
4915 return false;
4916
4917 // If this is a call to a naked function, the assembly might be
4918 // using an argument, or otherwise rely on the frame layout,
4919 // the function prototype will mismatch.
4920 if (Callee->hasFnAttribute(Attribute::Naked))
4921 return false;
4922
4923 // If this is a musttail call, the callee's prototype must match the caller's
4924 // prototype with the exception of pointee types. The code below doesn't
4925 // implement that, so we can't do this transform.
4926 // TODO: Do the transform if it only requires adding pointer casts.
4927 if (Call.isMustTailCall())
4928 return false;
4929
4931 const AttributeList &CallerPAL = Call.getAttributes();
4932
4933 // Okay, this is a cast from a function to a different type. Unless doing so
4934 // would cause a type conversion of one of our arguments, change this call to
4935 // be a direct call with arguments casted to the appropriate types.
4936 FunctionType *FT = Callee->getFunctionType();
4937 Type *OldRetTy = Caller->getType();
4938 Type *NewRetTy = FT->getReturnType();
4939
4940 // Check to see if we are changing the return type...
4941 if (OldRetTy != NewRetTy) {
4942
4943 if (NewRetTy->isStructTy())
4944 return false; // TODO: Handle multiple return values.
4945
4946 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4947 if (!Caller->use_empty())
4948 return false; // Cannot transform this return value.
4949 }
4950
4951 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4952 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4953 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4954 NewRetTy, CallerPAL.getRetAttrs())))
4955 return false; // Attribute not compatible with transformed value.
4956 }
4957
4958 // If the callbase is an invoke instruction, and the return value is
4959 // used by a PHI node in a successor, we cannot change the return type of
4960 // the call because there is no place to put the cast instruction (without
4961 // breaking the critical edge). Bail out in this case.
4962 if (!Caller->use_empty()) {
4963 BasicBlock *PhisNotSupportedBlock = nullptr;
4964 if (auto *II = dyn_cast<InvokeInst>(Caller))
4965 PhisNotSupportedBlock = II->getNormalDest();
4966 if (PhisNotSupportedBlock)
4967 for (User *U : Caller->users())
4968 if (PHINode *PN = dyn_cast<PHINode>(U))
4969 if (PN->getParent() == PhisNotSupportedBlock)
4970 return false;
4971 }
4972 }
4973
4974 unsigned NumActualArgs = Call.arg_size();
4975 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4976
4977 // Prevent us turning:
4978 // declare void @takes_i32_inalloca(i32* inalloca)
4979 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4980 //
4981 // into:
4982 // call void @takes_i32_inalloca(i32* null)
4983 //
4984 // Similarly, avoid folding away bitcasts of byval calls.
4985 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4986 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4987 return false;
4988
4989 auto AI = Call.arg_begin();
4990 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4991 Type *ParamTy = FT->getParamType(i);
4992 Type *ActTy = (*AI)->getType();
4993
4994 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4995 return false; // Cannot transform this parameter value.
4996
4997 // Check if there are any incompatible attributes we cannot drop safely.
4998 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4999 .overlaps(AttributeFuncs::typeIncompatible(
5000 ParamTy, CallerPAL.getParamAttrs(i),
5001 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
5002 return false; // Attribute not compatible with transformed value.
5003
5004 if (Call.isInAllocaArgument(i) ||
5005 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
5006 return false; // Cannot transform to and from inalloca/preallocated.
5007
5008 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
5009 return false;
5010
5011 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
5012 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
5013 return false; // Cannot transform to or from byval.
5014 }
5015
5016 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
5017 !CallerPAL.isEmpty()) {
5018 // In this case we have more arguments than the new function type, but we
5019 // won't be dropping them. Check that these extra arguments have attributes
5020 // that are compatible with being a vararg call argument.
5021 unsigned SRetIdx;
5022 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
5023 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
5024 return false;
5025 }
5026
5027 // Okay, we decided that this is a safe thing to do: go ahead and start
5028 // inserting cast instructions as necessary.
5029 SmallVector<Value *, 8> Args;
5031 Args.reserve(NumActualArgs);
5032 ArgAttrs.reserve(NumActualArgs);
5033
5034 // Get any return attributes.
5035 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
5036
5037 // If the return value is not being used, the type may not be compatible
5038 // with the existing attributes. Wipe out any problematic attributes.
5039 RAttrs.remove(
5040 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
5041
5042 LLVMContext &Ctx = Call.getContext();
5043 AI = Call.arg_begin();
5044 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
5045 Type *ParamTy = FT->getParamType(i);
5046
5047 Value *NewArg = *AI;
5048 if ((*AI)->getType() != ParamTy)
5049 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
5050 Args.push_back(NewArg);
5051
5052 // Add any parameter attributes except the ones incompatible with the new
5053 // type. Note that we made sure all incompatible ones are safe to drop.
