javase三层架构

时间: 2023-08-31 16:12:02 浏览: 110
引用<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [javaSE进阶综合项目:图书管理系统](https://blog.csdn.net/m0_65014697/article/details/127932605)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [MyBatis-架构概述,什么是框架,三层架构,JDBC](https://blog.csdn.net/weixin_48370579/article/details/127713386)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
阅读全文

相关推荐

最新推荐

recommend-type

w3school java & java web教程 飞龙整理 20141001

Java分为三个主要的体系: 1. **Java Standard Edition (JavaSE)**:适用于桌面应用和一般的服务器端应用开发,提供了基础的Java API,包括核心库和Java虚拟机(JVM)。 2. **Java Enterprise Edition (JavaEE)**...
recommend-type

java基础知识面试题总结(经典)

Java涵盖了三个主要的技术架构: 1. **JAVAEE (Java Platform Enterprise Edition)**:适用于开发企业级应用程序,特别是针对Web应用程序的开发。它提供了服务器端组件、API和服务,支持分布式计算和多层架构。 2....
recommend-type

2MW风机发电并网模型:背靠背模式下的高效运行与完美波形

内容概要:本文详细介绍了2MW大功率风机发电并网模型,特别是在背靠背模式下的应用及其优势。首先阐述了风力发电作为绿色能源的重要性,接着介绍了2MW风机的基本构造和特性,包括高效的发电能力和稳定的控制系统。随后讨论了风力发电并网模型的组成和关键组件,如变压器、断路器和滤波器。重点在于背靠背模式的应用,该模式通过连接两台风机形成闭环系统,提高了系统的稳定性和可靠性,减少了电网波动和能量损失。最后强调了该模型在实际运行中的高效率、稳定性和完美波形输出。 适合人群:从事风电行业及相关领域的技术人员、研究人员和管理人员。 使用场景及目标:适用于希望深入了解2MW风机发电并网模型的技术细节和应用场景的专业人士,旨在提升对风力发电系统的理解和优化能力。 其他说明:本文不仅提供了理论背景和技术细节,还展示了实际应用中的效果,为未来的风电项目提供了宝贵的参考。
recommend-type

COMSOL中BIC多极解分技术在周期性结构仿真的应用及其实现

内容概要:本文详细介绍了如何利用COMSOL Multiphysics软件中的BIC(Boundary Integral Method)多极解分功能对周期性结构进行仿真分析。具体以四聚体周期性结构为例,演示了从建模、选择物理场接口、定义BIC多极解分、运行仿真到最后结果分析的完整过程。文中强调了可以直接在COMSOL中获取极子和三个方向的散射截面,而无需借助MATLAB等外部工具,从而简化了操作流程并提升了结果的准确性。最终展示了仿真结果与文献的高度一致性,验证了方法的有效性。 适合人群:从事电磁场、声场等物理场仿真研究的技术人员,尤其是对COMSOL软件有一定了解的研究人员。 使用场景及目标:适用于需要对周期性结构进行高精度仿真的科研项目,旨在提高仿真效率和结果可靠性,减少对外部工具的依赖。 其他说明:文章提供了详细的步骤指导和结果展示,帮助读者快速上手并深入理解BIC多极解分的应用。此外,还对未来的发展进行了展望,指出了该技术在物理研究和工程设计领域的广阔前景。
recommend-type

