一个n位数,如果每一位的数字都是1、2或者3,并且所有数字之和等于k,那么就称这个数是不幸N位数。 输入n和k,从小到大输出所有的不幸N位数。 c++递归方法实现

时间: 2024-04-13 11:30:58 浏览: 89
以下是使用C++递归方法实现的代码: ```cpp #include <iostream> #include <vector> using namespace std; void generateUnluckyNumbers(int n, int k, int sum, vector<int>& number) { if (n == 0) { if (sum == k) { for (int digit : number) { cout << digit; } cout << endl; } return; } for (int i = 1; i <= 3; i++) { number.push_back(i); generateUnluckyNumbers(n - 1, k, sum + i, number); number.pop_back(); } } void printUnluckyNumbers(int n, int k) { vector<int> number; generateUnluckyNumbers(n, k, 0, number); } int main() { int n, k; cout << "Enter the value of n: "; cin >> n; cout << "Enter the value of k: "; cin >> k; cout << "Unlucky " << n << "-digit numbers with sum " << k << ": " << endl; printUnluckyNumbers(n, k); return 0; } ``` 这段代码将根据输入的n和k值打印出所有的不幸N位数。注意,这里假设输入的n和k都是合法的正整数。
阅读全文

相关推荐

小明在研究数字的低中高问题。对于两个数字,计算两个数字之差的绝对值,定义: 1)如果该绝对值>=0 且<=3,对应'低';2)如果该绝对值>3 且<=6,对应'中';3)如果 该绝对值>6 且<=9,对应'高'。 对于 k 位数 n,从左到右每两个数字依次按上述规则进行转换,可以得到长度为 k-1 的字符串。例如:4 位数 3812,其相邻的两个数字之差的绝对值从左到右分别是 5(对应 3 和 8)、7(对应 8 和 1)和 1(对应 1 和 2);按上述规则转换 5、7 和 1 分别对应'中'、'高' 和'低',最终得到长度为 3 的字符串'中高低'。 在上述定义和说明的基础上,小明计划实现如下三个函数: 1)函数 get_dzg(n):当 n>=10 时, n 按上述规则转换为由低中高字符组成的字符串, 我们称其为 n 对应的低中高值,函数返回该字符串;当 n<10 时,触发异常 ValueError, 原因为'参数值不能小于整数 10'; 2)函数 stat_dzg(k):其中 k 代表数字的位数。函数对每一个可能的 k 位数,比如为 m,调用函数 get_dzg(m)得到其低中高值。我们想要统计各种不同的低中高值所出现的次 数,采用字典记录这些信息,低中高值作为字典的 key,其所对应的 value 为低中高值为 key 的 k 位数的个数。函数返回该字典。 3)函数 stat_dzg_probability(k):统计所有 k 位数中'低'、'中'或'高'连续出现至 少两次的概率,函数返回该概率值。提示:可以在调用函数 stat_dzg 后进行处理。 请帮助小明编写代码实现这三个函数。

现在人们知道,能够打开密码箱的新密码是由原密码 a 变化而来。具体的,新密码相比原密码变化了 t 位数字,其中 t 满足 0≤t≤k,且对于变化的数字位,变化后的数字是在该位置原数字的基础上增加或减小 1 得到的数字。特别的,如果原数字是 0,在原数字基础上减少 1 得到的数字是 9;如果原数字是 9,在原数字基础上增加 1 得到的数字是 0。 现在人们知道了 n,a,k,想知道经过宇宙射线侵蚀后,所有可能打开密码箱的密码。 人类将重任交到了你身上,请你帮助人类解决这个问题。你需要由小到大输出所有可能的密码,每个一行。 特别的,有一些密码可能存在前导 0。为了方便操作,这时你不必也不应将这些前导 0 一并输出。 人类感谢你。 输入格式 输入只有一行三个整数,依次代表原密码位数 n,去掉前导零后的原密码 a,和变化位数的最大值 k。 输出格式 输出若干行,每一行包含一个整数,代表由小到大的所有可能的密码。 输入输出样例 输入 #1复制 3 14 1 输出 #1复制 4 13 14 15 24 114 914 说明/提示 样例 1 解释 原密码为 014,允许至多 1 位有变化。 所有密码情况如下: 变化位数和位置 可能的结果 0 位 014 1 位,从左向右第 1 位 114,914 1 位,从左向右第 2 位 024,004 1 位,从左向右第 3 位 013,015 共 7 个可能的密码,按从小到大排序输出即可。

