esp8266wifi模块退出TCP透传

时间: 2025-01-20 10:06:57 浏览: 117
### 如何使ESP8266 WiFi模块退出TCP透传模式 对于ESP8266 Wi-Fi模块,在进入特定工作状态如TCP透传模式之后,可以通过发送指定命令来改变其操作模式或退出该模式。通常情况下,要让ESP8266退出TCP透传模式并返回到AT指令集响应的状态,可以尝试以下方法: 1. **发送`+++`序列** 当处于透传模式时,向ESP8266连续发送三个加号(即`+++`),这会触发设备从当前的数据传输模式切换回命令处理模式。需要注意的是,为了成功执行此操作,这三个字符之间的时间间隔应保持在一个较短范围内,默认设置下大约为1秒内完成输入。 2. **配置参数调整** 可能还需要修改某些与透传功能相关的配置项以确保能够正常脱离透传状态。例如,如果之前启用了自动重连特性,则可能需要先将其关闭;另外也可以考虑更改服务器端口号等其他影响通信行为的选项。 3. **重启模块** 如果上述两种方式均未能有效解决问题,那么最简单直接的办法就是物理上重新启动ESP8266模块。这样做的效果相当于完全清除了之前的任何临时设定,并恢复到了初始待机状况等待新的指令输入[^1]。 ```cpp // 示例代码用于Arduino IDE控制ESP8266 void setup() { Serial.begin(115200); delay(1000); // 延迟一秒以便稳定连接 // 发送 +++ 序列以退出透传模式 Serial.println("+++"); } void loop() { // 主循环体为空因为只需要一次性的动作即可实现目的 } ```
阅读全文