自动化专业大学生职业生涯规划书模板.doc

自动化专业大学生职业生涯规划书模板.doc
recommend-type

深入理解JPA注解@Access用法示例

在Java持久化API(JPA)中,注解是定义元数据的主要方式,它告诉JPA如何将实体类映射到数据库表以及如何处理实体类。其中,`@Access`注解是一个用于指定JPA实体访问类型的注解,它定义了在Java实体类与其映射的数据库表之间的数据访问策略。 `@Access`注解可以使用在两个不同的层面: 1. 类级别(Class-level):在类级别使用时,该注解定义了整个实体类的访问类型。 2. 属性级别(Property-level):在属性级别使用时,该注解覆盖类级别的访问策略,允许你为单个属性定义不同的访问类型。 该注解有两种可用的值,分别对应不同的访问类型: - `AccessType.FIELD`:这是默认值,指示JPA通过字段访问实体状态。在这种情况下,JPA将直接访问类中的私有或受保护字段。 - `AccessType.PROPERTY`:指示JPA通过JavaBean属性(getter和setter方法)访问实体状态。在这种情况下,JPA将调用相应的getter和setter方法来获取或设置属性值。 使用`@Access`注解的一个典型实例可能会涉及到以下内容: ```java import javax.persistence.Access; import javax.persistence.AccessType; import javax.persistence.Entity; @Entity @Access(AccessType.PROPERTY) public class MyEntity { private String name; @Access(AccessType.FIELD) public String getName() { return name; } public void setName(String name) { this.name = name; } } ``` 在上述示例中,`MyEntity`是一个JPA实体类。我们使用`@Entity`注解标记该类作为JPA实体。`@Access(AccessType.PROPERTY)`注解在类级别指定了访问类型为属性。然而,在`name`属性上,我们使用了`@Access(AccessType.FIELD)`注解来覆盖类级别的访问类型,指示JPA直接通过字段来访问`name`属性,而不通过getter和setter方法。 理解`@Access`注解的使用对于调整实体的持久化行为是非常重要的。它允许开发者在不同的访问级别之间进行选择,以此来控制对实体的访问。这在某些特定的业务逻辑中是非常有用的,例如,可能需要绕过默认的getter/setter机制,直接访问私有字段。 在实际的项目开发中,`@Access`注解通常与`@Column`、`@Id`、`@GeneratedValue`等其它JPA注解结合使用,来定义实体的具体映射细节。正确地使用`@Access`注解可以改善应用的性能,尤其是在涉及到大量数据操作时。 值得一提的是,`@Access`注解还与`AccessType`枚举紧密相关,后者定义了访问类型的合法值。开发者需要确保在使用`@Access`注解时指定的访问类型与`AccessType`枚举中的值一致。 总结来说,JPA中的`@Access`注解是一个细微但功能强大的工具,它提供了对实体访问策略的精细控制。开发者可以通过这个注解来优化实体的持久化过程,并在需要时覆盖默认的访问机制。在JPA的学习和使用过程中,理解和掌握`@Access`注解及其背后的机制是构建高效、灵活的持久化解决方案的关键部分。
recommend-type

【Postman脚本编写】:从基础到高级技巧,全方位提升测试能力

# 1. Postman脚本编写入门 Postman是API开发和测试不可或缺的工具,而编写脚本是Postman强大的自定义功能的体现。无论你是新手还是有经验的开发者,本章将为你提供一个Postman脚本编写的入门级指南。 ## 1.1 Postman脚本语言简介 Postman脚本主要使用JavaScript语言,这是Web开发中最常用的语言之一。熟悉J
recommend-type