大家在看

recommend-type

一个旨在把alpha go算法运用在中国象棋上的项目.rar

这个项目受到alpha go zero的启发,旨在训练一个中等人类水平或高于中等人类水平的深度神经网络,来完成下中国象棋的任务。目前这个项目仍在积极开发中,并且仍然没有完成全部的开发,欢迎pull request 或者star。 然而受到计算资源限制,这样庞大的任务不可能在一台机器上完成训练,这也是我完成了分布式训练代码的原因,希望各位小伙伴能够加入,一起训练这样一个中国象棋alpha go的网络。 我的估计是达到4000~5000elo分数的时候深度网络可以达到目标,现在深度网络已经到了1400分的边缘,达到人类中上水平的目标并不是不可能的,因为计算资源限制,我希望能用较少计算资源来进行整个训练,所以前几天我加入了一些人类棋谱,这也是elo曲线中跳跃的折线的原因。
recommend-type

tesseract-ocr中文数据包chi_sim.traineddata.gz

tesseract-ocr中文数据包chi_sim.traineddata.gz,训练数据包。
recommend-type

Ghost3211.0 桌面ghost启动工具

Ghost3211.0 桌面ghost启动工具 用该工具重装系统可直接在桌面启动Ghost版本系统进行系统重装
recommend-type

全能测井解释软件Forward_2.7_最全教程

全能测井解释软件Forward_2.7_最全教程
recommend-type

MT2D 正演程序完整版

基于MATLAB编写的大地电磁二维有限单元法正演程序,矩形单元剖分,线性插值, 使用说明: 1. 运行MT2DMODEL.m构建正演模型 2. 运行TMmodel.m和TEmodel.m正演计算,计算结果自动保存 3. 程序进行了优化,并将BICGSTAB(稳定双共轭梯度法)用于求解线性方程组,求解效率提高,一般情况下正演计算仅需1~2秒

最新推荐

recommend-type

python2练习题——编写函数,输入数字,判断是否是素数

7. **最后一位数字**:所有大于10的质数,其个位数只能是1、3、7或9。这是因为2、4、6和8都是偶数,5的倍数个位是0或5,而9的倍数个位的和是9的倍数,因此它们不可能是质数。 8. **素数密度**:在较大的数集中,...
recommend-type

COMSOL超表面复现Qbic技术:结构变化透射谱、偏振变换与多级子分解的电磁场模式分析

内容概要:本文详细介绍了如何利用COMSOL软件复现超表面的多种物理特性,特别是Qbic技术的应用。主要内容涵盖超表面的结构与透射谱、偏振变化透射谱、结构变化透射谱、法诺曲线拟合、BIC位置Q因子计算、多级子分解及电场磁场模式图等方面。通过这些技术手段,可以深入了解超表面的光学响应和物理特性,为设计和优化超表面提供理论支持和技术指导。 适合人群:从事超表面研究的科研人员、物理学专业学生、光学工程领域的研究人员。 使用场景及目标:适用于希望深入了解超表面物理特性的科研工作者,旨在帮助他们掌握COMSOL软件的具体操作技巧,提高超表面设计和优化的能力。 其他说明:文中还附有MATLAB代码片段,用于展示如何在COMSOL中进行超表面的建模和仿真。
recommend-type

通信线路施工安全生产事故预案.doc

通信线路施工安全生产事故预案.doc
recommend-type

基于MATLAB的变压器剩磁计算及磁通波形分析

内容概要:本文详细介绍了利用MATLAB进行变压器剩磁计算的方法及其重要性。首先解释了剩磁的概念,它是变压器断电后铁芯材料中残留的磁场。接着展示了如何在MATLAB中定义磁通波形参数并通过数值积分等方式计算剩磁值。最后,通过MATLAB的绘图功能展示了磁通波形变化及剩磁值的计算结果。文中还强调了剩磁值对于评估变压器性能和安全性的重要性。 适合人群:电气工程专业学生、从事电力设备研究的技术人员、对变压器特性感兴趣的科研工作者。 使用场景及目标:适用于需要评估变压器性能和安全性的场合,特别是涉及剩磁对变压器影响的研究项目。目标是提高对变压器剩磁现象的理解,优化变压器的设计和维护。 其他说明:文中提供的MATLAB代码片段可以作为初学者入门的基础,进一步深入时可根据实际情况调整和完善代码。
recommend-type