相关推荐

一、介绍 ESP8266是一款嵌入式系统级芯片,它集成了Wi-Fi功能和微控制器能力于一身,常用于物联网(IoT)项目中。这款芯片支持TCP/IP协议栈,能够连接到WiFi网络,并通过AT命令或者更高级的API与主控设备进行通信。它的低功耗特性使得它可以长时间运行在电池供电下,广泛应用于智能家居、智能门锁、无线传感器网络等应用中。 以下是ESP8266-01S模块的参数: 型号 ESP8266-01S 使用电压 3.0~3.6V WIFI模式 STATION/AP/STATION+AP 通信距离 100M 天线 PCB板载天线 SPI FLASH 1MB 天线标准 802.11B/G/N 哔哩哔哩视频链接: ESP8266模块(WIFI STM32) (资料分享见文末) 二、传感器原理 1.原理图 2.引脚描述 引脚名称 描述 GND GND IO2 通用IO内部已上拉 IO0 工作模式选择 RXD 串口接收 3V3 电源正极3.3V RST 复位 EN 使能 TX 串口发送 3.ESP8266基础AT指令介绍 4.ESP8266基础工作模式 ESP8266WIFI 模式有两种,一种叫 AP 模式,一种叫 Station 模式,AP 就是我们平时所说的热点,如 WIFI 路由器,开了热点的手机,或者是公共热点等,这些 AP 设备可以允许其他设备(如手机,笔记本电脑等)输入热点名和密码(也可不设置密码)后接入,Station 则是前面说的连接 AP 的设备,如:手机,笔记本电脑等,ESP8266 还有第三种模式:AP+Station,即:将 AP 和 Station 的功能合二为一,但是应用的场景不多,这里不做展示。 三、程序设计 使用STM32F103C8T6通过网络调试助手(APP)控制LED亮灭。 ESP8266_TX PA3 ESP8266_RX PA2 LED PA0 串口 串口1 main.c文件 #include "stm32f10x.h" #include "led.h" #include "usart.h" #include "delay.h" #include "esp8266.h" /*****************辰哥单片机设计****************** STM32 * 项目 : ESP8266模块通信实验 * 版本 : V1.0 * 日期 : 2024.9.30 * MCU : STM32F103C8T6 * 接口 : 参看usart2.h * BILIBILI : 辰哥单片机设计 * CSDN : 辰哥单片机设计 * 作者 : 辰哥 **********************BEGIN***********************/ uint8_t flag; int main(void) { SystemInit();//配置系统时钟为72M delay_init(72); LED_Init(); LED_On(); USART_Config(); ESP8266_Init (); //初始化WiFi模块使用的接口和外设(使用串口2) ESP8266_StaTcpClient ();//WiFi模块设置 printf("Start \n"); delay_ms(1000); while (1) { switch(flag) { case 'a': LED_On();break;//开灯 case 'c': LED_Off();break;//关灯 } } } esp8266.h文件 #ifndef __ESP8266_H #define __ESP8266_H #include "stm32f10x.h" #include "common.h" #include <stdio.h> #include <stdbool.h> /*****************辰哥单片机设计****************** STM32 * 项目 : ESP8266模块通信实验 * 版本 : V1.0 * 日期 : 2024.9.30 * MCU : STM32F103C8T6 * 接口 : 串口2 * BILIBILI : 辰哥单片机设计 * CSDN : 辰哥单片机设计 * 作者 : 辰哥 **********************BEGIN***********************/ #if defined ( __CC_ARM ) #pragma anon_unions #endif /******************************* ESP8266 数据类型定义 ***************************/ typedef enum{ STA, AP, STA_AP } ENUM_Net_ModeTypeDef; typedef enum{ enumTCP, enumUDP, } ENUM_NetPro_TypeDef; typedef enum{ Multiple_ID_0 = 0, Multiple_ID_1 = 1, Multiple_ID_2 = 2, Multiple_ID_3 = 3, Multiple_ID_4 = 4, Single_ID_0 = 5, } ENUM_ID_NO_TypeDef; typedef enum{ OPEN = 0, WEP = 1, WPA_PSK = 2, WPA2_PSK = 3, WPA_WPA2_PSK = 4, } ENUM_AP_PsdMode_TypeDef; /******************************* ESP8266 外部全局变量声明 ***************************/ #define RX_BUF_MAX_LEN 1024 //最大接收缓存字节数 extern struct STRUCT_USARTx_Fram //串口数据帧的处理结构体 { char Data_RX_BUF [ RX_BUF_MAX_LEN ]; union { __IO u16 InfAll; struct { __IO u16 FramLength :15; // 14:0 __IO u16 FramFinishFlag :1; // 15 } InfBit; }; } strEsp8266_Fram_Record; /******************************** ESP8266 连接引脚定义 ***********************************/ #define macESP8266_CH_PD_APBxClock_FUN RCC_APB2PeriphClockCmd #define macESP8266_CH_PD_CLK RCC_APB2Periph_GPIOA #define macESP8266_CH_PD_PORT GPIOA #define macESP8266_CH_PD_PIN GPIO_Pin_5 #define macESP8266_RST_APBxClock_FUN RCC_APB2PeriphClockCmd #define macESP8266_RST_CLK RCC_APB2Periph_GPIOA #define macESP8266_RST_PORT GPIOA #define macESP8266_RST_PIN GPIO_Pin_6 #define macESP8266_USART_BAUD_RATE 115200 #define macESP8266_USARTx USART2 #define macESP8266_USART_APBxClock_FUN RCC_APB1PeriphClockCmd #define macESP8266_USART_CLK RCC_APB1Periph_USART2 #define macESP8266_USART_GPIO_APBxClock_FUN RCC_APB2PeriphClockCmd #define macESP8266_USART_GPIO_CLK RCC_APB2Periph_GPIOA #define macESP8266_USART_TX_PORT GPIOA #define macESP8266_USART_TX_PIN GPIO_Pin_2 #define macESP8266_USART_RX_PORT GPIOA #define macESP8266_USART_RX_PIN GPIO_Pin_3 #define macESP8266_USART_IRQ USART2_IRQn #define macESP8266_USART_INT_FUN USART2_IRQHandler /*********************************************** ESP8266 函数宏定义 *******************************************/ #define macESP8266_Usart( fmt, ... ) USART_printf ( macESP8266_USARTx, fmt, ##__VA_ARGS__ ) #define macPC_Usart( fmt, ... ) printf ( fmt, ##__VA_ARGS__ ) //#define macPC_Usart( fmt, ... ) #define macESP8266_CH_ENABLE() GPIO_SetBits ( macESP8266_CH_PD_PORT, macESP8266_CH_PD_PIN ) #define macESP8266_CH_DISABLE() GPIO_ResetBits ( macESP8266_CH_PD_PORT, macESP8266_CH_PD_PIN ) #define macESP8266_RST_HIGH_LEVEL() GPIO_SetBits ( macESP8266_RST_PORT, macESP8266_RST_PIN ) #define macESP8266_RST_LOW_LEVEL() GPIO_ResetBits ( macESP8266_RST_PORT, macESP8266_RST_PIN ) /****************************************** ESP8266 