牛顿法与拟牛顿法摘记

本文介绍了牛顿法和拟牛顿法在解决无约束优化问题中的原理与实现。牛顿法通过二阶泰勒展开找到下降方向,但需要计算目标函数的Hessian矩阵。拟牛顿法则通过秩1校正或DFP、BFGS公式避免直接计算Hessian,降低了计算复杂性。在实现上,文章给出了Python代码示例,展示了牛顿法和阻尼牛顿法的迭代过程,并解释了拟牛顿法的DFP和BFGS修正公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 牛顿法

\qquad 除了可以采用最速下降法求解“无约束最优化问题”,另一种常用的方法就是牛顿法。设 f ( x ) f(\boldsymbol{x}) f(x) 为二次可微的实函数,在第 k k k 次迭代点 x ( k ) \boldsymbol{x}^{(k)} x(k) 附近用二阶泰勒级数展开式 ϕ ( x ) \phi(\boldsymbol{x}) ϕ(x) 来近似,也就是

f ( x ) ≈ ϕ ( x ) = f ( x ( k ) ) + ∇ f ( x ( k ) ) T ( x − x ( k ) ) + 1 2 ( x − x ( k ) ) T ∇ 2 f ( x ( k ) ) ( x − x ( k ) ) 2 \qquad\qquad f(\boldsymbol{x})\approx\phi(\boldsymbol{x})=f(\boldsymbol{x}^{(k)})+\nabla f(\boldsymbol{x}^{(k)})^T(\boldsymbol{x}-\boldsymbol{x}^{(k)})+\dfrac{1}{2}(\boldsymbol{x}-\boldsymbol{x}^{(k)})^T\nabla^2f(\boldsymbol{x}^{(k)})(\boldsymbol{x}-\boldsymbol{x}^{(k)})^2 f(x)ϕ(x)=f(x(k))+f(x(k))T(xx(k))+21(xx(k))T2f(x(k))(xx(k))2

\qquad 根据一阶必要条件,令 ϕ ′ ( x ) = 0 \phi^{\prime}(\boldsymbol{x})=0 ϕ(x)=0,可得到

ϕ ′ ( x ) = ∇ f ( x ( k ) ) + ∇ 2 f ( x ( k ) ) ( x − x ( k ) ) = 0 \qquad\qquad\phi^{\prime}(\boldsymbol{x})=\nabla f(\boldsymbol{x}^{(k)})+\nabla^2f(\boldsymbol{x}^{(k)})(\boldsymbol{x}-\boldsymbol{x}^{(k)})=0 ϕ(x)=f(x(k))+2f(x(k))(xx(k))=0

\qquad ϕ ( x ) \phi(\boldsymbol{x}) ϕ(x) 的驻点作为下一个迭代点 x ( k + 1 ) \boldsymbol{x}^{(k+1)} x(k+1) 就得到牛顿法的迭代公式

x ( k + 1 ) = x ( k ) − ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) \qquad\qquad\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)}) x(k+1)=x(k)2f(x(k))1f(x(k))

\qquad 通常,也将牛顿方向定义为: − ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) -\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)}) 2f(x(k))1f(x(k))
\qquad
∙ \bullet  实现代码

import numpy as np
import matplotlib.pyplot as plt
import time
def diffMat(f,x,h=0.001):	
    dx = np.array([h,0])
    dy = np.array([0,h])
    gx = (f(x+dx)-f(x-dx))/(2*h)
    gy = (f(x+dy)-f(x-dy))/(2*h)
    grad = np.asmatrix(np.array([gx,gy])).T       
    g2x = (f(x+dx) + f(x-dx) - 2*f(x))/(h*h)
    g2y = (f(x+dy) + f(x-dy) - 2*f(x))/(h*h)    
    gx2 = (f(x+dy+dx)-f(x+dy-dx))/(2*h)
    gx1 = (f(x-dy+dx)-f(x-dy-dx))/(2*h)    
    gy2 = (f(x+dx+dy)-f(x+dx-dy))/(2*h)
    gy1 = (f(x-dx+dy)-f(x-dx-dy))/(2*h)   
    gxy1 = (gx2 - gx1)/(2*h)
    gxy2 = (gy2 - gy1)/(2*h)
    hesse = np.matrix([[g2x,gxy1],[gxy2,g2y]])
    return grad,hesse
def newton(f,x0):
    k=1
    xk = x0
    while True:
        print('#',k)
        k = k+1        
        grad, hesse = diffMat(f,xk)
        d = np.asarray(hesse.I*grad).flatten()
        print('grad:\n',np.round(grad,4),'\nhesse:\n',np.round(hesse,4))
        xk = xk - d
        print('d:',d/np.linalg.norm(d))
        print('x[{}]:{}\n'.format(k,np.round(xk,4)))
        if np.linalg.norm(grad)<0.00001:
            break
    return xk
if __name__ == "__main__":       
    f = lambda x: (x[0]-1)**4 + (x[1]-0)**2 
    x0 = np.array([0,1],dtype='float')
    time0 = time.process_time()
    minval = newton(f,x0)
    time1 = time.process_time()
    print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
    print('time: %fs'%(time1-time0))

