Top 8 Python Libraries for Data Visualization
Last Updated :
08 Mar, 2024
Data Visualization is an extremely important part of Data Analysis. After all, there is no better way to understand the hidden patterns and layers in the data than seeing them in a visual format! Don’t trust me? Well, assume that you analyzed your company data and found out that a particular product was consistently losing money for the company. Your boss may not pay that much attention to a written report but if you present a line chart with the profits as a red line that is consistently going down, then your boss may pay much more attention! This shows the power of Data Visualization!
Humans are visual creatures and hence, data visualization charts like bar charts, scatterplots, line charts, geographical maps, etc. are extremely important. They tell you information just by looking at them whereas normally you would have to read spreadsheets or text reports to understand the data. Python is one of the most popular programming languages for data analytics as well as data visualization. There are several libraries available in recent years that create beautiful and complex data visualizations.
Below is the list of 8 best Python libraries that are highly being used for Data Visualization in 2024. Let's understand the in-depth details of these Python libraries that are highly used for data visualization.
Top Python Libraries for Data Visualization
These libraries are so popular because they allow analysts and statisticians to create visual data models easily according to their specifications by conveniently providing an interface, and data visualization tools all in one place! The list explains some key features and applications that are being used to prepare data for visualization.
1. Matplotlib
Matplotlib is a data visualization library and 2-D plotting library of Python It was initially released in 2003 and it is the most popular and widely-used plotting library in the Python community. It comes with an interactive environment across multiple platforms. Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web application servers, etc. It can be used to embed plots into applications using various GUI toolkits like Tkinter, GTK+, wxPython, Qt, etc. So you can use Matplotlib to create plots, bar charts, pie charts, histograms, scatterplots, error charts, power spectra, stemplots, and whatever other visualization charts you want! The Pyplot module also provides a MATLAB-like interface that is just as versatile and useful as MATLAB while being free and open source.
To read more about it, refer to the official website: Matplotlib
2. Plotly
Plotly is a free open-source graphing library that can be used to form data visualizations. Plotly (plotly.py) is built on top of the Plotly JavaScript library (plotly.js) and can be used to create web-based data visualizations that can be displayed in Jupyter notebooks or web applications using Dash or saved as individual HTML files. Plotly provides more than 40 unique chart types like scatter plots, histograms, line charts, bar charts, pie charts, error bars, box plots, multiple axes, sparklines, dendrograms, 3-D charts, etc. Plotly also provides contour plots, which are not that common in other data visualization libraries. In addition to all this, Plotly can be used offline with no internet connection.
To read more about it, refer to the official website: Plotly
3. Seaborn
Seaborn is a Python data visualization library that is based on Matplotlib and closely integrated with the NumPy and pandas data structures. Seaborn has various dataset-oriented plotting functions that operate on data frames and arrays that have whole datasets within them. Then it internally performs the necessary statistical aggregation and mapping functions to create informative plots that the user desires. It is a high-level interface for creating beautiful and informative statistical graphics that are integral to exploring and understanding data. The Seaborn data graphics can include bar charts, pie charts, histograms, scatterplots, error charts, etc. Seaborn also has various tools for choosing colour palettes that can reveal patterns in the data.
To read more about it, refer to the official website: Seaborn
4. GGplot
Ggplot is a Python data visualization library that is based on the implementation of ggplot2 which is created for the programming language R. Ggplot can create data visualizations such as bar charts, pie charts, histograms, scatterplots, error charts, etc. using high-level API. It also allows you to add different types of data visualization components or layers in a single visualization. Once ggplot has been told which variables to map to which aesthetics in the plot, it does the rest of the work so that the user can focus on interpreting the visualizations and take less time in creating them. But this also means that it is not possible to create highly customized graphics in ggplot. Ggplot is also deeply connected with pandas so it is best to keep the data in DataFrames.
To read more about GGplot, refer to the official website: GGplot
5. Altair
Altair is a statistical data visualization library in Python. It is based on Vega and Vega-Lite which are a sort of declarative language for creating, saving, and sharing data visualization designs that are also interactive. Altair can be used to create beautiful data visualizations of plots such as bar charts, pie charts, histograms, scatterplots, error charts, power spectra, stemplots, etc. using a minimal amount of coding. Altair has dependencies which include Python 3.6, entry points, jsonschema, NumPy, Pandas, and Toolz which are automatically installed with the Altair installation commands. You can open Jupyter Notebook or JupyterLab and execute any of the code to obtain those data visualizations in Altair. Currently, the source for Altair is available on GitHub.