函数声明 ***********************************************/ void ESP8266_Init ( void ); void ESP8266_Rst ( void ); bool ESP8266_Cmd ( char * cmd, char * reply1, char * reply2, u32 waittime ); void ESP8266_AT_Test ( void ); bool ESP8266_Net_Mode_Choose ( ENUM_Net_ModeTypeDef enumMode ); bool ESP8266_JoinAP ( char * pSSID, char * pPassWord ); bool ESP8266_BuildAP ( char * pSSID, char * pPassWord, ENUM_AP_PsdMode_TypeDef enunPsdMode ); bool ESP8266_Enable_MultipleId ( FunctionalState enumEnUnvarnishTx ); bool ESP8266_Link_Server ( ENUM_NetPro_TypeDef enumE, char * ip, char * ComNum, ENUM_ID_NO_TypeDef id); bool ESP8266_StartOrShutServer ( FunctionalState enumMode, char * pPortNum, char * pTimeOver ); uint8_t ESP8266_Get_LinkStatus ( void ); uint8_t ESP8266_Get_IdLinkStatus ( void ); uint8_t ESP8266_Inquire_ApIp ( char * pApIp, uint8_t ucArrayLength ); bool ESP8266_UnvarnishSend ( void ); void ESP8266_ExitUnvarnishSend ( void ); bool ESP8266_SendString ( FunctionalState enumEnUnvarnishTx, char * pStr, u32 ulStrLength, ENUM_ID_NO_TypeDef ucId ); char * ESP8266_ReceiveString ( FunctionalState enumEnUnvarnishTx ); /********************************** 用户需要设置的参数**********************************/ #define macUser_ESP8266_ApSsid "www" //要连接的热点的名称 #define macUser_ESP8266_ApPwd "www123456" //要连接的热点的密钥 //#define macUser_ESP8266_TcpServer_IP "192.168.0.11" //要连接的服务器的 IP //#define macUser_ESP8266_TcpServer_Port "8080" //要连接的服务器的端口 /********************************** 外部全局变量 ***************************************/ extern volatile uint8_t ucTcpClosedFlag; /********************************** 测试函数声明 ***************************************/ void ESP8266_StaTcpClient ( void ); #endif /* __ESP8266_H */ esp8266.c文件 #include "esp8266.h" /*****************辰哥单片机设计****************** STM32 * 项目 : ESP8266模块通信实验 * 版本 : V1.0 * 日期 : 2024.9.30 * MCU : STM32F103C8T6 * 接口 : 串口2 * BILIBILI : 辰哥单片机设计 * CSDN : 辰哥单片机设计 * 作者 : 辰哥 **********************BEGIN***********************/ #include "esp8266.h" #include "common.h" #include <stdio.h> #include <string.h> #include <stdbool.h> #include "delay.h" volatile uint8_t ucTcpClosedFlag = 0; char cStr [ 1500 ] = { 0 }; static void ESP8266_GPIO_Config ( void ); static void ESP8266_USART_Config ( void ); static void ESP8266_USART_NVIC_Configuration ( void ); struct STRUCT_USARTx_Fram strEsp8266_Fram_Record = { 0 }; /** * @brief ESP8266 (Sta Tcp Client)透传 * @param 无 * @retval 无 */ void ESP8266_StaTcpClient ( void ) { // uint8_t ucStatus; // char cStr [ 100 ] = { 0 }; printf ( "\r\n正在配置 ESP8266 ......\r\n" ); macESP8266_CH_ENABLE(); ESP8266_AT_Test (); ESP8266_Net_Mode_Choose ( STA ); while ( ! ESP8266_JoinAP ( macUser_ESP8266_ApSsid, macUser_ESP8266_ApPwd ) ); ESP8266_Cmd ( "AT+CIFSR", "OK", 0, 1000 ); ESP8266_Cmd ( "AT+CIPMUX=1", "OK", 0, 1000 ); ESP8266_Cmd ( "AT+CIPSERVER=1,8288", "OK", 0, 1000 ); //ESP8266_Cmd("AT+CIPSTART="TCP",192.168.1.1,8000","OK",0,1000); printf( "\r\n配置 ESP8266 完毕\r\n" ); } /** * @brief ESP8266初始化函数 * @param 无 * @retval 无 */ void ESP8266_Init ( void ) { // ESP8266_GPIO_Config (); ESP8266_USART_Config (); // macESP8266_RST_HIGH_LEVEL(); // macESP8266_CH_DISABLE(); } /** * @brief 初始化ESP8266用到的GPIO引脚 * @param 无 * @retval 无 */ static void ESP8266_GPIO_Config ( void ) { /*定义一个GPIO_InitTypeDef类型的结构体*/ GPIO_InitTypeDef GPIO_InitStructure; /* 配置 CH_PD 引脚*/ macESP8266_CH_PD_APBxClock_FUN ( macESP8266_CH_PD_CLK, ENABLE ); GPIO_InitStructure.GPIO_Pin = macESP8266_CH_PD_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init ( macESP8266_CH_PD_PORT, & GPIO_InitStructure ); /* 配置 RST 引脚*/ macESP8266_RST_APBxClock_FUN ( macESP8266_RST_CLK, ENABLE ); GPIO_InitStructure.GPIO_Pin = macESP8266_RST_PIN; GPIO_Init ( macESP8266_RST_PORT, & GPIO_InitStructure ); } /** * @brief 初始化ESP8266用到的 USART * @param 无 * @retval 无 */ static void ESP8266_USART_Config ( void ) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; /* config USART clock */ macESP8266_USART_APBxClock_FUN ( macESP8266_USART_CLK, ENABLE ); macESP8266_USART_GPIO_APBxClock_FUN ( macESP8266_USART_GPIO_CLK, ENABLE ); /* USART GPIO config */ /* Configure USART Tx as alternate function push-pull */ GPIO_InitStructure.GPIO_Pin = macESP8266_USART_TX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(macESP8266_USART_TX_PORT, &GPIO_InitStructure); /* Configure USART Rx as input floating */ GPIO_InitStructure.GPIO_Pin = macESP8266_USART_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(macESP8266_USART_RX_PORT, &GPIO_InitStructure); /* USART1 mode config */ USART_InitStructure.USART_BaudRate = macESP8266_USART_BAUD_RATE; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No ; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(macESP8266_USARTx, &USART_InitStructure); /* 中断配置 */ USART_ITConfig ( macESP8266_USARTx, USART_IT_RXNE, ENABLE ); //使能串口接收中断 USART_ITConfig ( macESP8266_USARTx, USART_IT_IDLE, ENABLE ); //使能串口总线空闲中断 ESP8266_USART_NVIC_Configuration (); USART_Cmd(macESP8266_USARTx, ENABLE); } /** * @brief 配置 ESP8266 USART 的 NVIC 中断 * @param 无 * @retval 无 */ static void ESP8266_USART_NVIC_Configuration ( void ) { NVIC_InitTypeDef NVIC_InitStructure; /* Configure the NVIC Preemption Priority Bits */ NVIC_PriorityGroupConfig ( macNVIC_PriorityGroup_x ); /* Enable the USART2 Interrupt */ NVIC_InitStructure.NVIC_IRQChannel = macESP8266_USART_IRQ; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } /* * 函数名:ESP8266_Rst * 描述 :重启WF-ESP8266模块 * 输入 :无 * 返回 : 无 * 调用 :被 ESP8266_AT_Test 调用 */ void ESP8266_Rst ( void ) { #if 0 ESP8266_Cmd ( "AT+RST", "OK", "ready", 2500 ); #else macESP8266_RST_LOW_LEVEL(); delay_ms ( 500 ); macESP8266_RST_HIGH_LEVEL(); #endif } /* * 函数名:ESP8266_Cmd * 描述 :对WF-ESP8266模块发送AT指令 * 输入 :cmd,待发送的指令 * reply1,reply2,期待的响应,为NULL表不需响应,两者为或逻辑关系 * waittime,等待响应的时间 * 返回 : 1,指令发送成功 * 0,指令发送失败 * 调用 :被外部调用 */ bool ESP8266_Cmd ( char * cmd, char * reply1, char * reply2, u32 waittime ) { strEsp8266_Fram_Record .InfBit .FramLength = 0; //从新开始接收新的数据包 macESP8266_Usart ( "%s\r\n", cmd ); if ( ( reply1 == 0 ) && ( reply2 == 0 ) ) //不需要接收数据 return true; delay_ms( waittime ); //延时 strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ] = '\0'; macPC_Usart ( "%s", strEsp8266_Fram_Record .Data_RX_BUF ); if ( ( reply1 != 0 ) && ( reply2 != 0 ) ) return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply1 ) || ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply2 ) ); else if ( reply1 != 0 ) return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply1 ) ); else return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply2 ) ); } /* * 函数名:ESP8266_AT_Test * 描述 :对WF-ESP8266模块进行AT测试启动 * 输入 :无 * 返回 : 无 * 调用 :被外部调用 */ void ESP8266_AT_Test ( void ) { char count=0; macESP8266_RST_HIGH_LEVEL(); delay_ms( 1000 ); while ( count < 10 ) { if( ESP8266_Cmd ( "AT", "OK", NULL, 500 ) ) return; ESP8266_Rst(); ++ count; } } /* * 函数名:ESP8266_Net_Mode_Choose * 描述 :选择WF-ESP8266模块的工作模式 * 输入 :enumMode,工作模式 * 返回 : 1,选择成功 * 0,选择失败 * 调用 :被外部调用 */ bool ESP8266_Net_Mode_Choose ( ENUM_Net_ModeTypeDef enumMode ) { switch ( enumMode ) { case STA: return ESP8266_Cmd ( "AT+CWMODE=1", "OK", "no change", 2500 ); case AP: return ESP8266_Cmd ( "AT+CWMODE=2", "OK", "no change", 2500 ); case STA_AP: return ESP8266_Cmd ( "AT+CWMODE=3", "OK", "no change", 2500 ); default: return false; } } /* * 函数名:ESP8266_JoinAP * 描述 :WF-ESP8266模块连接外部WiFi * 输入 :pSSID,WiFi名称字符串 * :pPassWord,WiFi密码字符串 * 返回 : 1,连接成功 * 0,连接失败 * 调用 :被外部调用 */ bool ESP8266_JoinAP ( char * pSSID, char * pPassWord ) { char cCmd [120]; sprintf ( cCmd, "AT+CWJAP=\"%s\",\"%s\"", pSSID, pPassWord ); return ESP8266_Cmd ( cCmd, "OK", NULL, 5000 ); } /* * 函数名:ESP8266_BuildAP * 描述 :WF-ESP8266模块创建WiFi热点 * 输入 :pSSID,WiFi名称字符串 * :pPassWord,WiFi密码字符串 * :enunPsdMode,WiFi加密方式代号字符串 * 返回 : 1,创建成功 * 0,创建失败 * 调用 :被外部调用 */ bool ESP8266_BuildAP ( char * pSSID, char * pPassWord, ENUM_AP_PsdMode_TypeDef enunPsdMode ) { char cCmd [120]; sprintf ( cCmd, "AT+CWSAP=\"%s\",\"%s\",1,%d", pSSID, pPassWord, enunPsdMode ); return ESP8266_Cmd ( cCmd, "OK", 0, 1000 ); } /* * 函数名:ESP8266_Enable_MultipleId * 描述 :WF-ESP8266模块启动多连接 * 输入 :enumEnUnvarnishTx,配置是否多连接 * 返回 : 1,配置成功 * 0,配置失败 * 调用 :被外部调用 */ bool ESP8266_Enable_MultipleId ( FunctionalState enumEnUnvarnishTx ) { return ESP8266_Cmd ( "AT+CIPMUX=%d", "OK", 0, 500 ); } /* * 函数名:ESP8266_Link_Server * 描述 :WF-ESP8266模块连接外部服务器 * 输入 :enumE,网络协议 * :ip,服务器IP字符串 * :ComNum,服务器端口字符串 * :id,模块连接服务器的ID * 返回 : 1,连接成功 * 0,连接失败 * 调用 :被外部调用 */ bool ESP8266_Link_Server ( ENUM_NetPro_TypeDef enumE, char * ip, char * ComNum, ENUM_ID_NO_TypeDef id) { char cStr [100] = { 0 }, cCmd [120]; switch ( enumE ) { case enumTCP: sprintf ( cStr, "\"%s\",\"%s\",%s", "TCP", ip, ComNum ); break; case enumUDP: sprintf ( cStr, "\"%s\",\"%s\",%s", "UDP", ip, ComNum ); break; default: break; } if ( id < 5 ) sprintf ( cCmd, "AT+CIPSTART=%d,%s", id, cStr); else sprintf ( cCmd, "AT+CIPSTART=%s", cStr ); return ESP8266_Cmd ( cCmd, "OK", "ALREAY CONNECT", 4000 ); } /* * 函数名:ESP8266_StartOrShutServer * 描述 :WF-ESP8266模块开启或关闭服务器模式 * 输入 :enumMode,开启/关闭 * :pPortNum,服务器端口号字符串 * :pTimeOver,服务器超时时间字符串,单位:秒 * 返回 : 1,操作成功 * 0,操作失败 * 调用 :被外部调用 */ bool ESP8266_StartOrShutServer ( FunctionalState enumMode, char * pPortNum, char * pTimeOver ) { char cCmd1 [120], cCmd2 [120]; if ( enumMode ) { sprintf ( cCmd1, "AT+CIPSERVER=%d,%s", 1, pPortNum ); sprintf ( cCmd2, "AT+CIPSTO=%s", pTimeOver ); return ( ESP8266_Cmd ( cCmd1, "OK", 0, 500 ) && ESP8266_Cmd ( cCmd2, "OK", 0, 500 ) ); } else { sprintf ( cCmd1, "AT+CIPSERVER=%d,%s", 0, pPortNum ); return ESP8266_Cmd ( cCmd1, "OK", 0, 500 ); } } /* * 函数名:ESP8266_Get_LinkStatus * 描述 :获取 WF-ESP8266 的连接状态,较适合单端口时使用 * 输入 :无 * 返回 : 2,获得ip * 3,建立连接 * 3,失去连接 * 0,获取状态失败 * 调用 :被外部调用 */ uint8_t ESP8266_Get_LinkStatus ( void ) { if ( ESP8266_Cmd ( "AT+CIPSTATUS", "OK", 0, 500 ) ) { if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:2\r\n" ) ) return 2; else if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:3\r\n" ) ) return 3; else if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:4\r\n" ) ) return 4; } return 0; } /* * 函数名:ESP8266_Get_IdLinkStatus * 描述 :获取 WF-ESP8266 的端口(Id)连接状态,较适合多端口时使用 * 输入 :无 * 返回 : 端口(Id)的连接状态,低5位为有效位,分别对应Id5~0,某位若置1表该Id建立了连接,若被清0表该Id未建立连接 * 调用 :被外部调用 */ uint8_t ESP8266_Get_IdLinkStatus ( void ) { uint8_t ucIdLinkStatus = 0x00; if ( ESP8266_Cmd ( "AT+CIPSTATUS", "OK", 0, 500 ) ) { if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:0," ) ) ucIdLinkStatus |= 0x01; else ucIdLinkStatus &= ~ 0x01; if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:1," ) ) ucIdLinkStatus |= 0x02; else ucIdLinkStatus &= ~ 0x02; if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:2," ) ) ucIdLinkStatus |= 0x04; else ucIdLinkStatus &= ~ 0x04; if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:3," ) ) ucIdLinkStatus |= 0x08; else ucIdLinkStatus &= ~ 0x08; if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:4," ) ) ucIdLinkStatus |= 0x10; else ucIdLinkStatus &= ~ 0x10; } return ucIdLinkStatus; } /* * 函数名:ESP8266_Inquire_ApIp * 描述 :获取 F-ESP8266 的 AP IP * 输入 :pApIp,存放 AP IP 的数组的首地址 * ucArrayLength,存放 AP IP 的数组的长度 * 返回 : 0,获取失败 * 1,获取成功 * 调用 :被外部调用 */ uint8_t ESP8266_Inquire_ApIp ( char * pApIp, uint8_t ucArrayLength ) { char uc; char * pCh; ESP8266_Cmd ( "AT+CIFSR", "OK", 0, 500 ); pCh = strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "APIP,\"" ); if ( pCh ) pCh += 6; else return 0; for ( uc = 0; uc < ucArrayLength; uc ++ ) { pApIp [ uc ] = * ( pCh + uc); if ( pApIp [ uc ] == '\"' ) { pApIp [ uc ] = '\0'; break; } } return 1; } /* * 函数名:ESP8266_UnvarnishSend * 描述 :配置WF-ESP8266模块进入透传发送 * 输入 :无 * 返回 : 1,配置成功 * 0,配置失败 * 调用 :被外部调用 */ //bool ESP8266_UnvarnishSend ( void ) //{ // ESP8266_Cmd ( "AT+CIPMODE=1", "OK", 0, 500 ); //} /* * 函数名:ESP8266_ExitUnvarnishSend * 描述 :配置WF-ESP8266模块退出透传模式 * 输入 :无 * 返回 : 无 * 调用 :被外部调用 */ void ESP8266_ExitUnvarnishSend ( void ) { delay_ms( 1000 ); macESP8266_Usart ( "+++" ); delay_ms( 500 ); } /* * 函数名:ESP8266_SendString * 描述 :WF-ESP8266模块发送字符串 * 输入 :enumEnUnvarnishTx,声明是否已使能了透传模式 * :pStr,要发送的字符串 * :ulStrLength,要发送的字符串的字节数 * :ucId,哪个ID发送的字符串 * 返回 : 1,发送成功 * 0,发送失败 * 调用 :被外部调用 */ bool ESP8266_SendString ( FunctionalState enumEnUnvarnishTx, char * pStr, u32 ulStrLength, ENUM_ID_NO_TypeDef ucId ) { char cStr [20]; bool bRet = false; if ( enumEnUnvarnishTx ) { macESP8266_Usart ( "%s", pStr ); bRet = true; } else { if ( ucId < 5 ) sprintf ( cStr, "AT+CIPSEND=%d,%d", ucId, ulStrLength + 2 ); else sprintf ( cStr, "AT+CIPSEND=%d", ulStrLength + 2 ); ESP8266_Cmd ( cStr, "> ", 0, 1000 ); bRet = ESP8266_Cmd ( pStr, "SEND OK", 0, 1000 ); } return bRet; } /* * 函数名:ESP8266_ReceiveString * 描述 :WF-ESP8266模块接收字符串 * 输入 :enumEnUnvarnishTx,声明是否已使能了透传模式 * 返回 : 接收到的字符串首地址 * 调用 :被外部调用 */ char * ESP8266_ReceiveString ( FunctionalState enumEnUnvarnishTx ) { char * pRecStr = 0; strEsp8266_Fram_Record .InfBit .FramLength = 0; strEsp8266_Fram_Record .InfBit .FramFinishFlag = 0; while ( ! strEsp8266_Fram_Record .InfBit .FramFinishFlag ); strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ] = '\0'; if ( enumEnUnvarnishTx ) pRecStr = strEsp8266_Fram_Record .Data_RX_BUF; else { if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+IPD" ) ) pRecStr = strEsp8266_Fram_Record .Data_RX_BUF; } return pRecStr; } 对以上内容进行总结和解释,重点说明设计是如何实现的,包括:对设计工作的详细表述。要求层次分明、表达确切。

