Count distinct elements after adding each element of First Array with Second Array
Last Updated :
16 Mar, 2023
Given two arrays arr1[] and arr2[]. We can generate another array arr3[] by adding each element of the array arr1[] to each element arr2[]. The task is to find the count of distinct element in the array arr3[].
Examples:
Input: Arr1[] = {1, 2}, Arr2[] = {3, 4}, MAX = 4
Output:
4 -> 1
5 -> 2
6 -> 1
Explanation:
Here the third array will be Arr3[] = {1+3, 1+4, 2+3, 2+4} = {4, 5, 5, 6}
Input: Arr1[] = {1, 2}, Arr2[] = {1, 2, 1}, MAX = 2
Output:
2 -> 2
3 -> 3
4 -> 1
Explanation:
Here the third array is Arr3[] = {1+1, 1+2, 1+1, 2+1, 2+2, 2+1} = {2, 3, 2, 3, 4, 3}
Therefore Count of elements from 1 to 2*2 (4) are {0, 2, 3, 1}
Naive Approach: The naive approach is to find the sum of all possible pairs from the given two arrays and insert that sum into the array arr3[]. Print the frequency of all the elements of the array arr3[].
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find Occurrence of each
// element from 1 to 2*MAX
void findCount(vector<int>& Arr1,
vector<int>& Arr2)
{
// Initialise MAX
int MAX = max(*max_element(Arr1.begin(),
Arr1.end()),
*max_element(Arr2.begin(),
Arr2.end()));
// Count vector to store count of
// each element from 1 to 2*MAX
vector<int> Count(2 * MAX + 1, 0);
// Size of Arr1 and Arr2
int n = Arr1.size(), m = Arr2.size();
// Find the elements of arr3[] and
// increase count of element by 1
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int element = Arr1[i] + Arr2[j];
Count[element]++;
}
}
// Print the result
for (int i = 1; i <= 2 * MAX; i++) {
if (Count[i] > 0) {
cout << i << "->"
<< Count[i] << endl;
}
}
}
// Driver Code
int main()
{
// Given arrays arr1[] and arr2[]
vector<int> arr1 = { 1, 2 };
vector<int> arr2 = { 1, 2, 1 };
// Function Call
findCount(arr1, arr2);
}
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find Occurrence of each
// element from 1 to 2*MAX
static void findCount(int[] Arr1, int[]Arr2)
{
// Initialise MAX
int MAX = Math.max(Arrays.stream(Arr1).max().getAsInt(),
Arrays.stream(Arr2).max().getAsInt());
// Count vector to store count of
// each element from 1 to 2*MAX
int[] Count = new int[2 * MAX + 1];
// Size of Arr1 and Arr2
int n = Arr1.length, m = Arr2.length;
// Find the elements of arr3[] and
// increase count of element by 1
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
int element = Arr1[i] + Arr2[j];
Count[element]++;
}
}
// Print the result
for(int i = 1; i <= 2 * MAX; i++)
{
if (Count[i] > 0)
{
System.out.print(i + "->" +
Count[i] + "\n");
}
}
}
// Driver Code
public static void main(String[] args)
{
// Given arrays arr1[] and arr2[]
int[] arr1 = { 1, 2 };
int[] arr2 = { 1, 2, 1 };
// Function call
findCount(arr1, arr2);
}
}
// This code is contributed by sapnasingh4991
Python3
# Python3 program for the above approach
# Function to find Occurrence of each
# element from 1 to 2*MAX
def findCount(Arr1, Arr2):
# Initialise MAX
MAX = max(max(Arr1), max(Arr2));
# Count vector to store count of
# each element from 1 to 2*MAX
#Count = new int[2 * MAX + 1];
Count = [0 for i in range(2 * MAX + 1)]
# Size of Arr1 and Arr2
n = len(Arr1);
m = len(Arr2);
# Find the elements of arr3 and
# increase count of element by 1
for i in range(n):