深入理解JPA注解@Access用法示例

在Java持久化API(JPA)中,注解是定义元数据的主要方式,它告诉JPA如何将实体类映射到数据库表以及如何处理实体类。其中,`@Access`注解是一个用于指定JPA实体访问类型的注解,它定义了在Java实体类与其映射的数据库表之间的数据访问策略。 `@Access`注解可以使用在两个不同的层面: 1. 类级别(Class-level):在类级别使用时,该注解定义了整个实体类的访问类型。 2. 属性级别(Property-level):在属性级别使用时,该注解覆盖类级别的访问策略,允许你为单个属性定义不同的访问类型。 该注解有两种可用的值,分别对应不同的访问类型: - `AccessType.FIELD`:这是默认值,指示JPA通过字段访问实体状态。在这种情况下,JPA将直接访问类中的私有或受保护字段。 - `AccessType.PROPERTY`:指示JPA通过JavaBean属性(getter和setter方法)访问实体状态。在这种情况下,JPA将调用相应的getter和setter方法来获取或设置属性值。 使用`@Access`注解的一个典型实例可能会涉及到以下内容: ```java import javax.persistence.Access; import javax.persistence.AccessType; import javax.persistence.Entity; @Entity @Access(AccessType.PROPERTY) public class MyEntity { private String name; @Access(AccessType.FIELD) public String getName() { return name; } public void setName(String name) { this.name = name; } } ``` 在上述示例中,`MyEntity`是一个JPA实体类。我们使用`@Entity`注解标记该类作为JPA实体。`@Access(AccessType.PROPERTY)`注解在类级别指定了访问类型为属性。然而,在`name`属性上,我们使用了`@Access(AccessType.FIELD)`注解来覆盖类级别的访问类型,指示JPA直接通过字段来访问`name`属性,而不通过getter和setter方法。 理解`@Access`注解的使用对于调整实体的持久化行为是非常重要的。它允许开发者在不同的访问级别之间进行选择,以此来控制对实体的访问。这在某些特定的业务逻辑中是非常有用的,例如,可能需要绕过默认的getter/setter机制,直接访问私有字段。 在实际的项目开发中,`@Access`注解通常与`@Column`、`@Id`、`@GeneratedValue`等其它JPA注解结合使用,来定义实体的具体映射细节。正确地使用`@Access`注解可以改善应用的性能,尤其是在涉及到大量数据操作时。 值得一提的是,`@Access`注解还与`AccessType`枚举紧密相关,后者定义了访问类型的合法值。开发者需要确保在使用`@Access`注解时指定的访问类型与`AccessType`枚举中的值一致。 总结来说,JPA中的`@Access`注解是一个细微但功能强大的工具,它提供了对实体访问策略的精细控制。开发者可以通过这个注解来优化实体的持久化过程,并在需要时覆盖默认的访问机制。在JPA的学习和使用过程中,理解和掌握`@Access`注解及其背后的机制是构建高效、灵活的持久化解决方案的关键部分。
recommend-type

【Postman脚本编写】:从基础到高级技巧,全方位提升测试能力

# 1. Postman脚本编写入门 Postman是API开发和测试不可或缺的工具,而编写脚本是Postman强大的自定义功能的体现。无论你是新手还是有经验的开发者,本章将为你提供一个Postman脚本编写的入门级指南。 ## 1.1 Postman脚本语言简介 Postman脚本主要使用JavaScript语言,这是Web开发中最常用的语言之一。熟悉J
recommend-type

