
成功在windows系统上安装OpenPCDet-踩坑无数版
在网上看了无数帖子,终于集百家之长后,安装成功了。事实证明是可以安装成功的,希望还在挣扎的兄弟们不要放弃。
先上图
在网上看了无数帖子,终于集百家之长后,安装成功了。事实证明是可以安装成功的,希望还在挣扎的兄弟们不要放弃。
关键配置(版本问题很致命)
#有的差一个小版本号都会出问题
操作系统 : win10
cuda版本 : 11.6([cuda安装参考](https://blog.csdn.net/weixin_43848614/article/details/117221384))
python : 3.8
torch : 1.13.1+cu116(OpenPCDet要求在1.10.0以下,但是在安装C++ build tools与cuda的的时候遇到了很多版本不兼容的问题)
torchaudio : 0.13.1+cu116
torchvision : 0.14.1+cu116
numpy : 1.20.0
scikit-image : 0.15.0
scipy : 1.9.1
setuptools : 58.2.0
spconv : spconv-cu117
cumm : cumm-cu117(很关键,否则会导致以下错误)
from cumm.core_cc import tensorview_bind
ImportError: DLL load failed while importing core_cc: 找不到指定的模块。
创建虚拟环境开始安装
问题1 windows无法直接pip install SharedArray
创建过程就不废话了,按照requirements.txt
,配置环境就可以,注意我标注的版本号。
主要说一下SharedArray
的安装。
首先新建一个文件夹,不要和OpenPCDet项目放在一起,不然import可能会出现问题(切记)
然后 在新建的目录下面把SharedArray的安装包下载下来,或者在当前目录打开终端git clone https://github.com/imaginary-friend94/SharedNumpyArray.git
cd SharedNumpyArray
,即到SharedNumpyArray
目录下。 python setup develop
参考这篇文章
问题2 ERROR: Could not build wheels for SharedArray, which is required to install pyproject.toml-based projects
这是由于没有cmake工具造成的
下载C++build tools
安装
问题3 error: command ‘D:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.35.32215\bin\HostX86\x64\cl.exe’ failed with exit code 2
在环境变量PATH
中,添加
D:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.35.32215\bin\HostX86\x64
重新python setup develop
,截止到这SharedArray
安装完毕,所需环境基本搭建完成。
进入OpenPCDet的项目里进行python setup develop
之前。
1、对pcdet\ops\iou3d_nms\src
里面的文件进行修改
iou3d_nms.cpp
/*
3D Rotated IoU Calculation (CPU)
Written by Shaoshuai Shi
All Rights Reserved 2020.
*/
#include <stdio.h>
#include <math.h>
#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include <vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "iou3d_cpu.h"
#define CHECK_CUDA(x) do { \
if (!x.type().is_cuda()) { \
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_CONTIGUOUS(x) do { \
if (!x.is_contiguous()) { \
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
inline float min(float a, float b){
return a > b ? b : a;
}
inline float max(float a, float b){
return a > b ? a : b;
}
const float EPS = 1e-8;
struct Point {
float x, y;
__device__ Point() {}
__device__ Point(double _x, double _y){
x = _x, y = _y;
}
__device__ void set(float _x, float _y){
x = _x; y = _y;
}
__device__ Point operator +(const Point &b)const{
return Point(x + b.x, y + b.y);
}
__device__ Point operator -(const Point &b)const{
return Point(x - b.x, y - b.y);
}
};
inline float cross(const Point &a, const Point &b){
return a.x * b.y - a.y * b.x;
}
inline float cross(const Point &p1, const Point &p2, const Point &p0){
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
inline int check_rect_cross(const Point &p1, const Point &p2, const Point &q1, const Point &q2){
int ret = min(p1.x,p2.x) <= max(q1.x,q2.x) &&
min(q1.x,q2.x) <= max(p1.x,p2.x) &&
min(p1.y,p2.y) <= max(q1.y,q2.y) &&
min(q1.y,q2.y) <= max(p1.y,p2.y);
return ret;
}
inline int check_in_box2d(const float *box, const Point &p){
//params: (7) [x, y, z, dx, dy, dz, heading]
const float MARGIN = 1e-2;
float center_x = box[0], center_y = box[1];
float angle_cos = cos(-box[6]), angle_sin = sin(-box[6]); // rotate the point in the opposite direction of box
float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin);
float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos;
return (fabs(rot_x) < box[3] / 2 + MARGIN && fabs(rot_y) < box[4] / 2 + MARGIN);
}
inline int intersection(const Point &p1, const Point &p0, const Point &q1, const Point &q0, Point &ans){
// fast exclusion
if (check_rect_cross(p0, p1, q0, q1) == 0) return 0;
// check cross standing
float s1 = cross(q0, p1, p0);
float s2 = cross(p1, q1, p0);
float s3 = cross(p0, q1, q0);
float s4 = cross(q1, p1, q0);
if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
