C++ Program For Detecting Loop In A Linked List
Last Updated :
17 Aug, 2023
Given a linked list, check if the linked list has loop or not. Below diagram shows a linked list with a loop.

The following are different ways of doing this.
Solution 1: Hashing Approach:
Traverse the list one by one and keep putting the node addresses in a Hash Table. At any point, if NULL is reached then return false, and if the next of the current nodes points to any of the previously stored nodes in Hash then return true.
C++
// C++ program to detect loop in a linked list
#include <bits/stdc++.h>
using namespace std;
/* Link list node */
struct Node {
int data;
struct Node* next;
};
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node = new Node;
/* put in the data */
new_node->data = new_data;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// Returns true if there is a loop in linked list
// else returns false.
bool detectLoop(struct Node* h)
{
unordered_set<Node*> s;
while (h != NULL) {
// If this node is already present
// in hashmap it means there is a cycle
// (Because you we encountering the
// node for the second time).
if (s.find(h) != s.end())
return true;
// If we are seeing the node for
// the first time, insert it in hash
s.insert(h);
h = h->next;
}
return false;
}
/* Driver program to test above function*/
int main()
{
/* Start with the empty list */
struct Node* head = NULL;
push(&head, 20);
push(&head, 4);
push(&head, 15);
push(&head, 10);
/* Create a loop for testing */
head->next->next->next->next = head;
if (detectLoop(head))
cout << "Loop found";
else
cout << "No Loop";
return 0;
}
// This code is contributed by Geetanjali
Complexity Analysis:
- Time complexity: O(n).
Only one traversal of the loop is needed. - Auxiliary Space: O(n).
n is the space required to store the value in hashmap.
Solution 2: This problem can be solved without hashmap by modifying the linked list data structure.
Approach: This solution requires modifications to the basic linked list data structure.
- Have a visited flag with each node.
- Traverse the linked list and keep marking visited nodes.
- If you see a visited node again then there is a loop. This solution works in O(n) but requires additional information with each node.
- A variation of this solution that doesn't require modification to basic data structure can be implemented using a hash, just store the addresses of visited nodes in a hash and if you see an address that already exists in hash then there is a loop.
C++
// C++ program to detect loop in a linked list
#include <bits/stdc++.h>
using namespace std;
/* Link list node */
struct Node {
int data;
struct Node* next;
int flag;
};
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node = new Node;
/* put in the data */
new_node->data = new_data;
new_node->flag = 0;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// Returns true if there is a loop in linked list
// else returns false.
bool detectLoop(struct Node* h)
{
while (h != NULL) {
// If this node is already traverse
// it means there is a cycle
// (Because you we encountering the
// node for the second time).
if (h->flag == 1)
return true;
// If we are seeing the node for
// the first time, mark its flag as 1
h->flag = 1;
h = h->next;
}
return false;
}
/* Driver program to test above function*/
int main()
{
/* Start with the empty list */
struct Node* head = NULL;
push(&head, 20);
push(&head, 4);
push(&head, 15);
push(&head, 10);
/* Create a loop for testing */
head->next->next->next->next = head;
if (detectLoop(head))
cout << "Loop found";
else
cout << "No Loop";
return 0;
}
// This code is contributed by Geetanjali
Complexity Analysis:
- Time complexity:O(n).
Only one traversal of the loop is needed. - Auxiliary Space:O(1).
No extra space is needed.
Solution 3: Floyd's Cycle-Finding Algorithm
Approach: This is the fastest method and has been described below:
- Traverse linked list using two pointers.
- Move one pointer(slow_p) by one and another pointer(fast_p) by two.
- If these pointers meet at the same node then there is a loop. If pointers do not meet then linked list doesn't have a loop.
The below image shows how the detectloop function works in the code:

Implementation of Floyd's Cycle-Finding Algorithm:
C++
// C++ program to detect loop in a linked list
#include <bits/stdc++.h>
using namespace std;
/* Link list node */
class Node {
public:
int data;
Node* next;
};
void push(Node** head_ref, int new_data)
{
/* allocate node */
Node* new_node = new Node();
/* put in the data */
new_node->data = new_data;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
int detectLoop(Node* list)
{
Node *slow_p = list, *fast_p = list;
while (slow_p && fast_p && fast_p->next) {
slow_p = slow_p->next;
fast_p = fast_p->next->next;
if (slow_p == fast_p) {
return 1;
}
}
return 0;
}
/* Driver code*/
int main()
{
/* Start with the empty list */
Node* head = NULL;
push(&head, 20);
push(&head, 4);
push(&head, 15);
push(&head, 10);
/* Create a loop for testing */
head->next->next->next->next = head;
if (detectLoop(head))
cout << "Loop found";
else
cout << "No Loop";
return 0;
}
// This is code is contributed by rathbhupendra
Complexity Analysis:
- Time complexity: O(n).