TIM_ICInitTypeDef TIM2_ICInitStructure; void TIM2_Cap_Init(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // TIM_OCInitTypeDef TIM_OCInitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能TIM2时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能GPIOA时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA1 输入 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //PA3输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M GPIO_Init(GPIOA, &GPIO_InitStructure); // GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //PA0输出 // GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M // GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化定时器2 TIM2 TIM_TimeBaseStructure.TIM_Period = arr; //设定计数器自动重装值 TIM_TimeBaseStructure.TIM_Prescaler =psc; //预分频器 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 // // TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择PWM1模式 // TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 //// TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Disable; // TIM_OCInitStructure.TIM_Pulse = 0; //设置待装入捕获比较寄存器的脉冲值 // TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //设置输出极性 // TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; // // TIM_OC1Init(TIM2,&TIM_OCInitStructure); //初始化输出比较参数,通道3 // TIM_OC1PreloadConfig(TIM2,TIM_OCPreload_Enable); //CH1使能预装载寄存器 // TIM_ARRPreloadConfig(TIM2, ENABLE); //使能TIM3在ARR上的预装载寄存器 //初始化TIM2输入捕获参数 TIM2_ICInitStructure.TIM_Channel = TIM_Channel_2; //CC1S=02 选择输入端 IC2映射到TI1上 TIM2_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿捕获 TIM2_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM2_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //配置输入分频,不分频 TIM2_ICInitStructure.TIM_ICFilter = 0x00;//配置输入滤波器 不滤波 TIM_ICInit(TIM2, &TIM2_ICInitStructure); //中断分组初始化 NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; //TIM2中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //先占优先级1级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //从优先级1级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_ITConfig(TIM2,TIM_IT_Update|TIM_IT_CC2,ENABLE);//允许更新中断 ,允许CC2IE捕获中断 TIM_Cmd(TIM2,ENABLE ); //使能定时器2 // TIM2->CCR1 = 1500; } /************************************************************************** Function: Ultrasonic receiving echo function Input : none Output : none 函数功能:超声波接收回波函数 入口参数: 无 返回 值:无 **************************************************************************/ u16 TIM2CH2_CAPTURE_STA,TIM2CH2_CAPTURE_VAL; void Read_Distane(void) { PAout(3)=1; delay_us(15); PAout(3)=0; if(TIM2CH2_CAPTURE_STA&0X80)//成功捕获到了一次高电平 { Distance=TIM2CH2_CAPTURE_STA&0X3F; Distance*=65536; //溢出时间总和 Distance+=TIM2CH2_CAPTURE_VAL; //得到总的高电平时间 Distance=Distance*170/1000; //时间*声速/2(来回) 一个计数0.001ms TIM2CH2_CAPTURE_STA=0; //开启下一次捕获 } } /************************************************************************** Function: Pulse width reading interruption of ultrasonic echo Input : none Output : none 函数功能:超声波回波脉宽读取中断 入口参数: 无 返回 值:无 **************************************************************************/ void TIM2_IRQHandler(void) { u16 tsr; tsr=TIM2->SR; if((TIM2CH2_CAPTURE_STA&0X80)==0)//还未成功捕获 { if(tsr&0X01)//定时器溢出 { if(TIM2CH2_CAPTURE_STA&0X40)//已经捕获到高电平了 { if((TIM2CH2_CAPTURE_STA&0X3F)==0X3F)//高电平太长了 { TIM2CH2_CAPTURE_STA|=0X80; //标记成功捕获了一次 TIM2CH2_CAPTURE_VAL=0XFFFF; }else TIM2CH2_CAPTURE_STA++; } } if(tsr&0x04)//捕获2发生捕获事件 { if(TIM2CH2_CAPTURE_STA&0X40) //捕获到一个下降沿 { TIM2CH2_CAPTURE_STA|=0X80; //标记成功捕获到一次高电平脉宽 TIM2CH2_CAPTURE_VAL=TIM2->CCR2; //获取当前的捕获值. TIM2->CCER&=~(1<<5); //CC2P=0 设置为上升沿捕获 } else //还未开始,第一次捕获上升沿 { TIM2CH2_CAPTURE_STA=0; //清空 TIM2CH2_CAPTURE_VAL=0; TIM2CH2_CAPTURE_STA|=0X40; //标记捕获到了上升沿 TIM2->CNT=0; //计数器清空 TIM2->CCER|=1<<5; //CC2P=1 设置为下降沿捕获 } } } TIM2->SR=0;//清除中断标志位 } 把这段代码的PA2引脚改为PA1引脚

<think>好的,用户想将代码中的PA2引脚修改为PA1,并确保配置正确。首先我需要确定用户使用的硬件平台,比如是STM32还是其他微控制器。根据引用中的信息,用户提到了STM32F103和GD32F450VGT6,可能是在使用这两种芯片之一。接下来,用户提到的PA2和PA1属于GPIO引脚,修改时需要检查代码中所有涉及到PA2的地方。这包括初始化配置、外设复用设置(如UART、SPI、I2C等)、中断配置以及硬件驱动层的定义。例如,如果PA2用于SPI的片选引脚或者UART的TX引脚,那么改为PA1后需要确保对应的复用功能正确设置。根据引用[1],引脚编号由PIN设备驱动程序定义,可能需要
recommend-type

