Python 中常用数据分析库

前言

Python 是常用是数据分析工具,常用的数据分析库有很多,下面主要介绍如下五个分析库:NumPy、Pandas、SciPy、StatsModels、Matplotlib。

NumPy

NumPy 是一个非常常用的数据分析库,更准确点说是一个数学计算库,包括下面的 Pandas 也依赖于 NumPy。话说为什么用 NumPy,他有什么优点?

  1. 众多内置的数学计算:文章你看到这里,说明你要做的工作大概率是和人工智能、机器学习或数据分析相关的工作,这些工作不是简单的代码逻辑的堆叠,而更多的数学的应用,时常需要矩阵计算、基本线性代数操作、随机模拟和傅里叶变换等,NumPy 内置就可以精心这些操作,而不需要你徒手进行傅里叶展开。
  2. 快:举个例子,矩阵 a 和 b 的乘法,可以直接写成 a * b(元素乘积)或 a @ b(矩阵乘积),会比你徒手写循环要快,原因你可能猜到了,那就是预编译成 C 代码或者用到更好的缓存策略等,有这样的优点,你没有什么理由不用。
  3. 代码简单:矩阵相乘上面的写法就比循环更易读,更少的代码也意味着更少的 Bug。

做数据分析,人生苦短,都已经用了 Python,那不妨了解一下 NumPy,你会有更深的理解。

Pandas

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泰瑞_

知识源于创作热情,感谢你的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值