// calculate intersection of two lines
float s5 = cross(q1, p1, p0);
if(fabs(s5 - s1) > EPS){
ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1);
ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
}
else{
float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y;
float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y;
float D = a0 * b1 - a1 * b0;
ans.x = (b0 * c1 - b1 * c0) / D;
ans.y = (a1 * c0 - a0 * c1) / D;
}
return 1;
}
inline void rotate_around_center(const Point ¢er, const float angle_cos, const float angle_sin, Point &p){
float new_x = (p.x - center.x) * angle_cos + (p.y - center.y) * (-angle_sin) + center.x;
float new_y = (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y;
p.set(new_x, new_y);
}
inline int point_cmp(const Point &a, const Point &b, const Point ¢er){
return atan2(a.y - center.y, a.x - center.x) > atan2(b.y - center.y, b.x - center.x);
}
inline float box_overlap(const float *box_a, const float *box_b){
// params: box_a (7) [x, y, z, dx, dy, dz, heading]
// params: box_b (7) [x, y, z, dx, dy, dz, heading]
// float a_x1 = box_a[0], a_y1 = box_a[1], a_x2 = box_a[2], a_y2 = box_a[3], a_angle = box_a[4];
// float b_x1 = box_b[0], b_y1 = box_b[1], b_x2 = box_b[2], b_y2 = box_b[3], b_angle = box_b[4];
float a_angle = box_a[6], b_angle = box_b[6];
float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2, a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2;
float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half;
float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half;
float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half;
float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half;
Point center_a(box_a[0], box_a[1]);
Point center_b(box_b[0], box_b[1]);
Point box_a_corners[5];
box_a_corners[0].set(a_x1, a_y1);
box_a_corners[1].set(a_x2, a_y1);
box_a_corners[2].set(a_x2, a_y2);
box_a_corners[3].set(a_x1, a_y2);
Point box_b_corners[5];
box_b_corners[0].set(b_x1, b_y1);
box_b_corners[1].set(b_x2, b_y1);
box_b_corners[2].set(b_x2, b_y2);
box_b_corners[3].set(b_x1, b_y2);
// get oriented corners
float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
for (int k = 0; k < 4; k++){
rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]);
rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]);
}
box_a_corners[4] = box_a_corners[0];
box_b_corners[4] = box_b_corners[0];
// get intersection of lines
Point cross_points[16];
Point poly_center;
int cnt = 0, flag = 0;
poly_center.set(0, 0);
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
flag = intersection(box_a_corners[i + 1], box_a_corners[i], box_b_corners[j + 1], box_b_corners[j], cross_points[cnt]);
if (flag){
poly_center = poly_center + cross_points[cnt];
cnt++;
}
}
}
// check corners
for (int k = 0; k < 4; k++){
if (check_in_box2d(box_a, box_b_corners[k])){
poly_center = poly_center + box_b_corners[k];
cross_points[cnt] = box_b_corners[k];
cnt++;
}
if (check_in_box2d(box_b, box_a_corners[k])){
poly_center = poly_center + box_a_corners[k];
cross_points[cnt] = box_a_corners[k];
cnt++;
}
}
poly_center.x /= cnt;
poly_center.y /= cnt;
// sort the points of polygon
Point temp;
for (int j = 0; j < cnt - 1; j++){
for (int i = 0; i < cnt - j - 1; i++){
if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)){
temp = cross_points[i];
cross_points[i] = cross_points[i + 1];
cross_points[i + 1] = temp;
}
}
}
// get the overlap areas
float area = 0;
for (int k = 0; k < cnt - 1; k++){
area += cross(cross_points[k] - cross_points[0], cross_points[k + 1] - cross_points[0]);
}
return fabs(area) / 2.0;
}
inline float iou_bev(const float *box_a, const float *box_b){
// params: box_a (7) [x, y, z, dx, dy, dz, heading]
// params: box_b (7) [x, y, z, dx, dy, dz, heading]
float sa = box_a[3] * box_a[4];
float sb = box_b[3] * box_b[4];
float s_overlap = box_overlap(box_a, box_b);