TIM_ICInitTypeDef TIM2_ICInitStructure; void TIM2_Cap_Init(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // TIM_OCInitTypeDef TIM_OCInitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能TIM2时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能GPIOA时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA1 输入 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //PA3输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M GPIO_Init(GPIOA, &GPIO_InitStructure); // GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //PA0输出 // GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M // GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化定时器2 TIM2 TIM_TimeBaseStructure.TIM_Period = arr; //设定计数器自动重装值 TIM_TimeBaseStructure.TIM_Prescaler =psc; //预分频器 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 // // TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择PWM1模式 // TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 //// TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Disable; // TIM_OCInitStructure.TIM_Pulse = 0; //设置待装入捕获比较寄存器的脉冲值 // TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //设置输出极性 // TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; // // TIM_OC1Init(TIM2,&TIM_OCInitStructure); //初始化输出比较参数,通道3 // TIM_OC1PreloadConfig(TIM2,TIM_OCPreload_Enable); //CH1使能预装载寄存器 // TIM_ARRPreloadConfig(TIM2, ENABLE); //使能TIM3在ARR上的预装载寄存器 //初始化TIM2输入捕获参数 TIM2_ICInitStructure.TIM_Channel = TIM_Channel_2; //CC1S=02 选择输入端 IC2映射到TI1上 TIM2_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿捕获 TIM2_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM2_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //配置输入分频,不分频 TIM2_ICInitStructure.TIM_ICFilter = 0x00;//配置输入滤波器 不滤波 TIM_ICInit(TIM2, &TIM2_ICInitStructure); //中断分组初始化 NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; //TIM2中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //先占优先级1级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //从优先级1级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_ITConfig(TIM2,TIM_IT_Update|TIM_IT_CC2,ENABLE);//允许更新中断 ,允许CC2IE捕获中断 TIM_Cmd(TIM2,ENABLE ); //使能定时器2 // TIM2->CCR1 = 1500; } /************************************************************************** Function: Ultrasonic receiving echo function Input : none Output : none 函数功能:超声波接收回波函数 入口参数: 无 返回 值:无 **************************************************************************/ u16 TIM2CH2_CAPTURE_STA,TIM2CH2_CAPTURE_VAL; void Read_Distane(void) { PAout(3)=1; delay_us(15); PAout(3)=0; if(TIM2CH2_CAPTURE_STA&0X80)//成功捕获到了一次高电平 { Distance=TIM2CH2_CAPTURE_STA&0X3F; Distance*=65536; //溢出时间总和 Distance+=TIM2CH2_CAPTURE_VAL; //得到总的高电平时间 Distance=Distance*170/1000; //时间*声速/2(来回) 一个计数0.001ms TIM2CH2_CAPTURE_STA=0; //开启下一次捕获 } } /************************************************************************** Function: Pulse width reading interruption of ultrasonic echo Input : none Output : none 函数功能:超声波回波脉宽读取中断 入口参数: 无 返回 值:无 **************************************************************************/ void TIM2_IRQHandler(void) { u16 tsr; tsr=TIM2->SR; if((TIM2CH2_CAPTURE_STA&0X80)==0)//还未成功捕获 { if(tsr&0X01)//定时器溢出 { if(TIM2CH2_CAPTURE_STA&0X40)//已经捕获到高电平了 { if((TIM2CH2_CAPTURE_STA&0X3F)==0X3F)//高电平太长了 { TIM2CH2_CAPTURE_STA|=0X80; //标记成功捕获了一次 TIM2CH2_CAPTURE_VAL=0XFFFF; }else TIM2CH2_CAPTURE_STA++; } } if(tsr&0x04)//捕获2发生捕获事件 { if(TIM2CH2_CAPTURE_STA&0X40) //捕获到一个下降沿 { TIM2CH2_CAPTURE_STA|=0X80; //标记成功捕获到一次高电平脉宽 TIM2CH2_CAPTURE_VAL=TIM2->CCR2; //获取当前的捕获值. TIM2->CCER&=~(1<<5); //CC2P=0 设置为上升沿捕获 } else //还未开始,第一次捕获上升沿 { TIM2CH2_CAPTURE_STA=0; //清空 TIM2CH2_CAPTURE_VAL=0; TIM2CH2_CAPTURE_STA|=0X40; //标记捕获到了上升沿 TIM2->CNT=0; //计数器清空 TIM2->CCER|=1<<5; //CC2P=1 设置为下降沿捕获 } } } TIM2->SR=0;//清除中断标志位 } 把这段代码的PA2引脚改为PA1引脚

<think>好的,用户想将代码中的PA2引脚修改为PA1,并确保配置正确。首先我需要确定用户使用的硬件平台,比如是STM32还是其他微控制器。根据引用中的信息,用户提到了STM32F103和GD32F450VGT6,可能是在使用这两种芯片之一。接下来,用户提到的PA2和PA1属于GPIO引脚,修改时需要检查代码中所有涉及到PA2的地方。这包括初始化配置、外设复用设置(如UART、SPI、I2C等)、中断配置以及硬件驱动层的定义。例如,如果PA2用于SPI的片选引脚或者UART的TX引脚,那么改为PA1后需要确保对应的复用功能正确设置。根据引用[1],引脚编号由PIN设备驱动程序定义,可能需要
recommend-type