最新推荐

recommend-type

ESP8266 WIFI 模块 详细调试过程.docx

ESP8266 WIFI 模块的调试过程需要通过多个步骤来实现,包括设置 WIFI 模式、连接路由器、查询模块 IP、连接到服务器、开启透传模式、发送数据、退出透传模式等。同时,需要使用对应的 AT 指令来实现这些步骤,并且...
recommend-type

2014年网络直报培训考试与答案医疗机构最终版.doc

2014年网络直报培训考试与答案医疗机构最终版.doc
recommend-type

WPF实现左右滑动切换图片的小程序

在探讨如何利用WPF(Windows Presentation Foundation)实现滑动条更换图片的功能时,首先需要对WPF的基本概念和相关技术有所了解。 WPF是一个用于开发Windows桌面应用程序的UI框架,它允许开发者利用XAML(可扩展应用程序标记语言)创建界面,并结合.NET框架进行编程。WPF的核心优势在于其丰富的视觉效果、数据绑定能力、可扩展性和硬件加速。它支持复杂的视觉设计和丰富的交互性,非常适合进行复杂的用户界面设计。 ### 1. XAML与C#结合使用 实现WPF滑动条换图片的基本思路是,使用XAML定义界面布局,将滑动条(Slider)控件和图片显示控件(例如Image)放置于界面上,并利用C#代码实现滑动条值改变时触发的事件处理逻辑,从而达到更换图片的目的。 ### 2. 控件介绍 **Slider控件**: 在WPF中,Slider控件用于创建滑动条。它具有Minimum、Maximum、Value等属性,分别代表滑动条的最小值、最大值和当前值。通过设置这些属性,开发者可以定义滑动条的范围和用户可选择的值。 **Image控件**: Image控件用于显示图片。它有一个Source属性,可以通过设置该属性来指定显示的图片。Source属性可以接受多种类型的值,例如bitmap、png等格式的图片文件。 ### 3. 实现逻辑 要实现滑动条更换图片的功能,核心步骤如下: 1. **准备图片资源**: 将需要显示的图片放入项目的文件夹中,并在项目中建立一个图片资源列表,例如一个数组或列表,里面存放所有图片文件的相对路径或绝对路径。 2. **设置Slider控件的属性**: 需要确保Slider控件的Minimum属性设置为0,Maximum属性设置为图片数量减1(即图片索引的上限)。这样,滑动条的值就可以对应到数组索引。 3. **绑定事件处理逻辑**: 将Slider的Value属性通过数据绑定与图片索引相绑定。当滑动条的值发生变化时(即用户拖动滑动条时),会触发一个事件处理函数。 4. **图片更换逻辑**: 在事件处理函数中,根据滑动条的Value属性值来选择图片。将当前图片路径设置到Image控件的Source属性中。这里需要确保索引不会越界,即在图片总数范围内。 5. **异常处理**: 在图片路径设置之前,应进行判断,确保路径有效,避免程序因为无法找到文件而异常退出。可以进行异常捕获或者预先检查路径是否存在。 ### 4. 示例代码 以下是一个简化的C#代码示例,用于说明如何在WPF中实现滑动条更换图片的基本逻辑: ```csharp // 假设有一个图片数组 string[] imagePaths = new string[] { "image1.png", "image2.png", ... }; private void Slider_Loaded(object sender, RoutedEventArgs e) { // 与滑动条的Maximum属性绑定 this.Slider.Value = imagePaths.Length - 1; } private void Slider_SelectionChanged(object sender, SelectionChangedEventArgs e) { // 确保值在有效范围内 if (this.Slider.Value >= 0 && this.Slider.Value < imagePaths.Length) { // 设置图片源 ImageControl.Source = new BitmapImage(new Uri(imagePaths[(int)this.Slider.Value])); } else { // 处理异常情况 MessageBox.Show("图片索引超出范围"); } } ``` 在这个示例中,`Slider_Loaded`是滑动条加载完成时触发的事件处理函数,在该函数中设置了滑动条的最大值。`Slider_SelectionChanged`是滑动条值变化时触发的事件处理函数,在该函数中根据滑动条的值更换图片。 ### 5. 总结 使用WPF实现滑动条更换图片是一个结合XAML布局设计与C#后端逻辑处理的典型示例。通过理解WPF中的事件处理、数据绑定、异常处理等概念,并将这些知识应用到实际项目中,可以创建出美观且功能强大的桌面应用程序。在实际开发过程中,还需要考虑用户界面的美观性、操作的流畅性和异常的鲁棒性等因素,以提高用户体验。
recommend-type