return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
}
int boxes_iou_bev_cpu(at::Tensor boxes_a_tensor, at::Tensor boxes_b_tensor, at::Tensor ans_iou_tensor){
// params boxes_a_tensor: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b_tensor: (M, 7) [x, y, z, dx, dy, dz, heading]
// params ans_iou_tensor: (N, M)
CHECK_CONTIGUOUS(boxes_a_tensor);
CHECK_CONTIGUOUS(boxes_b_tensor);
int num_boxes_a = boxes_a_tensor.size(0);
int num_boxes_b = boxes_b_tensor.size(0);
const float *boxes_a = boxes_a_tensor.data<float>();
const float *boxes_b = boxes_b_tensor.data<float>();
float *ans_iou = ans_iou_tensor.data<float>();
for (int i = 0; i < num_boxes_a; i++){
for (int j = 0; j < num_boxes_b; j++){
ans_iou[i * num_boxes_b + j] = iou_bev(boxes_a + i * 7, boxes_b + j * 7);
}
}
return 1;
}
iou3d_nms_kernel.cu
/*
3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
Written by Shaoshuai Shi
All Rights Reserved 2019-2020.
*/
#include <stdio.h>
#include <stdint.h>
#define THREADS_PER_BLOCK 16
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
// #define DEBUG
const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
//const float EPS = 1e-8;
struct Point {
float x, y;
__device__ Point() {}
__device__ Point(double _x, double _y){
x = _x, y = _y;
}
__device__ void set(float _x, float _y){
x = _x; y = _y;
}
__device__ Point operator +(const Point &b)const{
return Point(x + b.x, y + b.y);
}
__device__ Point operator -(const Point &b)const{
return Point(x - b.x, y - b.y);
}
};
__device__ inline float cross(const Point &a, const Point &b){
return a.x * b.y - a.y * b.x;
}
__device__ inline float cross(const Point &p1, const Point &p2, const Point &p0){
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
__device__ int check_rect_cross_cuda(const Point &p1, const Point &p2, const Point &q1, const Point &q2){
int ret = min(p1.x,p2.x) <= max(q1.x,q2.x) &&
min(q1.x,q2.x) <= max(p1.x,p2.x) &&
min(p1.y,p2.y) <= max(q1.y,q2.y) &&
min(q1.y,q2.y) <= max(p1.y,p2.y);
return ret;
}
__device__ inline int check_in_box2d(const float *box, const Point &p){
//params: (7) [x, y, z, dx, dy, dz, heading]
const float MARGIN = 1e-2;
float center_x = box[0], center_y = box[1];
float angle_cos = cos(-box[6]), angle_sin = sin(-box[6]); // rotate the point in the opposite direction of box
float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin);
float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos;
return (fabs(rot_x) < box[3] / 2 + MARGIN && fabs(rot_y) < box[4] / 2 + MARGIN);
}
__device__ inline int intersection(const Point &p1, const Point &p0, const Point &q1, const Point &q0, Point &ans){
// fast exclusion
if (check_rect_cross_cuda(p0, p1, q0, q1) == 0) return 0;
// check cross standing
float s1 = cross(q0, p1, p0);
float s2 = cross(p1, q1, p0);
float s3 = cross(p0, q1, q0);
float s4 = cross(q1, p1, q0);
if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
// calculate intersection of two lines
float s5 = cross(q1, p1, p0);
if(fabs(s5 - s1) > 1e-8){
ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1);
ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
}
else{
float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y;
float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y;
float D = a0 * b1 - a1 * b0;
ans.x = (b0 * c1 - b1 * c0) / D;
ans.y = (a1 * c0 - a0 * c1) / D;
}
return 1;
}
__device__ inline void rotate_around_center(const Point ¢er, const float angle_cos, const float angle_sin, Point &p){
float new_x = (p.x - center.x) * angle_cos + (p.y - center.y) * (-angle_sin) + center.x;
float new_y = (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y;
p.set(new_x, new_y);
}
__device__ inline int point_cmp(const Point &a, const Point &b, const Point ¢er){
return atan2(a.y - center.y, a.x - center.x) > atan2(b.y - center.y, b.x - center.x);
}