for j in range(m):
element = Arr1[i] + Arr2[j];
Count[element]+=1;
# Print the result
for i in range(1,2*MAX+1):
if (Count[i] > 0):
print(i , "->" , Count[i]);
# Driver Code
if __name__ == '__main__':
# Given arrays arr1 and arr2
arr1 = [1, 2 ];
arr2 = [ 1, 2, 1 ];
# Function call
findCount(arr1, arr2);
# This code is contributed by Rohit_ranjan
C#
// C# program for the above approach
using System;
using System.Linq;
class GFG{
// Function to find Occurrence of each
// element from 1 to 2*MAX
static void findCount(int[] Arr1, int[]Arr2)
{
// Initialise MAX
int MAX = Math.Max(Arr1.Max(), Arr2.Max());
// Count vector to store count of
// each element from 1 to 2*MAX
int[] Count = new int[2 * MAX + 1];
// Size of Arr1 and Arr2
int n = Arr1.Length, m = Arr2.Length;
// Find the elements of arr3[] and
// increase count of element by 1
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
int element = Arr1[i] + Arr2[j];
Count[element]++;
}
}
// Print the result
for(int i = 1; i <= 2 * MAX; i++)
{
if (Count[i] > 0)
{
Console.Write(i + "->" +
Count[i] + "\n");
}
}
}
// Driver Code
public static void Main(String[] args)
{
// Given arrays arr1[] and arr2[]
int[] arr1 = { 1, 2 };
int[] arr2 = { 1, 2, 1 };
// Function call
findCount(arr1, arr2);
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// JavaScript program for the above approach
// Function to find Occurrence of each
// element from 1 to 2*MAX
function findCount(Arr1, Arr2)
{
// Initialise MAX
let MAX = Math.max(Math.max(...Arr1),
Math.max(...Arr2));
// Count vector to store count of
// each element from 1 to 2*MAX
let Count = Array.from({length: 2 * MAX + 1}, (_, i) => 0);
// Size of Arr1 and Arr2
let n = Arr1.length, m = Arr2.length;
// Find the elements of arr3[] and
// increase count of element by 1
for(let i = 0; i < n; i++)
{
for(let j = 0; j < m; j++)
{
let element = Arr1[i] + Arr2[j];
Count[element]++;
}
}
// Print the result
for(let i = 1; i <= 2 * MAX; i++)
{
if (Count[i] > 0)
{
document.write(i + "->" +
Count[i] + "<br/>");
}
}
}
// Driver Code
// Given arrays arr1[] and arr2[]
let arr1 = [ 1, 2 ];
let arr2 = [ 1, 2, 1 ];
// Function call
findCount(arr1, arr2);
</script>
Time Complexity: O(N2)
Space Complexity: O(N)
Efficient Solution: The given task can be efficiently done with the help of FFT(Fast Fourier Transform). Below are the steps:
- Consider the examples Arr1[] = {1, 2} and Arr2[] = {1, 2, 1}. Let Count be the frequency array i.e., Count[i] represents the frequency of i in resultant array.
- When Arr1[i] is added to Arr2[j], we increment Count[s] where s = Arr1[i]+Arr2[j]. This is similar to multiplying polynomials as there power get added.
- Let A(x) be the polynomial represented by Arr1[]. Elements of Arr1 represents power of x and their count in Arr1 are coefficients terms with that power in polynomial.
- For each term, power of x represents the resulting element and the coefficient represents its count.
- If term isk(x^i)
- Then Count[i] = k. Here Count is same as P(x).
- To calculate the value of P(x), we can simply multiply A(x) and B(x).
The Naive method of polynomial multiplication takes O(N2). To make the multiplication faster we can use FFT(Fast Fourier Transform).
