
31.8 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507
32 The Fourier Transform 1539
32.1 Derivation from a Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539
32.2 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1541
32.2.1 A Word of Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544
32.3 Evaluating Fourier Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545
32.3.1 Integrals that Converge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545
32.3.2 Cauchy Principal Value and Integrals that are Not Absolutely Convergent. . . . . . . . . . . . . 1548
32.3.3 Analytic Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550
32.4 Properties of the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552
32.4.1 Closure Relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552
32.4.2 Fourier Transform of a Derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
32.4.3 Fourier Convolution Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
32.4.4 Parseval’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557
32.4.5 Shift Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559
32.4.6 Fourier Transform of x f(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559
32.5 Solving Differential Equations with the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 1560
32.6 The Fourier Cosine and Sine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1562
32.6.1 The Fourier Cosine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1562
32.6.2 The Fourier Sine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563
32.7 Properties of the Fourier Cosine and Sine Transf orm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564
32.7.1 Transforms of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564
32.7.2 Convolution Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566
32.7.3 Cosine and Sine Transform in Terms of the Fourier Transform . . . . . . . . . . . . . . . . . . 1568
32.8 Solving Differential Equations with the Fourier Cosine and Sine Transforms . . . . . . . . . . . . . . . 1569
32.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571
32.10Hi nts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578
32.11Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581
xvi