5054 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
5055 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
5056 ArgAttrs.push_back(
5057 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
5058 }
5059
5060 // If the function takes more arguments than the call was taking, add them
5061 // now.
5062 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
5063 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5064 ArgAttrs.push_back(AttributeSet());
5065 }
5066
5067 // If we are removing arguments to the function, emit an obnoxious warning.
5068 if (FT->getNumParams() < NumActualArgs) {
5069 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
5070 if (FT->isVarArg()) {
5071 // Add all of the arguments in their promoted form to the arg list.
5072 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5073 Type *PTy = getPromotedType((*AI)->getType());
5074 Value *NewArg = *AI;
5075 if (PTy != (*AI)->getType()) {
5076 // Must promote to pass through va_arg area!
5077 Instruction::CastOps opcode =
5078 CastInst::getCastOpcode(*AI, false, PTy, false);
5079 NewArg = Builder.CreateCast(opcode, *AI, PTy);
5080 }
5081 Args.push_back(NewArg);
5082
5083 // Add any parameter attributes.
5084 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
5085 }
5086 }
5087 }
5088
5089 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
5090
5091 if (NewRetTy->isVoidTy())
5092 Caller->setName(""); // Void type should not have a name.
5093
5094 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
5095 "missing argument attributes");
5096 AttributeList NewCallerPAL = AttributeList::get(
5097 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
5098
5100 Call.getOperandBundlesAsDefs(OpBundles);
5101
5102 CallBase *NewCall;
5103 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5104 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
5105 II->getUnwindDest(), Args, OpBundles);
5106 } else {
5107 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
5108 cast<CallInst>(NewCall)->setTailCallKind(
5109 cast<CallInst>(Caller)->getTailCallKind());
5110 }
5111 NewCall->takeName(Caller);
5113 NewCall->setAttributes(NewCallerPAL);
5114
5115 // Preserve prof metadata if any.
5116 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
5117
5118 // Insert a cast of the return type as necessary.
5119 Instruction *NC = NewCall;
5120 Value *NV = NC;
5121 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
5122 assert(!NV->getType()->isVoidTy());
5124 NC->setDebugLoc(Caller->getDebugLoc());
5125
5126 auto OptInsertPt = NewCall->getInsertionPointAfterDef();
5127 assert(OptInsertPt && "No place to insert cast");
5128 InsertNewInstBefore(NC, *OptInsertPt);
5129 Worklist.pushUsersToWorkList(*Caller);
5130 }
5131
5132 if (!Caller->use_empty())
5133 replaceInstUsesWith(*Caller, NV);
5134 else if (Caller->hasValueHandle()) {
5135 if (OldRetTy == NV->getType())
5137 else
5138 // We cannot call ValueIsRAUWd with a different type, and the
5139 // actual tracked value will disappear.
5141 }
5142
5143 eraseInstFromFunction(*Caller);
5144 return true;
5145}
5146
5147/// Turn a call to a function created by init_trampoline / adjust_trampoline
5148/// intrinsic pair into a direct call to the underlying function.
5150InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
5151 IntrinsicInst &Tramp) {
5152 FunctionType *FTy = Call.getFunctionType();
5153 AttributeList Attrs = Call.getAttributes();
5154
5155 // If the call already has the 'nest' attribute somewhere then give up -
5156 // otherwise 'nest' would occur twice after splicing in the chain.
5157 if (Attrs.hasAttrSomewhere(Attribute::Nest))
5158 return nullptr;
5159
5161 FunctionType *NestFTy = NestF->getFunctionType();
5162
5163 AttributeList NestAttrs = NestF->getAttributes();
5164 if (!NestAttrs.isEmpty()) {
5165 unsigned NestArgNo = 0;
5166 Type *NestTy = nullptr;
5167 AttributeSet NestAttr;
5168
5169 // Look for a parameter marked with the 'nest' attribute.
5170 for (FunctionType::param_iterator I = NestFTy->param_begin(),
5171 E = NestFTy->param_end();
5172 I != E; ++NestArgNo, ++I) {
5173 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
5174 if (AS.hasAttribute(Attribute::Nest)) {
5175 // Record the parameter type and any other attributes.
5176 NestTy = *I;
5177 NestAttr = AS;
5178 break;
5179 }
5180 }
5181
5182 if (NestTy) {
5183 std::vector<Value*> NewArgs;
5184 std::vector<AttributeSet> NewArgAttrs;
5185 NewArgs.reserve(Call.arg_size() + 1);
5186 NewArgAttrs.reserve(Call.arg_size());
5187
5188 // Insert the nest argument into the call argument list, which may
5189 // mean appending it. Likewise for attributes.
5190
5191 {
5192 unsigned ArgNo = 0;
5193 auto I = Call.arg_begin(), E = Call.arg_end();
5194 do {
5195 if (ArgNo == NestArgNo) {
5196 // Add the chain argument and attributes.