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
using cd = complex<double>;
// Value of PI need in FFT
const double PI = acos(-1);
// Function to implement the FFT
void fft(vector<cd>& a, bool invert)
{
int n = a.size();
if (n == 1)
return;
vector<cd> a0(n / 2), a1(n / 2);
for (int i = 0; 2 * i < n; i++) {
a0[i] = a[2 * i];
a1[i] = a[2 * i + 1];
}
// Recursively find fft
fft(a0, invert);
fft(a1, invert);
double ang = 2 * PI / n * (invert ? -1 : 1);
cd w(1), wn(cos(ang), sin(ang));
for (int i = 0; 2 * i < n; i++) {
a[i] = a0[i] + w * a1[i];
a[i + n / 2] = a0[i] - w * a1[i];
if (invert) {
a[i] /= 2;
a[i + n / 2] /= 2;
}
w *= wn;
}
}
// Function to multiply two polynomials
// A(x) and B(x) using FFT
vector<int> multiply(vector<int> const& a,
vector<int> const& b)
{
vector<cd> fa(a.begin(), a.end()),
fb(b.begin(), b.end());
int n = 1;
while (n < a.size() + b.size()) {
n <<= 1;
}
// Resize fa and fb
fa.resize(n);
fb.resize(n);
// Assign initially false
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++)
fa[i] *= fb[i];
fft(fa, true);
// To store the result
vector<int> result(n);
for (int i = 0; i < n; i++)
result[i] = round(fa[i].real());
// Return result
return result;
}
// Function to find the Count of each
// element from 1 to 2*MAX
void findCount(vector<int>& Arr1,
vector<int>& Arr2)
{
// Initialise MAX
int MAX = max(*max_element(Arr1.begin(),
Arr1.end()),
*max_element(Arr2.begin(),
Arr2.end()));
int n = Arr1.size();
int m = Arr2.size();
// vector for Polynomial A(x) from Arr1
vector<int> A(MAX + 1);
for (int i = 0; i < n; i++) {
A[Arr1[i]]++;
}
// Vector for Polynomial B(x) from Arr2
vector<int> B(MAX + 1);
for (int i = 0; i < m; i++) {
B[Arr2[i]]++;
}
// Vector to store the result of
// multiplication of A(x) and B(x)
vector<int> P;
// Multiplying Arr1 and Arr2 and
// storing in P is same as Count
P = multiply(A, B);
// Print the result
for (int i = 1; i <= 2 * MAX; i++) {
if (P[i] > 0) {
cout << i << "->"
<< P[i] << endl;
}
}
cout << '\n';
}
// Driver Code
int main()
{
// Given arrays arr1[] and arr2[]
vector<int> arr1 = { 1, 2 };
vector<int> arr2 = { 1, 2, 1 };
// Function Call
findCount(arr1, arr2);
}
Java
import java.util.*;
// Complex class definition
class Complex {
// Data members
public double real, imag;
// Constructor
public Complex(double real, double imag)
{
this.real = real;
this.imag = imag;
}
// Method to add two Complex objects
public Complex add(Complex other)
{
return new Complex(real + other.real,
imag + other.imag);
}
// Method to subtract two Complex objects
public Complex subtract(Complex other)
{
return new Complex(real - other.real,
imag - other.imag);
}
// Method to multiply two Complex objects
public Complex multiply(Complex other)
{
double re = real * other.real - imag * other.imag;
double im = real * other.imag + imag * other.real;
return new Complex(re, im);
}
// Method to divide two Complex objects
public Complex divide(Complex other)
{
double denom = other.real * other.real
+ other.imag * other.imag;
double re = (real * other.real + imag * other.imag)
/ denom;
double im = (imag * other.real - real * other.imag)
/ denom;
return new Complex(re, im);
}
}
class GFG {
// Function to implement the FFT
public static void fft(ArrayList<Complex> a,
boolean invert)
{
int n = a.size();
if (n == 1) {
return;
}
ArrayList<Complex> a0 = new ArrayList<>();
ArrayList<Complex> a1 = new ArrayList<>();
for (int i = 0; 2 * i < n; i++) {
a0.add(a.get(2 * i));
a1.add(a.get(2 * i + 1));
}
// Recursively find fft
fft(a0, invert);
fft(a1, invert);
double ang = 2 * Math.PI / n * (invert ? -1 : 1);
Complex w = new Complex(1, 0);
Complex wn
