numpy.asfortranarray() in Python
Last Updated :
25 Nov, 2022
numpy.asfortranarray() function is used when we want to convert input to a array which is laid out in Fortran order in memory. Input includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
Syntax : numpy.asfortranarray(arr, dtype=None)
Parameters :
arr : [array_like] Input data, in any form that can be converted to an float type array. This includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
dtype : By default, the data-type is inferred from the input data.
Return : The input arr in Fortran, or column-major, order.
Code #1 : List to fortranarray
Python
# Python program explaining
# numpy.asfortranarray() function
import numpy as geek
my_list = [1, 3, 5, 7, 9]
print ("Input list : ", my_list)
out_arr = geek.asfortranarray(my_list)
print ("output fortranarray from input list : ", out_arr)
Output :
Input list : [1, 3, 5, 7, 9]
output fortranarray from input list : [1 3 5 7 9]
Code #2 : Tuple to fortran array
Python
# Python program explaining
# numpy.asfortranarray() function
import numpy as geek
my_tuple = ([1, 3, 9], [8, 2, 6])
print ("Input tuple : ", my_tuple)
out_arr = geek.asfortranarray(my_tuple, dtype ='int8')
print ("output fortran array from input tuple : ", out_arr)
Output :
Input tuple : ([1, 3, 9], [8, 2, 6])
output fortran array from input tuple : [[1 3 9]
[8 2 6]]
Code #3 : Scalar to fortranarray
Python
# Python program explaining
# numpy.asfortranarray() function
import numpy as geek
my_scalar = 15
print ("Input scalar : ", my_scalar)
out_arr = geek.asfortranarray(my_scalar, dtype ='float')
print ("output fortran array from input scalar : ", out_arr)
Output :
Input scalar : 15
output fortran array from input scalar : [ 15.]
Code #4 : array to fortranarray
Python
# Python program explaining
# numpy.asfortranarray() function
import numpy as geek
in_arr = geek.arange(9).reshape(3, 3)
print ("Input array : ", in_arr)
# checking if it is fortranarray
print(in_arr.flags['F_CONTIGUOUS'])
out_arr = geek.asfortranarray(in_arr, dtype ='float')
print ("output array from input array : ", out_arr)
# checking if it has become fortranarray
print(out_arr.flags['F_CONTIGUOUS'])
Output :
Input array : [[0 1 2]
[3 4 5]
[6 7 8]]
False
output array from input array : [[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]]
True
Similar Reads
numpy.asanyarray() in Python numpy.asanyarray()function is used when we want to convert input to an array but it pass ndarray subclasses through. Input can be scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asanyarray(arr, dtype=None, order=None) Parameters : arr : [array_
2 min read
numpy.asfarray() in Python numpy.asfarray()function is used when we want to convert input to a float type array. Input includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asfarray(arr, dtype=type 'numpy.float64') Parameters : arr : [array_like] Input data, in any for
2 min read
numpy.asarray() in Python numpy.asarray()function is used when we want to convert input to an array. Input can be lists, lists of tuples, tuples, tuples of tuples, tuples of lists and arrays. Syntax : numpy.asarray(arr, dtype=None, order=None) Parameters : arr : [array_like] Input data, in any form that can be converted to a
2 min read
NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C
2 min read
numpy.ascontiguousarray() in Python numpy.ascontiguousarray()function is used when we want to return a contiguous array in memory (C order). Syntax : numpy.ascontiguousarray(arr, dtype=None) Parameters : arr : [array_like] Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples,
2 min read