__device__ inline float box_overlap(const float *box_a, const float *box_b){
// params box_a: [x, y, z, dx, dy, dz, heading]
// params box_b: [x, y, z, dx, dy, dz, heading]
float a_angle = box_a[6], b_angle = box_b[6];
float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2, a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2;
float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half;
float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half;
float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half;
float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half;
Point center_a(box_a[0], box_a[1]);
Point center_b(box_b[0], box_b[1]);
#ifdef DEBUG
printf("a: (%.3f, %.3f, %.3f, %.3f, %.3f), b: (%.3f, %.3f, %.3f, %.3f, %.3f)\n", a_x1, a_y1, a_x2, a_y2, a_angle,
b_x1, b_y1, b_x2, b_y2, b_angle);
printf("center a: (%.3f, %.3f), b: (%.3f, %.3f)\n", center_a.x, center_a.y, center_b.x, center_b.y);
#endif
Point box_a_corners[5];
box_a_corners[0].set(a_x1, a_y1);
box_a_corners[1].set(a_x2, a_y1);
box_a_corners[2].set(a_x2, a_y2);
box_a_corners[3].set(a_x1, a_y2);
Point box_b_corners[5];
box_b_corners[0].set(b_x1, b_y1);
box_b_corners[1].set(b_x2, b_y1);
box_b_corners[2].set(b_x2, b_y2);
box_b_corners[3].set(b_x1, b_y2);
// get oriented corners
float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
for (int k = 0; k < 4; k++){
#ifdef DEBUG
printf("before corner %d: a(%.3f, %.3f), b(%.3f, %.3f) \n", k, box_a_corners[k].x, box_a_corners[k].y, box_b_corners[k].x, box_b_corners[k].y);
#endif
rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]);
rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]);
#ifdef DEBUG
printf("corner %d: a(%.3f, %.3f), b(%.3f, %.3f) \n", k, box_a_corners[k].x, box_a_corners[k].y, box_b_corners[k].x, box_b_corners[k].y);
#endif
}
box_a_corners[4] = box_a_corners[0];
box_b_corners[4] = box_b_corners[0];
// get intersection of lines
Point cross_points[16];
Point poly_center;
int cnt = 0, flag = 0;
poly_center.set(0, 0);
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
flag = intersection(box_a_corners[i + 1], box_a_corners[i], box_b_corners[j + 1], box_b_corners[j], cross_points[cnt]);
if (flag){
poly_center = poly_center + cross_points[cnt];
cnt++;
#ifdef DEBUG
printf("Cross points (%.3f, %.3f): a(%.3f, %.3f)->(%.3f, %.3f), b(%.3f, %.3f)->(%.3f, %.3f) \n",
cross_points[cnt - 1].x, cross_points[cnt - 1].y,
box_a_corners[i].x, box_a_corners[i].y, box_a_corners[i + 1].x, box_a_corners[i + 1].y,
box_b_corners[i].x, box_b_corners[i].y, box_b_corners[i + 1].x, box_b_corners[i + 1].y);
#endif
}
}
}
// check corners
for (int k = 0; k < 4; k++){
if (check_in_box2d(box_a, box_b_corners[k])){
poly_center = poly_center + box_b_corners[k];
cross_points[cnt] = box_b_corners[k];
cnt++;
#ifdef DEBUG
printf("b corners in a: corner_b(%.3f, %.3f)", cross_points[cnt - 1].x, cross_points[cnt - 1].y);
#endif
}
if (check_in_box2d(box_b, box_a_corners[k])){
poly_center = poly_center + box_a_corners[k];
cross_points[cnt] = box_a_corners[k];
cnt++;
#ifdef DEBUG
printf("a corners in b: corner_a(%.3f, %.3f)", cross_points[cnt - 1].x, cross_points[cnt - 1].y);
#endif
}
}
poly_center.x /= cnt;
poly_center.y /= cnt;
// sort the points of polygon
Point temp;
for (int j = 0; j < cnt - 1; j++){
for (int i = 0; i < cnt - j - 1; i++){
if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)){
temp = cross_points[i];
cross_points[i] = cross_points[i + 1];
cross_points[i + 1] = temp;
}
}
}
#ifdef DEBUG
printf("cnt=%d\n", cnt);
for (int i = 0; i < cnt; i++){
printf("All cross point %d: (%.3f, %.3f)\n", i, cross_points[i].x, cross_points[i].y);
}
#endif
// get the overlap areas
float area = 0;
for (int k = 0; k < cnt - 1; k++){
area += cross(cross_points[k] - cross_points[0], cross_points[k + 1] - cross_points[0]);
}
return fabs(area) / 2.0;
}