To read more about it, refer to the official website: Altair
6. Bokeh
Bokeh is a data visualization library that provides detailed graphics with a high level of interactivity across various datasets, whether they are large or small. Bokeh is based on The Grammar of Graphics like ggplot but it is native to Python while ggplot is based on ggplot2 from R. Data visualization experts can create various interactive plots for modern web browsers using bokeh which can be used in interactive web applications, HTML documents, or JSON objects. Bokeh has 3 levels that can be used for creating visualizations. The first level focuses only on creating the data plots quickly, the second level controls the basic building blocks of the plot while the third level provides full autonomy for creating the charts with no pre-set defaults. This level is suited to data analysts and IT professionals that are well-versed in the technical side of creating data visualizations.
To read more about it, refer to the official website: Bokeh
7. Pygal
Pygal is a Python data visualization library that is made for creating sexy charts! (According to their website!) While Pygal is similar to Plotly or Bokeh in that it creates data visualization charts that can be embedded into web pages and accessed using a web browser, a primary difference is that it can output charts in the form of SVG or Scalable Vector Graphics. These SVGs ensure that you can observe your charts clearly without losing any of the quality even if you scale them. However, SVG’s are only useful with smaller datasets as too many data points are difficult to render and the charts can become sluggish.
To read more about it, refer to the official website: Pygal
8. Geoplotlib
Most of the data visualization libraries don’t provide much support for creating maps or using geographical data and that is why geoplotlib is such an important Python library. It supports the creation of geographical maps in particular with many different types of maps available such as dot-density maps, choropleths, symbol maps, etc. One thing to keep in mind is that requires NumPy and pyglet as prerequisites before installation but that is not a big disadvantage. Especially since you want to create geographical maps and geoplotlib is the only excellent option for maps out there!
To read more about it, refer to the official website: Geoplotlib
Conclusion
In conclusion, all these Python Libraries for Data Visualization are great options for creating beautiful and informative data visualizations. Each of these has its strong points and advantages so you can select the one that is perfect for your data visualization or project. For example, Matplotlib is extremely popular and well-suited to general 2-D plots while Geoplotlib is uniquely suited to geographical visualizations. So go on and choose your library to create a stunning visualization in Python!
Must Read:
Similar Reads
Top R Libraries for Data Visualization in 2024
When you are talking about data analysis, donât forget data visualization! It is a very important part of data analysis that can reveal hidden trends and provide more insight into the data. Data visualization can provide information just by looking at them whereas it would take much more time to obt
7 min read
Top 10 Libraries for Data Visualization in 2024
Data is becoming the backbone of our current society. Companies can use data to predict their customer reactions, the success of their products and services, and the areas they need to work on. Data can also be used to understand many social and natural phenomena in the world such as social media tr
8 min read
Top 5 Python Libraries For Big Data
As data grows rapidly in volume and complexity, handling it efficiently becomes a challenge. Python, with its vast ecosystem of libraries, has made big data processing more accessible even for beginners. Whether you're analyzing massive datasets, visualizing trends, or building machine learning mode
6 min read
Top Free Data Visualization Tools
Data visualization tools refer to software applications that convert data inputs into attractive visual representations such as maps, graphs and charts for analysis. These tools help businesses and individuals to understand complex data sets, identify trends and make informed decisions. In this arti
5 min read
Plotly for Data Visualization in Python
Plotly is an open-source Python library designed to create interactive, visually appealing charts and graphs. It helps users to explore data through features like zooming, additional details and clicking for deeper insights. It handles the interactivity with JavaScript behind the scenes so that we c
12 min read
Top 10 JavaScript Libraries for Data Visualization [2025]
JavaScript data visualization libraries help developers create interactive charts, graphs, and other visual components that bring data to life. JavaScript data visualization libraries have become the go-to tools for developers. These libraries donât just create charts and graphs; they help tell stor
8 min read
Top 15 Data Visualization Frameworks
Data Visualization Frameworks are known as tools and libraries that can assist analysts, data scientists, and decision-makers in transforming raw data into meaningful visuals. Such frameworks provide all sorts of things, starting with a basic chart and graphical representation of data and going up t
11 min read
Python - Data visualization tutorial
Data visualization is a crucial aspect of data analysis, helping to transform analyzed data into meaningful insights through graphical representations. This comprehensive tutorial will guide you through the fundamentals of data visualization using Python. We'll explore various libraries, including M
7 min read
Visualizing Data with Python's Leather Library
Data visualization is a crucial aspect of data analysis, enabling data scientists and analysts to interpret complex data sets and derive meaningful insights. Among the myriad of Python libraries available for data visualization, Leather stands out for its simplicity and efficiency. This article delv
8 min read
Top Datasets for data visualization
Data Visualization is a graphical structure representing the data to share its insight information. Whether you're a data scientist, analyst, or enthusiast, working with high-quality datasets is essential for creating compelling visualizations that tell a story and provide valuable insights. Top Dat
7 min read