运行结果:

# 1
grad:
 [[-4.]
 [ 2.]] 
hesse:
 [[12.  0.]
 [ 0.  2.]]
d: [-0.316228    0.94868322]
x[2]:[0.3333 0.    ]
# 2
grad:
 [[-1.1852]
 [ 0.    ]] 
hesse:
 [[5.3333 0.    ]
 [0.     2.    ]]
d: [-1.00000000e+00  6.28995937e-10]
x[3]:[0.5556 0.    ]
(略)
# 12
grad:
 [[-0.]
 [ 0.]] 
hesse:
 [[1.6e-03 0.0e+00]
 [0.0e+00 2.0e+00]]
d: [-1.  0.]
x[13]:[0.9923 0.    ]

x: [0.9923 0.    ] minval: 0.0
time: 0.000000s

阻尼牛顿法

\qquad 牛顿法只是通过在 x ( k ) \boldsymbol{x}^{(k)} x(k) 附近用二阶泰勒级数来近似目标函数,牛顿方向 − ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) -\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)}) 2f(x(k))1f(x(k)) 并不一定是下降方向,可能会使目标函数值增大。阻尼牛顿法,也称修正牛顿法,为了使目标函数值下降,增加了在牛顿方向上的一维搜索过程,其算法步骤为:
\qquad 步骤 ( 1 ) : (1): (1): 给定初始点 x ( 1 ) ∈ R n \boldsymbol x^{(1)}\in R^n x(1)Rn,设置允许误差 ε > 0 \varepsilon>0 ε>0,令 k = 1 k=1 k=1
\qquad 步骤 ( 2 ) : (2): (2): 计算搜索方向 d ( k ) = − ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) \boldsymbol d^{(k)}=-\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)}) d(k)=2f(x(k))1f(x(k))
\qquad 步骤 ( 3 ) : (3): (3): ∥ ∇ f ( x ( k ) ) ∥ ≤ ε \Vert\boldsymbol \nabla f(\boldsymbol{x}^{(k)})\Vert\le\varepsilon f(x(k))ε,则停止计算;
\qquad\qquad\qquad 否则,沿着 d ( k ) \boldsymbol d^{(k)} d(k) 进行一维搜索求出 λ k \lambda_k λk,使 f ( x ( k ) + λ k d ( k ) ) = min ⁡ λ > 0 f ( x ( k ) + λ d ( k ) ) f(\boldsymbol x^{(k)}+\lambda_k\boldsymbol d^{(k)})=\displaystyle\min_{\lambda>0} f(\boldsymbol x^{(k)}+\lambda\boldsymbol d^{(k)}) f(x(k)+λkd(k))=λ>0minf(x(k)+λd(k))
\qquad 步骤 ( 4 ) : (4): (4): x ( k + 1 ) = x ( k ) + λ k d ( k ) \boldsymbol x^{(k+1)}=\boldsymbol x^{(k)}+\lambda_k\boldsymbol d^{(k)} x(k+1)=x(k)+λkd(k),且 k = k + 1 k=k+1 k=k+1,转步骤 ( 2 ) (2) (2)
\qquad
∙ \bullet  实现代码

import numpy as np
import matplotlib.pyplot as plt
import time
def diffMat(f,x,h=0.001):
(略)
def newton1d(f,xk,d,h=0.001):
    dif1 = (f(xk+h*d) - f(xk-h*d))/(2*h)
    dif2 = (f(xk+h*d) + f(xk-h*d) - 2*f(xk))/(h*h)
    deltax = dif1/dif2
    xk1 = xk - deltax * d
    return xk1
def dampednewton(f,x0):
    k=0
    xk = x0
    while True:
        k = k+1
        print('#',k)                
        grad, hesse = diffMat(f,xk)
        d = -np.asarray(hesse.I*grad).flatten()
        if np.linalg.norm(grad)<0.00001:
            break
        print('grad:\n',np.round(grad,4),'\nhesse:\n',np.round(hesse,4))
        print('d:',d/np.linalg.norm(d))
        xk = newton1d(f,xk,d)
        print('x[{}]:{}\n'.format(k,np.round(xk,4)))
    return xk
if __name__ == "__main__":       
    f = lambda x: (x[0]-1)**4 + (x[1]-0)**2 
    x0 = np.array([0,1],dtype='float')
    time0 = time.process_time()
    minval = dampednewton(f,x0)
    time1 = time.process_time()
    print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
    print('time: %fs'%(time1-time0))