= new Complex(Math.cos(ang), Math.sin(ang));
for (int i = 0; 2 * i < n; i++) {
a.set(i, a0.get(i).add(w.multiply(a1.get(i))));
a.set(i + n / 2, a0.get(i).subtract(
w.multiply(a1.get(i))));
if (invert) {
a.set(i,
a.get(i).divide(new Complex(2, 0)));
a.set(i + n / 2, a.get(i + n / 2).divide(
new Complex(2, 0)));
}
w = w.multiply(wn);
}
}
// Function to multiply two polynomials
// A(x) and B(x) using FFT
public static ArrayList<Integer> multiply(int[] a,
int[] b)
{
ArrayList<Complex> fa = new ArrayList<>();
ArrayList<Complex> fb = new ArrayList<>();
for (int i = 0; i < a.length; i++) {
fa.add(new Complex(a[i], 0));
}
for (int i = 0; i < b.length; i++) {
fb.add(new Complex(b[i], 0));
}
int n = 1;
while (n < a.length + b.length) {
n <<= 1;
}
// Resize fa and fb
while (fa.size() < n) {
fa.add(new Complex(0, 0));
}
while (fb.size() < n) {
fb.add(new Complex(0, 0));
}
// Assign initially false
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++) {
fa.set(i, fa.get(i).multiply(fb.get(i)));
}
fft(fa, true);
// To store the result
ArrayList<Integer> result = new ArrayList<>();
for (int i = 0; i < n; i++) {
result.add((int)Math.round(fa.get(i).real));
}
// Return result
return result;
}
// Function to find the Count of each
// element from 1 to 2*MAX
public static void findCount(ArrayList<Integer> arr1,
ArrayList<Integer> arr2)
{
// Initialise MAX
int MAX = Math.max(Collections.max(arr1),
Collections.max(arr2));
int n = arr1.size();
int m = arr2.size();
// vector for Polynomial A(x) from Arr1
int[] A = new int[MAX + 1];
for (int i = 0; i < n; i++) {
A[arr1.get(i)]++;
}
// Vector for Polynomial B(x) from Arr2
int[] B = new int[MAX + 1];
for (int i = 0; i < m; i++) {
B[arr2.get(i)]++;
}
// Vector to store the result of
// multiplication of A(x) and B(x)
ArrayList<Integer> P = multiply(A, B);
// Print the result
for (int i = 1; i <= 2 * MAX; i++) {
if (P.get(i) > 0) {
System.out.println(i + "->" + P.get(i));
}
}
System.out.println();
}
// Driver Code
public static void main(String[] args)
{
// Given arrays arr1[] and arr2[]
ArrayList<Integer> arr1 = new ArrayList<Integer>();
arr1.add(1);
arr1.add(2);
ArrayList<Integer> arr2 = new ArrayList<Integer>();
arr2.add(1);
arr2.add(2);
arr2.add(1);
// Function Call
findCount(arr1, arr2);
}
}
Python3
import math
# Python3 program to implement the above approach
# Value of PI need in FFT
PI = math.acos(-1)
# Function to implement the FFT
def fft(a, invert):
n = len(a)
if (n == 1):
return
a0 = [0] * (n // 2)
a1 = [0] * (n // 2)
for i in range(n // 2):
a0[i] = a[2 * i]
a1[i] = a[2 * i + 1]
# Recursively find fft
fft(a0, invert)
fft(a1, invert)
ang = 2 * PI / n * (-1 if invert else 1)
w = complex(1)
wn = complex(math.cos(ang), math.sin(ang))
for i in range(n // 2):
a[i] = a0[i] + w * a1[i]
a[i + n // 2] = a0[i] - w * a1[i]
if (invert):
a[i] /= 2
a[i + n // 2] /= 2
w *= wn
# Function to multiply two polynomials
# A(x) and B(x) using FFT
def multiply(a, b):
fa = [complex(i, 0) for i in a]
fb = [complex(i, 0) for i in b]
n = 1
while (n < len(a) + len(b)):
n <<= 1
# Resize fa and fb
fa += [complex(0)] * (n - len(fa))
fb += [complex(0)] * (n - len(fb))
# Assign initially false
fft(fa, False)
fft(fb, False)
for i in range(n):
fa[i] *= fb[i]
fft(fa, True)
# To store the result
result = [0] * n
for i in range(n):
result[i] = round(fa[i].real)
# Return result
return result
# Function to find the Count of each
# element from 1 to 2*MAX
def findCount(Arr1, Arr2):
# Initialise MAX
MAX = max(max(Arr1), max(Arr2))
n = len(Arr1)
m = len(Arr2)
# vector for Polynomial A(x) from Arr1
A = [0] * (MAX + 1)
for i in range(n):
A[Arr1[i]] += 1