__device__ inline float iou_bev(const float *box_a, const float *box_b){
// params box_a: [x, y, z, dx, dy, dz, heading]
// params box_b: [x, y, z, dx, dy, dz, heading]
float sa = box_a[3] * box_a[4];
float sb = box_b[3] * box_b[4];
float s_overlap = box_overlap(box_a, box_b);
return s_overlap / fmaxf(sa + sb - s_overlap, 1e-8);
}
__global__ void boxes_overlap_kernel(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap){
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
const int a_idx = blockIdx.y * THREADS_PER_BLOCK + threadIdx.y;
const int b_idx = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;
if (a_idx >= num_a || b_idx >= num_b){
return;
}
const float * cur_box_a = boxes_a + a_idx * 7;
const float * cur_box_b = boxes_b + b_idx * 7;
float s_overlap = box_overlap(cur_box_a, cur_box_b);
ans_overlap[a_idx * num_b + b_idx] = s_overlap;
}
__global__ void boxes_iou_bev_kernel(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou){
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
const int a_idx = blockIdx.y * THREADS_PER_BLOCK + threadIdx.y;
const int b_idx = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;
if (a_idx >= num_a || b_idx >= num_b){
return;
}
const float * cur_box_a = boxes_a + a_idx * 7;
const float * cur_box_b = boxes_b + b_idx * 7;
float cur_iou_bev = iou_bev(cur_box_a, cur_box_b);
ans_iou[a_idx * num_b + b_idx] = cur_iou_bev;
}
__global__ void nms_kernel(const int boxes_num, const float nms_overlap_thresh,
const float *boxes, uint64_t*mask){
//params: boxes (N, 7) [x, y, z, dx, dy, dz, heading]
//params: mask (N, N/THREADS_PER_BLOCK_NMS)
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
__shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 7 + 0] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0];
block_boxes[threadIdx.x * 7 + 1] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1];
block_boxes[threadIdx.x * 7 + 2] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2];
block_boxes[threadIdx.x * 7 + 3] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3];
block_boxes[threadIdx.x * 7 + 4] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4];
block_boxes[threadIdx.x * 7 + 5] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5];
block_boxes[threadIdx.x * 7 + 6] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
const float *cur_box = boxes + cur_box_idx * 7;
int i = 0;
uint64_t t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (iou_bev(cur_box, block_boxes + i * 7) > nms_overlap_thresh){
t |= 1ULL << i;
}
}
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
mask[cur_box_idx * col_blocks + col_start] = t;
}
}
__device__ inline float iou_normal(float const * const a, float const * const b) {
//params: a: [x, y, z, dx, dy, dz, heading]
//params: b: [x, y, z, dx, dy, dz, heading]
float left = fmaxf(a[0] - a[3] / 2, b[0] - b[3] / 2), right = fminf(a[0] + a[3] / 2, b[0] + b[3] / 2);
float top = fmaxf(a[1] - a[4] / 2, b[1] - b[4] / 2), bottom = fminf(a[1] + a[4] / 2, b[1] + b[4] / 2);
float width = fmaxf(right - left, 0.f), height = fmaxf(bottom - top, 0.f);
float interS = width * height;
float Sa = a[3] * a[4];
float Sb = b[3] * b[4];
return interS / fmaxf(Sa + Sb - interS, 1e-8);
}
__global__ void nms_normal_kernel(const int boxes_num, const float nms_overlap_thresh,
const float *boxes, uint64_t*mask){
//params: boxes (N, 7) [x, y, z, dx, dy, dz, heading]
//params: mask (N, N/THREADS_PER_BLOCK_NMS)
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
__shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 7 + 0] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0];
block_boxes[threadIdx.x * 7 + 1] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1];
block_boxes[threadIdx.x * 7 + 2] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2];
block_boxes[threadIdx.x * 7 + 3] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3];