Android内部存储的使用方法及数据访问限制

在Android开发中,内部存储是一种用于保存应用数据的方式,它将数据保存在设备的内部存储器中,不对外部可见。内部存储数据是私有的,通常只能被创建它的应用访问。这种存储机制非常适合存储敏感数据,如用户设置、私有文件等。本文将详细探讨Android中内部存储的概念、特点、使用方法以及相关的最佳实践。 ### 内部存储的概念 内部存储,又称为私有存储,是指在Android应用开发中,数据被保存在一个私有的目录下,这个目录默认情况下其他应用无法访问。该目录通常位于`/data/data/<package_name>/`路径下,其中`<package_name>`是你的应用包名。在内部存储中,每个应用都有自己的私有文件目录,这样能够保证应用数据的安全性和隔离性。 ### 内部存储的特点 1. **私密性**:存储在内部存储中的数据,除了应用本身之外,其他应用无法直接访问。 2. **安全性**:即使设备被root,非应用用户也无法直接访问内部存储中的文件。 3. **自动管理**:当应用被卸载时,与该应用相关的内部存储中的数据也会被自动清除。 4. **存储容量有限**:与外部存储不同,内部存储空间往往较小,且受限于设备的存储能力。 5. **无需请求权限**:在Android 4.4(API 级别 19)以前,使用内部存储来存储数据不需要特别请求权限。 ### 使用方法 在Android中,内部存储的使用通常涉及以下几个API: - **Context.openFileOutput()**:用于在应用的内部存储中打开一个文件输出流,用于写入数据。 - **Context.openFileInput()**:用于打开一个文件输入流,读取内部存储中的数据。 - **FileOutputStream** 和 **FileInputStream**:用于文件的写入和读取。 - **getFilesDir()** 和 **getCacheDir()**:用于获取内部存储中应用的文件目录和缓存目录。 ### 示例代码 以下是使用内部存储的简单示例代码,展示了如何写入和读取文件: ```java // 写入数据到内部存储 FileOutputStream fos = openFileOutput("myfile.txt", Context.MODE_PRIVATE); OutputStreamWriter osw = new OutputStreamWriter(fos); osw.write("Hello, internal storage!"); osw.close(); // 从内部存储读取数据 FileInputStream fis = openFileInput("myfile.txt"); InputStreamReader isr = new InputStreamReader(fis); BufferedReader reader = new BufferedReader(isr); String line = reader.readLine(); Log.d("InternalStorage", line); // 输出: Hello, internal storage! ``` ### 最佳实践 - **管理文件生命周期**:确保当不需要时,正确地清理文件,避免占用无用的存储空间。 - **考虑使用外部存储**:对于不需要严格私密性的文件,例如用户下载的音乐或视频,可以考虑使用外部存储来节省内部空间。 - **使用缓存策略**:对于临时文件或缓存文件,可以使用`getCacheDir()`方法,系统会在存储空间不足时自动清除这些文件。 - **考虑API级别**:在编写代码时,要考虑到不同版本的Android可能对权限和存储API有不同的要求。 - **利用数据库**:对于结构化数据,可以考虑使用SQLite数据库来存储,这样更易于管理和查询数据。 ### 注意事项 - **权限和API级别**:从Android 6.0(API 级别 23)开始,即使是在内部存储中操作文件,也需要在运行时请求存储权限。因此,开发者需要在应用中处理运行时权限请求。 - **外部存储兼容性**:对于需要与外部存储交换数据的场景,建议使用Android的媒体存储API,如`MediaStore`,以便更好地处理文件在内外部存储之间的迁移。 ### 结论 Android的内部存储为应用提供了一个私密且安全的空间来保存文件。开发者应当熟悉内部存储的使用方法和最佳实践,以便能够高效且安全地管理应用数据。通过合理的文件管理策略,可以确保应用的性能,并提升用户体验。
recommend-type

【实时监控与定时任务】:Postman监控器的终极指南

# 1. Postman监控器概念与实时监控基础 在本章中,我们将首先介绍Postman监控器的基本概念及其在实时监控中的重要性。Postman监控器作为一种API监控工具,它能够帮助开发人员和运维团队实时地跟踪和分析API接口的性能表现,确保应用的稳定性和可靠性。我们会探讨监控器的核心功能,如数据收集、分析、警报机制等,并且为读者建立一个理解监控器如何工作的基础知识架构。 Pos
recommend-type

递归二路归并排序代码

<think>好的,我需要帮助用户获取递归二路归并排序的完整代码实现,并且输出前三轮的排序结果。首先,我得回忆一下归并排序的基本原理。归并排序采用分治策略,将数组分成两半,分别递归排序,然后合并两个有序的子数组。用户需要Python、Java和C++的代码,所以我要为这三种语言分别编写实现。接下来,我需要确保代码正确。归并排序的关键在于merge函数和递归的sort函数。对于递归实现,基准情况是当子数组长度小于等于1时返回。然后,找到中间点,递归排序左半部分和右半部分,最后合并。要注意数组索引的处理,避免越界。然后,用户要求输出前三轮的排序结果。这里可能需要添加打印语句来跟踪每一轮的排序情况。