Only one traversal of the loop is needed. - Auxiliary Space:O(1).
There is no space required.
How does above algorithm work?
Please See : How does Floyd’s slow and fast pointers approach work?
https://www.youtube.com/watch?v=Aup0kOWoMVg
Solution 4: Marking visited nodes without modifying the linked list data structure
In this method, a temporary node is created. The next pointer of each node that is traversed is made to point to this temporary node. This way we are using the next pointer of a node as a flag to indicate whether the node has been traversed or not. Every node is checked to see if the next is pointing to a temporary node or not. In the case of the first node of the loop, the second time we traverse it this condition will be true, hence we find that loop exists. If we come across a node that points to null then the loop doesn’t exist.
Below is the implementation of the above approach:
C++
// C++ program to return first node of loop
#include <bits/stdc++.h>
using namespace std;
struct Node {
int key;
struct Node* next;
};
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
temp->next = NULL;
return temp;
}
// A utility function to print a linked list
void printList(Node* head)
{
while (head != NULL) {
cout << head->key << " ";
head = head->next;
}
cout << endl;
}
// Function to detect first node of loop
// in a linked list that may contain loop
bool detectLoop(Node* head)
{
// Create a temporary node
Node* temp = new Node;
while (head != NULL) {
// This condition is for the case
// when there is no loop
if (head->next == NULL) {
return false;
}
// Check if next is already
// pointing to temp
if (head->next == temp) {
return true;
}
// Store the pointer to the next node
// in order to get to it in the next step
Node* nex = head->next;
// Make next point to temp
head->next = temp;
// Get to the next node in the list
head = nex;
}
return false;
}
/* Driver program to test above function*/
int main()
{
Node* head = newNode(1);
head->next = newNode(2);
head->next->next = newNode(3);
head->next->next->next = newNode(4);
head->next->next->next->next = newNode(5);
/* Create a loop for testing(5 is pointing to 3) */
head->next->next->next->next->next = head->next->next;
bool found = detectLoop(head);
if (found)
cout << "Loop Found";
else
cout << "No Loop";
return 0;
}
Complexity Analysis:
- Time complexity: O(n).
Only one traversal of the loop is needed. - Auxiliary Space: O(1).
There is no space required.
Solution 5: Store length
In this method, two pointers are created, first (always points to head) and last. Each time the last pointer moves we calculate no of nodes in between first and last and check whether the current no of nodes > previous no of nodes, if yes we proceed by moving last pointer else it means we've reached the end of the loop, so we return output accordingly.
C++
// C++ program to return first node of loop
#include <bits/stdc++.h>
using namespace std;
struct Node {
int key;
struct Node* next;
};
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
temp->next = NULL;
return temp;
}
// A utility function to print a linked list
void printList(Node* head)
{
while (head != NULL) {
cout << head->key << " ";
head = head->next;
}
cout << endl;
}
/*returns distance between first and last node every time
* last node moves forwards*/
int distance(Node* first, Node* last)
{
/*counts no of nodes between first and last*/
int counter = 0;
Node* curr;
curr = first;
while (curr != last) {
counter += 1;
curr = curr->next;
}
return counter + 1;
}
// Function to detect first node of loop
// in a linked list that may contain loop
bool detectLoop(Node* head)
{
// Create a temporary node
Node* temp = new Node;
Node *first, *last;
/*first always points to head*/
first = head;
/*last pointer initially points to head*/
last = head;
/*current_length stores no of nodes between current
* position of first and last*/
int current_length = 0;
/*current_length stores no of nodes between previous
* position of first and last*/
int prev_length = -1;
while (current_length > prev_length && last != NULL) {
// set prev_length to current length then update the
// current length
prev_length = current_length;
// distance is calculated
current_length = distance(first, last);
// last node points the next node
last = last->next;
}
if (last == NULL) {
return false;
}
else {
return true;
}
}
/* Driver program to test above function*/
int main()
{
Node* head = newNode(1);
head->next = newNode(2);
head->next->next = newNode(3);
head->next->next->next = newNode(4);
head->next->next->next->next = newNode(5);
/* Create a loop for testing(5 is pointing to 3) */
head->next->next->next->next->next = head->next->next;
bool found = detectLoop(head);
if (found)
cout << "Loop Found";
else
cout << "No Loop Found";
return 0;
}
Complexity Analysis:
- Time complexity: O(n2)
- Auxiliary Space: O(1)
Another Approach:
- This is the simplest approach of the given problem, the only thing we have to do is to assign a new value to each data of node in the linked list which is not in the range given.