block_boxes[threadIdx.x * 7 + 4] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4];
block_boxes[threadIdx.x * 7 + 5] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5];
block_boxes[threadIdx.x * 7 + 6] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
const float *cur_box = boxes + cur_box_idx * 7;
int i = 0;
uint64_t t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (iou_normal(cur_box, block_boxes + i * 7) > nms_overlap_thresh){
t |= 1ULL << i;
}
}
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
mask[cur_box_idx * col_blocks + col_start] = t;
}
}
void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap){
dim3 blocks(DIVUP(num_b, THREADS_PER_BLOCK), DIVUP(num_a, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK, THREADS_PER_BLOCK);
boxes_overlap_kernel<<<blocks, threads>>>(num_a, boxes_a, num_b, boxes_b, ans_overlap);
#ifdef DEBUG
cudaDeviceSynchronize(); // for using printf in kernel function
#endif
}
void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou){
dim3 blocks(DIVUP(num_b, THREADS_PER_BLOCK), DIVUP(num_a, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK, THREADS_PER_BLOCK);
boxes_iou_bev_kernel<<<blocks, threads>>>(num_a, boxes_a, num_b, boxes_b, ans_iou);
#ifdef DEBUG
cudaDeviceSynchronize(); // for using printf in kernel function
#endif
}
void nmsLauncher(const float *boxes, uint64_t* mask, int boxes_num, float nms_overlap_thresh){
dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS),
DIVUP(boxes_num, THREADS_PER_BLOCK_NMS));
dim3 threads(THREADS_PER_BLOCK_NMS);
nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes, mask);
}
void nmsNormalLauncher(const float *boxes, uint64_t* mask, int boxes_num, float nms_overlap_thresh){
dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS),
DIVUP(boxes_num, THREADS_PER_BLOCK_NMS));
dim3 threads(THREADS_PER_BLOCK_NMS);
nms_normal_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes, mask);
}
iou3d_nms.h
#ifndef IOU3D_NMS_H
#define IOU3D_NMS_H
#include <torch/serialize/tensor.h>
#include <vector>
#include <assert.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
//int boxes_aligned_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap);
int boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap);
int boxes_iou_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_iou);
int nms_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh);
int nms_normal_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh);
#endif
iou3d_nms_api.cpp
#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include <vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "iou3d_cpu.h"
#include "iou3d_nms.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
//m.def("boxes_aligned_overlap_bev_gpu", &boxes_aligned_overlap_bev_gpu, "aligned oriented boxes overlap");
m.def("boxes_overlap_bev_gpu", &boxes_overlap_bev_gpu, "oriented boxes overlap");
m.def("boxes_iou_bev_gpu", &boxes_iou_bev_gpu, "oriented boxes iou");
m.def("nms_gpu", &nms_gpu, "oriented nms gpu");
m.def("nms_normal_gpu", &nms_normal_gpu, "nms gpu");
// m.def("boxes_aligned_iou_bev_cpu", &boxes_aligned_iou_bev_cpu, "aligned oriented boxes iou");
m.def("boxes_iou_bev_cpu", &boxes_iou_bev_cpu, "oriented boxes iou");
}
2、对 pcdet/ops/pointnet2
里面的两个文件夹下的所有cpp文件进行更改
如果你使用的是torch>=1.11
.版本,注释掉 THC相关的头文件,
问题4 出现错误“subprocess.CalledProcessError: Command ‘[‘ninja‘, ‘-v‘]‘ returned non-zero exit status 1”解决方法
将setup.py中的“cmdclass={‘build_ext’: BuildExtension}”这一行改为“cmdclass={‘build_ext’: BuildExtension.with_options(use_ninja=False)}”,pytorch默认使用ninjia作为backend,这里把它禁用掉就好了;
问题5 fatal error: THC/THC.h: No such file or directory
参考 ↑ 2、对 pcdet/ops/pointnet2
里面的两个文件夹下的所有cpp文件进行更改
问题6 ImportError: numpy.core.multiarray failed to import
这个问题坑死我了,说是版本问题,但是降低版本后不兼容问题又一堆,解决起来很简单,参考最上面那句,不要把SharedArray
文件放在OpenPCDet
项目里面,要不然import
的时候会搞错路径
还有很多问题在配置对版本后就可以避免了,我就不一一列举了,具体的想不起来也不想回忆了。。。
更多推荐
所有评论(0)