# Vector for Polynomial B(x) from Arr2
B = [0] * (MAX + 1)
for i in range(m):
B[Arr2[i]] += 1
# Vector to store the result of
# multiplication of A(x) and B(x)
P = []
# Multiplying Arr1 and Arr2 and
# storing in P is same as Count
P = multiply(A, B)
# Print the result
for i in range(1, 2 * MAX + 1):
if (P[i] > 0):
print(str(i) + "->" + str(P[i]))
print()
# Driver Code
if __name__ == "__main__":
# Given arrays arr1[] and arr2[]
arr1 =[1, 2]
arr2 = [1, 2, 1]
# Function Call
findCount(arr1, arr2)
C#
using System;
using System.Linq;
using System.Collections.Generic;
// Complex class definition
class Complex {
// Data members
public double real, imag;
// Constructor
public Complex(double real, double imag)
{
this.real = real;
this.imag = imag;
}
// Method to Add two Complex objects
public Complex Add(Complex other)
{
return new Complex(real + other.real,
imag + other.imag);
}
// Method to subtract two Complex objects
public Complex Subtract(Complex other)
{
return new Complex(real - other.real,
imag - other.imag);
}
// Method to multiply two Complex objects
public Complex Multiply(Complex other)
{
double re = real * other.real - imag * other.imag;
double im = real * other.imag + imag * other.real;
return new Complex(re, im);
}
// Method to divide two Complex objects
public Complex Divide(Complex other)
{
double denom = other.real * other.real
+ other.imag * other.imag;
double re = (real * other.real + imag * other.imag)
/ denom;
double im = (imag * other.real - real * other.imag)
/ denom;
return new Complex(re, im);
}
}
class GFG {
// Function to implement the FFT
public static void fft(List<Complex> a, bool invert)
{
int n = a.Count;
if (n == 1)
return;
List<Complex> a0 = new List<Complex>();
List<Complex> a1 = new List<Complex>();
for (int i = 0; 2 * i < n; i++) {
a0.Add(a[2 * i]);
a1.Add(a[2 * i + 1]);
}
// Recursively find fft
fft(a0, invert);
fft(a1, invert);
double ang = 2 * Math.PI / n * (invert ? -1 : 1);
Complex w = new Complex(1, 0);
Complex wn
= new Complex(Math.Cos(ang), Math.Sin(ang));
for (int i = 0; 2 * i < n; i++) {
a[i] = a0[i].Add(w.Multiply(a1[i]));
a[i + n / 2]
= a0[i].Subtract(w.Multiply(a1[i]));
if (invert) {
a[i] = a[i].Divide(new Complex(2, 0));
a[i + n / 2] = a[i + n / 2].Divide(
new Complex(2, 0));
}
w = w.Multiply(wn);
}
}
// Function to multiply two polynomials A(x) and B(x)
// using FFT
public static List<int> Multiply(int[] a, int[] b)
{
List<Complex> fa = new List<Complex>();
List<Complex> fb = new List<Complex>();
for (int i = 0; i < a.Length; i++)
fa.Add(new Complex(a[i], 0));
for (int i = 0; i < b.Length; i++)
fb.Add(new Complex(b[i], 0));
int n = 1;
while (n < a.Length + b.Length)
n <<= 1;
// Resize fa and fb
while (fa.Count < n)
fa.Add(new Complex(0, 0));
while (fb.Count < n)
fb.Add(new Complex(0, 0));
// Assign initially false
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++) {
fa[i] = fa[i].Multiply(fb[i]);
}
fft(fa, true);
// To store the result
List<int> result = new List<int>();
for (int i = 0; i < n; i++) {
result.Add((int)Math.Floor(fa[i].real));
}
// Return result
return result;
}
// Function to find the Count of each
// element from 1 to 2*MAX
public static void FindCount(List<int> arr1,
List<int> arr2)
{
// Initialise MAX
int MAX = Math.Max(arr1.Max(), arr2.Max());
int n = arr1.Count;
int m = arr2.Count;
// vector for Polynomial A(x) from Arr1
int[] A = new int[MAX + 1];
for (int i = 0; i < n; i++) {
A[arr1[i]]++;
}
// Vector for Polynomial B(x) from Arr2
int[] B = new int[MAX + 1];
for (int i = 0; i < m; i++) {
B[arr2[i]]++;
}
// Vector to store the result of
// multiplication of A(x) and B(x)
List<int> P = Multiply(A, B);