【EasyX文本框性能提升秘籍】:专家级技巧优化交互体验

# 1. EasyX文本框概述及性能问题 在信息技术飞速发展的今天,用户界面(UI)的响应速度和视觉效果对于提升用户体验至关重要。EasyX 是一个轻量级的图形库,它提供了一系列丰富的接口以简化文本框等界面元素的创建和管理。尽管 EasyX 在易用性和轻量级方面具有优势,但其文本框组件在高性能应用场合中面临着诸多挑战,特别是当处
recommend-type

基于YOLOv8锥桶检测

<think>好的,用户想用YOLOv8实现锥桶检测。首先,我需要回忆YOLOv8的相关知识,知道它是Ultralytics维护的最新版本,相比YOLOv5可能有一些改进。用户之前可能了解过YOLOv5,现在想升级到v8,所以需要比较两者的差异,但重点还是放在实现步骤上。接下来,用户需要具体的教程,所以步骤要详细。首先,环境配置是基础,需要安装Ultralytics的库,可能还需要PyTorch和CUDA支持GPU加速。然后,数据准备是关键,用户可能需要收集锥桶的图片,标注成YOLO格式,也就是txt文件,每个对象一行,包括类别、中心坐标和宽高。这里要提醒用户注意数据集的划分,比如训练集、验证
recommend-type

多目标视频跟踪技术详解与粒子滤波应用

视频跟踪技术是计算机视觉和图像处理领域的一项核心技术,它涉及到从视频序列中自动检测和跟踪感兴趣目标(如人、车辆、动物等)。当提到“多目标跟踪”时,意味着系统可以同时跟踪视频中的多个目标,并将它们区分开来。这对于智能监控、人机交互、自动驾驶车辆等应用场景至关重要。 描述中提到的“实时效果还好”,这暗示了该视频跟踪系统具有较好的处理速度,能够快速响应视频中的变化,并且对多目标进行跟踪时的准确度和稳定性较高,这对于实际应用来说是非常重要的。实时跟踪能够为用户提供及时的反馈,这对于需要快速响应的应用场景尤为关键。 针对标签“视频跟踪 多目标”,以下是详细的知识点: 1. 多目标跟踪算法: - 目标检测:多目标跟踪的第一步是目标检测,即在视频帧中识别出所有的目标物体。常用的算法有YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)、Faster R-CNN等。 - 跟踪算法:检测到目标后,需要使用特定算法进行跟踪。常见的跟踪算法有卡尔曼滤波、均值漂移、光流法、以及基于深度学习的方法如Siamese Networks、DeepSORT等。 - 数据关联:多目标跟踪的一个挑战是如何将一帧中的目标与之前帧中的目标正确对应,即解决数据关联问题。粒子滤波器(Particle Filter)是一种常用的解决方法。 2. 粒子滤波器(Particle Filter): 粒子滤波器是一种基于蒙特卡洛方法的递归贝叶斯滤波技术,它通过一组随机样本(粒子)来表示概率分布,每个粒子代表一个可能的系统状态。在多目标跟踪中,粒子滤波器能够根据视频帧中的观测数据来更新每个目标的状态估计。 粒子滤波器工作原理: - 初始化:为每个目标生成一组随机粒子,每个粒子代表一个可能的状态。 - 预测:根据系统的动态模型,对下一时刻每个粒子的状态进行预测。 - 更新:当新的观测数据到来时,对每个粒子的权重进行更新,权重反映了粒子代表的状态与实际观测的匹配程度。 - 重采样:根据粒子的权重进行重采样,去除权重较低的粒子,复制权重较高的粒子,从而得到新的粒子集。 - 输出:粒子集的均值或其他统计特性作为目标状态的估计。 3. 应用场景: - 智能监控:在安全监控中,需要实时跟踪视频中的人物或车辆,进行行为分析和异常检测。 - 人机交互:在增强现实或交互式游戏场景中,需要准确跟踪用户的身体部位或手部动作。 - 自动驾驶:自动驾驶车辆需要实时跟踪道路上的其他车辆、行人以及各种障碍物,以确保行车安全。 4. 技术挑战: - 目标遮挡:当目标被遮挡或部分遮挡时,正确地识别和跟踪目标变得困难。 - 目标交互:多目标之间的交互(如相交、相离)可能会对跟踪算法造成干扰。 - 算法效率:实时跟踪对算法的计算效率要求很高,需要在保持跟踪准确性的同时,降低算法的计算复杂度。 以上是基于给定文件信息的详细知识点。视频跟踪技术的多目标实时跟踪功能对众多行业提供了深远的影响,其发展也带来了对计算资源、算法优化等方面的挑战,这需要不断地研究和创新来解决。
recommend-type