5197 Value *NestVal = Tramp.getArgOperand(2);
5198 if (NestVal->getType() != NestTy)
5199 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
5200 NewArgs.push_back(NestVal);
5201 NewArgAttrs.push_back(NestAttr);
5202 }
5203
5204 if (I == E)
5205 break;
5206
5207 // Add the original argument and attributes.
5208 NewArgs.push_back(*I);
5209 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
5210
5211 ++ArgNo;
5212 ++I;
5213 } while (true);
5214 }
5215
5216 // The trampoline may have been bitcast to a bogus type (FTy).
5217 // Handle this by synthesizing a new function type, equal to FTy
5218 // with the chain parameter inserted.
5219
5220 std::vector<Type*> NewTypes;
5221 NewTypes.reserve(FTy->getNumParams()+1);
5222
5223 // Insert the chain's type into the list of parameter types, which may
5224 // mean appending it.
5225 {
5226 unsigned ArgNo = 0;
5227 FunctionType::param_iterator I = FTy->param_begin(),
5228 E = FTy->param_end();
5229
5230 do {
5231 if (ArgNo == NestArgNo)
5232 // Add the chain's type.
5233 NewTypes.push_back(NestTy);
5234
5235 if (I == E)
5236 break;
5237
5238 // Add the original type.
5239 NewTypes.push_back(*I);
5240
5241 ++ArgNo;
5242 ++I;
5243 } while (true);
5244 }
5245
5246 // Replace the trampoline call with a direct call. Let the generic
5247 // code sort out any function type mismatches.
5248 FunctionType *NewFTy =
5249 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
5250 AttributeList NewPAL =
5251 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
5252 Attrs.getRetAttrs(), NewArgAttrs);
5253
5255 Call.getOperandBundlesAsDefs(OpBundles);
5256
5257 Instruction *NewCaller;
5258 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
5259 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
5260 II->getUnwindDest(), NewArgs, OpBundles);
5261 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
5262 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
5263 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
5264 NewCaller =
5265 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
5266 CBI->getIndirectDests(), NewArgs, OpBundles);
5267 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
5268 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
5269 } else {
5270 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
5271 cast<CallInst>(NewCaller)->setTailCallKind(
5272 cast<CallInst>(Call).getTailCallKind());
5273 cast<CallInst>(NewCaller)->setCallingConv(
5274 cast<CallInst>(Call).getCallingConv());
5275 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
5276 }
5277 NewCaller->setDebugLoc(Call.getDebugLoc());
5278
5279 return NewCaller;
5280 }
5281 }
5282
5283 // Replace the trampoline call with a direct call. Since there is no 'nest'
5284 // parameter, there is no need to adjust the argument list. Let the generic
5285 // code sort out any function type mismatches.
5286 Call.setCalledFunction(FTy, NestF);
5287 return &Call;
5288}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
@ Scaled
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
#define Check(C,...)
#define DEBUG_TYPE
IRTranslator LLVM IR MI
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
static bool isIdempotentBinaryIntrinsic(Intrinsic::ID IID)
Helper to match idempotent binary intrinsics, namely, intrinsics where f(f(x, y), y) == f(x,...
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, const SimplifyQuery &SQ)
Return true if two values Op0 and Op1 are known to have the same sign.
static Value * optimizeModularFormat(CallInst *CI, IRBuilderBase &B)
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
static std::optional< bool > getKnownSign(Value *Op, const SimplifyQuery &SQ)
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
static Value * simplifyReductionOperand(Value *Arg, bool CanReorderLanes)
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
static Value * foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
static std::optional< bool > getKnownSignOrZero(Value *Op, const SimplifyQuery &SQ)
static Value * foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, const DataLayout &DL, InstCombiner::BuilderTy &Builder)
Fold an unsigned minimum of trailing or leading zero bits counts: umin(cttz(CtOp, ZeroUndef),...
static Value * foldIdempotentBinaryIntrinsicRecurrence(InstCombinerImpl &IC, IntrinsicInst *II)
Attempt to simplify value-accumulating recurrences of kind: umax.acc = phi i8 [ umax,...
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
static Instruction * simplifyNeonTbl(IntrinsicInst &II, InstCombiner &IC, bool IsExtension)
Convert tbl/tbx intrinsics to shufflevector if the mask is constant, and at most two source operands ...