// Print the result
for (int i = 1; i <= 2 * MAX; i++) {
if (P[i] > 0) {
Console.WriteLine(i + "->" + P[i]);
}
}
Console.WriteLine(" ");
}
// Driver Code
public static void Main(string[] args)
{
// Given arrays arr1[] and arr2[]
List<int> arr1 = new List<int>();
arr1.Add(1);
arr1.Add(2);
List<int> arr2 = new List<int>();
arr2.Add(1);
arr2.Add(2);
arr2.Add(1);
// Function Call
FindCount(arr1, arr2);
}
}
JavaScript
// Complex class definition
class Complex {
// Data members
constructor(real, imag) {
this.real = real;
this.imag = imag;
}
// Method to add two Complex objects
add(other) {
return new Complex(this.real + other.real,
this.imag + other.imag);
}
// Method to subtract two Complex objects
subtract(other) {
return new Complex(this.real - other.real,
this.imag - other.imag);
}
// Method to multiply two Complex objects
multiply(other) {
let re = this.real * other.real - this.imag * other.imag;
let im = this.real * other.imag + this.imag * other.real;
return new Complex(re, im);
}
// Method to divide two Complex objects
divide(other) {
let denom = other.real * other.real +
other.imag * other.imag;
let re = (this.real * other.real + this.imag * other.imag) /
denom;
let im = (this.imag * other.real - this.real * other.imag) /
denom;
return new Complex(re, im);
}
}
// Function to implement the FFT
function fft(a, invert) {
let n = a.length;
if (n == 1) {
return;
}
let a0 = [];
let a1 = [];
for (let i = 0; 2 * i < n; i++) {
a0.push(a[2 * i]);
a1.push(a[2 * i + 1]);
}
// Recursively find fft
fft(a0, invert);
fft(a1, invert);
let ang = 2 * Math.PI / n * (invert ? -1 : 1);
let w = new Complex(1, 0);
let wn = new Complex(Math.cos(ang), Math.sin(ang));
for (let i = 0; 2 * i < n; i++) {
a[i] = a0[i].add(w.multiply(a1[i]));
a[i + n / 2] = a0[i].subtract(
w.multiply(a1[i]));
if (invert) {
a[i] = a[i].divide(new Complex(2, 0));
a[i + n / 2] = a[i + n / 2].divide(
new Complex(2, 0));
}
w = w.multiply(wn);
}
}
// Function to multiply two polynomials
// A(x) and B(x) using FFT
function multiply(a, b) {
let fa = [];
let fb = [];
for (let i = 0; i < a.length; i++) {
fa.push(new Complex(a[i], 0));
}
for (let i = 0; i < b.length; i++) {
fb.push(new Complex(b[i], 0));
}
let n = 1;
while (n < a.length + b.length) {
n <<= 1;
}
// Resize fa and fb
while (fa.length < n) {
fa.push(new Complex(0, 0));
}
while (fb.length < n) {
fb.push(new Complex(0, 0));
}
// Assign initially false
fft(fa, false);
fft(fb, false);
for (let i = 0; i < n; i++) {
fa[i] = fa[i].multiply(fb[i]);
}
fft(fa, true);
// To store the result
let result = []
for (var i = 0; i < n; i++) {
result.push(Math.floor(fa[i].real));
}
// Return result
return result;
}
// Function to find the Count of each
// element from 1 to 2*MAX
function findCount(arr1, arr2) {
// Initialise MAX
let MAX = Math.max(Math.max(...arr1),
Math.max(...arr2));
let n = arr1.length;
let m = arr2.length;
// vector for Polynomial A(x) from Arr1
let A = new Array(MAX + 1).fill(0);
for (var i = 0; i < n; i++) {
A[arr1[i]]++;
}
// Vector for Polynomial B(x) from Arr2
let B = new Array(MAX + 1).fill(0);
for (var i = 0; i < m; i++) {
B[arr2[i]]++;
}
// Vector to store the result of
// multiplication of A(x) and B(x)
let P = multiply(A, B);
// Print the result
for (var i = 1; i <= 2 * MAX; i++) {
if (P[i] > 0) {
console.log(i + "->" + P[i]);
}
}
console.log(" ")
}
// Driver Code
// Given arrays arr1[] and arr2[]
let arr1 = []
arr1.push(1);
arr1.push(2);
let arr2 = []
arr2.push(1);
arr2.push(2);
arr2.push(1);
// Function Call
findCount(arr1, arr2);
Time Complexity: O(N*log N)
Auxiliary Space: O(N)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read