Android内部存储的使用方法及数据访问限制

在Android开发中,内部存储是一种用于保存应用数据的方式,它将数据保存在设备的内部存储器中,不对外部可见。内部存储数据是私有的,通常只能被创建它的应用访问。这种存储机制非常适合存储敏感数据,如用户设置、私有文件等。本文将详细探讨Android中内部存储的概念、特点、使用方法以及相关的最佳实践。 ### 内部存储的概念 内部存储,又称为私有存储,是指在Android应用开发中,数据被保存在一个私有的目录下,这个目录默认情况下其他应用无法访问。该目录通常位于`/data/data/<package_name>/`路径下,其中`<package_name>`是你的应用包名。在内部存储中,每个应用都有自己的私有文件目录,这样能够保证应用数据的安全性和隔离性。 ### 内部存储的特点 1. **私密性**:存储在内部存储中的数据,除了应用本身之外,其他应用无法直接访问。 2. **安全性**:即使设备被root,非应用用户也无法直接访问内部存储中的文件。 3. **自动管理**:当应用被卸载时,与该应用相关的内部存储中的数据也会被自动清除。 4. **存储容量有限**:与外部存储不同,内部存储空间往往较小,且受限于设备的存储能力。 5. **无需请求权限**:在Android 4.4(API 级别 19)以前,使用内部存储来存储数据不需要特别请求权限。 ### 使用方法 在Android中,内部存储的使用通常涉及以下几个API: - **Context.openFileOutput()**:用于在应用的内部存储中打开一个文件输出流,用于写入数据。 - **Context.openFileInput()**:用于打开一个文件输入流,读取内部存储中的数据。 - **FileOutputStream** 和 **FileInputStream**:用于文件的写入和读取。 - **getFilesDir()** 和 **getCacheDir()**:用于获取内部存储中应用的文件目录和缓存目录。 ### 示例代码 以下是使用内部存储的简单示例代码,展示了如何写入和读取文件: ```java // 写入数据到内部存储 FileOutputStream fos = openFileOutput("myfile.txt", Context.MODE_PRIVATE); OutputStreamWriter osw = new OutputStreamWriter(fos); osw.write("Hello, internal storage!"); osw.close(); // 从内部存储读取数据 FileInputStream fis = openFileInput("myfile.txt"); InputStreamReader isr = new InputStreamReader(fis); BufferedReader reader = new BufferedReader(isr); String line = reader.readLine(); Log.d("InternalStorage", line); // 输出: Hello, internal storage! ``` ### 最佳实践 - **管理文件生命周期**:确保当不需要时,正确地清理文件,避免占用无用的存储空间。 - **考虑使用外部存储**:对于不需要严格私密性的文件,例如用户下载的音乐或视频,可以考虑使用外部存储来节省内部空间。 - **使用缓存策略**:对于临时文件或缓存文件,可以使用`getCacheDir()`方法,系统会在存储空间不足时自动清除这些文件。 - **考虑API级别**:在编写代码时,要考虑到不同版本的Android可能对权限和存储API有不同的要求。 - **利用数据库**:对于结构化数据,可以考虑使用SQLite数据库来存储,这样更易于管理和查询数据。 ### 注意事项 - **权限和API级别**:从Android 6.0(API 级别 23)开始,即使是在内部存储中操作文件,也需要在运行时请求存储权限。因此,开发者需要在应用中处理运行时权限请求。 - **外部存储兼容性**:对于需要与外部存储交换数据的场景,建议使用Android的媒体存储API,如`MediaStore`,以便更好地处理文件在内外部存储之间的迁移。 ### 结论 Android的内部存储为应用提供了一个私密且安全的空间来保存文件。开发者应当熟悉内部存储的使用方法和最佳实践,以便能够高效且安全地管理应用数据。通过合理的文件管理策略,可以确保应用的性能,并提升用户体验。
recommend-type

【实时监控与定时任务】:Postman监控器的终极指南

# 1. Postman监控器概念与实时监控基础 在本章中,我们将首先介绍Postman监控器的基本概念及其在实时监控中的重要性。Postman监控器作为一种API监控工具,它能够帮助开发人员和运维团队实时地跟踪和分析API接口的性能表现,确保应用的稳定性和可靠性。我们会探讨监控器的核心功能,如数据收集、分析、警报机制等,并且为读者建立一个理解监控器如何工作的基础知识架构。 Pos