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
static IntrinsicInst * findInitTrampoline(Value *Callee)
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
static Instruction * foldNeonShift(IntrinsicInst *II, InstCombinerImpl &IC)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool inputDenormalIsIEEE(DenormalMode Mode)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static const Function * getCalledFunction(const Value *V)
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
bool isNegative() const
Definition APFloat.h:1431
void clearSign()
Definition APFloat.h:1280
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
Definition APSInt.h:312
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
Definition APSInt.h:304
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:195
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
static LLVM_ABI AttributeSet get(LLVMContext &C, const AttrBuilder &B)
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
InstListType::reverse_iterator reverse_iterator
Definition BasicBlock.h:172
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:236
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:279
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:244
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:248
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:240
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setCallingConv(CallingConv::ID CC)
void setDoesNotThrow()
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isInAllocaArgument(unsigned ArgNo) const
Determine whether this argument is passed in an alloca.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
void setNotConvergent()
Value * getCalledOperand() const
void setAttributes(AttributeList A)
Set the attributes for this call.
Attribute getFnAttr(StringRef Kind) const
Get the attribute of a given kind for the function.
bool doesNotThrow() const
Determine if the call cannot unwind.
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Value * getReturnedArgOperand() const
If one of the arguments has the 'returned' attribute, returns its operand value.
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
bool isMustTailCall() const
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:871
Predicate getUnorderedPredicate() const
Definition InstrTypes.h:811
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition Constants.h:269
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc, Constant *DeactivationSymbol)
Return a pointer signed with the specified parameters.
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
LLVM_ABI ConstantRange zextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Record of a variable value-assignment, aka a non instruction representation of the dbg....
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
unsigned size() const
Definition DenseMap.h:110
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition DenseMap.h:174
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
Definition IRBuilder.h:107
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Type::subtype_iterator param_iterator
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
Definition Function.h:610
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
LLVM_ABI Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
LLVM_ABI Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
Definition Statepoint.h:206
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition Value.h:576
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:328
PointerType * getType() const
Global values are always pointers.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition IRBuilder.h:502
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2085
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition IRBuilder.h:2607
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2442
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2212
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Value * foldReversedIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are reverses, try to pull the reverse after the intrinsic.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * visitFenceInst(FenceInst &FI)
Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
Instruction * visitInvokeInst(InvokeInst &II)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
The core instruction combiner logic.
SimplifyQuery SQ
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
DominatorTree & getDominatorTree() const
BlockFrequencyInfo * BFI
TargetLibraryInfo & TLI
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
const DataLayout & DL
DomConditionCache DC
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
DominatorTree & DT
ProfileSummaryInfo * PSI
BuilderTy & Builder
AssumptionCache & getAssumptionCache() const
OptimizationRemarkEmitter & ORE
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
LLVM_ABI bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Metadata node.
Definition Metadata.h:1078
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
static LLVM_ABI MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition Metadata.cpp:104
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
StringRef getName() const
Get a short "name" for the module.
Definition Module.h:269
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition Operator.h:43
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
bool isCommutative() const
Return true if the instruction is commutative.
Definition Operator.h:128
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
SmallBitVector & set()
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Class to represent struct types.
static LLVM_ABI bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
LLVM_ABI unsigned getIntegerBitWidth() const
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Definition Type.cpp:153
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:139
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:147
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Definition Use.cpp:35
void setOperand(unsigned i, Value *Val)
Definition User.h:238
Value * getOperand(unsigned i) const
Definition User.h:233
This represents the llvm.va_end intrinsic.
static LLVM_ABI void ValueIsDeleted(Value *V)
Definition Value.cpp:1233
static LLVM_ABI void ValueIsRAUWd(Value *Old, Value *New)
Definition Value.cpp:1286
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
static constexpr uint64_t MaximumAlignment
Definition Value.h:830
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
Definition Value.cpp:226
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
Definition Value.h:829
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:403
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Definition LLVMContext.h:55
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
Definition DebugInfo.h:195
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
constexpr double e
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI cl::opt< bool > EnableKnowledgeRetention
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
LLVM_ABI RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM_ABI Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI RetainedKnowledge getKnowledgeFromOperandInAssume(AssumeInst &Assume, unsigned Idx)
Retreive the information help by Assume on the operand at index Idx.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
LLVM_ABI bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
Definition MathExtras.h:357
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition Local.h:252
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
auto find_if_not(R &&Range, UnaryPredicate P)
Definition STLExtras.h:1775
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
LLVM_ABI FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
iterator_range< SplittingIterator > split(StringRef Str, StringRef Separator)
Split the specified string over a separator and return a range-compatible iterable over its partition...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
@ Other
Any other memory.
Definition ModRef.h:68
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
OperandBundleDefT< Value * > OperandBundleDef
Definition AutoUpgrade.h:34
@ Add
Sum of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
Definition Loads.cpp:249
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
LLVM_ABI std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define NC
Definition regutils.h:42
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition KnownBits.h:286
bool isAllOnes() const
Returns true if value is all one bits.
Definition KnownBits.h:83
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
Matching combinators.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition Alignment.h:130
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
ArrayRef< Use > Inputs
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
const DataLayout & DL
const Instruction * CxtI
SimplifyQuery getWithInstruction(const Instruction *I) const