- Example suppose (1 <= Data on Node <= 10^3) then after visiting node assign the data as -1 as it is out of the given range.
Follow the code given below for a better understanding:
C++
// C++ program to return first node of loop
#include <bits/stdc++.h>
using namespace std;
struct Node {
int key;
struct Node* next;
};
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
temp->next = NULL;
return temp;
}
// Function to detect first node of loop
// in a linked list that may contain loop
bool detectLoop(Node* head)
{
// If the head is null we will return false
if (!head)
return 0;
else {
// Traversing the linked list
// for detecting loop
while (head) {
// If loop found
if (head->key == -1) {
return true;
}
// Changing the data of visited node to any
// value which is outside the given range here it
// is supposed the given range is (1 <= Data on
// Node <= 10^3)
else {
head->key = -1;
head = head->next;
}
}
// If loop not found return false
return 0;
}
}
/* Driver program to test above function*/
int main()
{
Node* head = newNode(1);
head->next = newNode(2);
head->next->next = newNode(3);
head->next->next->next = newNode(4);
head->next->next->next->next = newNode(5);
/* Create a loop for testing(5 is pointing to 3) */
head->next->next->next->next->next = head->next->next;
bool found = detectLoop(head);
cout << found << endl;
return 0;
}
Time Complexity: O(N)
Auxiliary Space: O(1)
Please refer complete article on Detect loop in a linked list for more details!
Similar Reads
C++ Program for Deleting a Node in a Linked List
Write a C++ program to delete a node from the given link list. Examples Input: Linked List: 10 -> 20 -> 30 -> 40 -> 50, Position to delete: 3Output: 10 -> 20 -> 40 -> 50Explanation: The node at position 3 is removed. The list then connects node 20 directly to node 40. Input: Lin
6 min read
C++ Program For Deleting A Node In A Doubly Linked List
Pre-requisite: Doubly Link List Set 1| Introduction and Insertion Write a function to delete a given node in a doubly-linked list. Original Doubly Linked List Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Approach: The deletion of a node in a doubly-linked list
4 min read
C++ Program For Finding Length Of A Linked List
Write a function to count the number of nodes in a given singly linked list. For example, the function should return 5 for linked list 1->3->1->2->1. Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Iterative Solution: 1) Initialize count as 0 2) Initia
4 min read
C++ Program For Finding The Length Of Loop In Linked List
Write a function detectAndCountLoop() that checks whether a given Linked List contains loop and if loop is present then returns count of nodes in loop. For example, the loop is present in below-linked list and length of the loop is 4. If the loop is not present, then the function should return 0. Re
3 min read
C++ Program For Deleting Last Occurrence Of An Item From Linked List
Using pointers, loop through the whole list and keep track of the node prior to the node containing the last occurrence key using a special pointer. After this just store the next of next of the special pointer, into to next of special pointer to remove the required node from the linked list. C/C++
6 min read
C++ Program For Inserting A Node In A Linked List
Inserting a node into a linked list can be done in several ways, depending on where we want to insert the new node. Here, we'll cover four common scenarios: inserting at the front of the list, after a given node, at a specific position, and at the end of the list Table of Content Insert a Node at th
9 min read
C++ Program For Checking Linked List With A Loop Is Palindrome Or Not
Given a linked list with a loop, the task is to find whether it is palindrome or not. You are not allowed to remove the loop. Examples: Input: 1 -> 2 -> 3 -> 2 /| |/ ------- 1 Output: Palindrome Linked list is 1 2 3 2 1 which is a palindrome. Input: 1 -> 2 -> 3 -> 4 /| |/ ------- 1
5 min read
C++ Program For Searching An Element In A Linked List
Write a function that searches a given key 'x' in a given singly linked list. The function should return true if x is present in linked list and false otherwise. bool search(Node *head, int x) For example, if the key to be searched is 15 and linked list is 14->21->11->30->10, then functi
4 min read
C++ Program For Finding Intersection Point Of Two Linked Lists
There are two singly linked lists in a system. By some programming error, the end node of one of the linked lists got linked to the second list, forming an inverted Y-shaped list. Write a program to get the point where two linked lists merge. Above diagram shows an example with two linked lists hav
9 min read
C++ Program For Writing A Function To Delete A Linked List
Algorithm For C++:Iterate through the linked list and delete all the nodes one by one. The main point here is not to access the next of the current pointer if the current pointer is deleted. Implementation: C/C++ Code // C++ program to delete a linked list #include <bits/stdc++.h> using namesp
2 min read