【紧急!EasyX文本框问题速查手册】:快速定位与解决常见难题

# 1. EasyX文本框问题速查概述 在图形用户界面(GUI)编程中,文本框是一个基础且核心的组件,承担着与用户进行信息交互的主要任务。EasyX文本框作为一款简便的图形库,为文本交互提供了直观的解决方案。然而,在实际开发过程中,开发者经常遇到各种与文本框相关的问题,如绘制错误、布局不合理、输入处理不当等。本章将概述EasyX文本框
recommend-type

UInputComponent

<think>好的,我需要回答用户关于Unreal Engine中UInputComponent的实现和使用的问题。用户之前已经询问过SetupPlayerInputComponent的相关内容,现在想更深入了解UInputComponent的具体实现和解决相关问题。我需要结合之前的回答和用户提供的引用内容,但注意用户提到这些引用可能不直接相关,需要更多参考用户的上一次问题和我的回答。 首先,我需要回顾UInputComponent的基本功能。它是处理输入绑定的核心组件,负责将输入事件(如按键、鼠标动作)映射到游戏角色的函数。在之前的回答中,我提到了如何在角色类中重写SetupPlayerI
recommend-type

深入探讨SOA模式:英文版电子书

SOA(面向服务的架构)模式是一种流行的企业架构方法,它基于松耦合的服务的概念,允许企业将业务流程作为独立服务集成到业务中。SOA模式的设计思想是把原本在企业内部的、分散的、不标准的业务过程整合成一系列相互关联且可重复利用的服务。 ### 知识点详解: 1. **面向服务的架构(SOA)基础** - **服务的定义**:在SOA中,服务通常是一种独立可调用的业务功能,它封装了特定业务逻辑,能够响应各种请求。服务之间通过明确定义的接口进行交互。 - **服务的独立性**:服务应该是独立的,这意味着服务的变更不应该影响其他服务。 - **服务的重用性**:良好的设计允许服务能够被不同系统在不同上下文中重用。 - **松耦合**:SOA强调的是服务之间的松耦合,即服务之间相互依赖性低,从而实现系统的灵活性和可扩展性。 2. **SOA的组件与原则** - **服务注册中心**:它是服务目录,所有服务都必须在注册中心进行注册,以便其他服务能够发现它们。 - **服务消费者(客户端)**:这指的是需要利用服务的应用程序。 - **服务提供者**:这是服务的创建者,负责发布和维护服务。 - **服务合约**:也称为服务接口,它定义了服务的功能以及如何与服务进行交互。 3. **SOA的模式** - **服务编排(Service Orchestration)**:这个模式涉及多个服务的协作以完成一个复杂的业务流程。通常由一个服务协调者进行管理。 - **服务聚合(Service Aggregation)**:服务聚合涉及将多个服务的结果合并到一个单一的服务接口中。 - **服务代理(Service Broker)**:在服务代理模式中,服务代理负责服务的发现、绑定以及服务生命周期管理。 - **服务治理(Service Governance)**:这包括定义和维护服务如何被创建、发布、管理和消亡的政策和标准。 4. **SOA的优势和挑战** - **优势**:包括提高业务灵活性、服务重用、系统集成和降低复杂性。 - **挑战**:包括确保服务质量和性能、数据一致性、安全性和管理大量服务的复杂性。 5. **Manning Publications出版的《SOA Patterns》** - Manning Publications是一家知名的出版机构,专注于技术领域的图书和电子书。《SOA Patterns》无疑是该领域的权威读物,它详细介绍了多种在实际SOA实施过程中可以应用的设计模式。 - 通过研究这些模式,开发者和架构师可以了解如何构建具有高可用性、可伸缩性和灵活性的系统。 6. **在企业中的应用** - SOA模式可以应用在需要提高业务流程自动化、跨部门协作和系统集成的企业中。 - 它特别适合在不断变化的市场环境中需要快速适应和演进的企业架构。 ### 结论 《SOA Patterns》电子书深入探讨了SOA的各个方面,不仅为IT专业人士提供了理论基础,还提供了实用的设计模式,帮助他们构建健壮的企业级服务架构。理解并掌握SOA模式的知识,对于那些希望优化企业运作、提高效率和适应不断变化市场条件的组织至关重要。通过合理的规划和实施SOA,企业能够实现更好的资源利用,提供更一致的客户体验,以及在竞争激烈的市场中保持领先地位。
recommend-type

【EasyX文本框深度剖析】:6大步骤带你从新手到专家

# 1. EasyX文本框简介与环境搭建 在现代的用户界面设计中,文本框组件是不可或缺的元素,它允许用户输入和编辑文本信息。EasyX 是一个广泛使用的图形界面库,提供了一套功能丰富的文本框API,用于在Windows平台上构建交互式的文本编辑功能。 ## 1.1 文本框组件