运行结果:

# 1
grad:
 [[-4.]
 [ 2.]] 
hesse:
 [[12.  0.]
 [ 0.  2.]]
d: [ 0.316228   -0.94868322]
x[2]:[0.3333 0.    ]

# 2
grad:
 [[-1.1852]
 [ 0.    ]] 
hesse:
 [[5.3333 0.    ]
 [0.     2.    ]]
d: [ 1.00000000e+00 -1.33281943e-06]
x[3]:[0.5556 0.    ]

# 3
grad:
 [[-0.3512]
 [ 0.    ]] 
hesse:
 [[2.3704 0.    ]
 [0.     2.    ]]
d: [ 1.00000e+00 -3.53622e-12]
x[4]:[0.7037 0.    ]

# 4
grad:
 [[-0.1041]
 [ 0.    ]] 
hesse:
 [[ 1.0535 -0.    ]
 [-0.      2.    ]]
d: [1.00000000e+00 1.06224728e-13]
x[5]:[0.8025 0.    ]
(略)
# 11
grad:
 [[-0.]
 [ 0.]] 
hesse:
 [[0.0036 0.    ]
 [0.     2.    ]]
d: [ 1. -0.]
x[12]:[0.9884 0.    ]

# 12
x: [0.9884 0.    ] minval: 0.0
time: 0.000000s

\qquad

2 拟牛顿法

\qquad 牛顿法的优点是收敛很快,但是牛顿法的每次迭代过程中都需要计算二阶偏导数、求 Hesse \text{Hesse} Hesse 矩阵的逆矩阵,而目标函数的 Hesse \text{Hesse} Hesse 矩阵可能是非正定的。

\qquad 拟牛顿法 (Quasi-Newton Method) \text{(Quasi-Newton\ Method)} (Quasi-Newton Method)是为了克服牛顿法的缺点而提出了“拟牛顿条件”,其基本思想是用“不包含二阶导数的矩阵”来近似牛顿法中 Hesse \text{Hesse} Hesse 矩阵的逆矩阵。
\qquad

2.1 拟牛顿条件

\qquad 拟牛顿法是构造近似矩阵 H k H_k Hk 替代 “ Hesse \text{Hesse} Hesse 矩阵的逆矩阵”件,即: H k ≈ ∇ 2 f ( x ( k ) ) − 1 H_k\approx\nabla^2f(\boldsymbol x^{(k)})^{-1} Hk2f(x(k))1拟牛顿条件是构造 H k H_k Hk 替代 ∇ 2 f ( x ( k ) ) − 1 \nabla^2f(\boldsymbol x^{(k)})^{-1} 2f(x(k))1 执行牛顿法迭代运算时所需要满足的条件。

\qquad 使用一维搜索时,牛顿法的迭代公式为:

x ( k + 1 ) = x ( k ) − λ k ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) \qquad\qquad\boldsymbol x^{(k+1)}=\boldsymbol x^{(k)}-\lambda_k\nabla^2f(\boldsymbol x^{(k)})^{-1}\nabla f(\boldsymbol x^{(k)}) x(k+1)=x(k)λk2f(x(k))1f(x(k))

\qquad 在第 k k k 次迭代后得到了点 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1),将目标函数在点 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1) 进行二阶泰勒级数展开:

f ( x ) ≈ f ( x ( k + 1 ) ) + ∇ f ( x ( k + 1 ) ) T ( x − x ( k + 1 ) ) + 1 2 ( x − x ( k + 1 ) ) T ∇ 2 f ( x ( k + 1 ) ) ( x − x ( k + 1 ) ) \qquad\qquad\textcolor{brown}{f(\boldsymbol x)\approx f(\boldsymbol x^{(k+1)})+\nabla f(\boldsymbol x^{(k+1)})^T(\boldsymbol x-\boldsymbol x^{(k+1)})+\dfrac{1}{2}(\boldsymbol x-\boldsymbol x^{(k+1)})^T\nabla^2f(\boldsymbol x^{(k+1)})(\boldsymbol x-\boldsymbol x^{(k+1)})} f(x)f(x(k+1))+f(x(k+1))T(xx(k+1))+21(xx(k+1))T2f(x(k+1))(xx(k+1))

\qquad 对上式两端取梯度,就得到:

∇ f ( x ) ≈ ∇ f ( x ( k + 1 ) ) + ∇ 2 f ( x ( k + 1 ) ) ( x − x ( k + 1 ) ) \qquad\qquad\textcolor{royalblue}{\nabla f(\boldsymbol x)\approx\nabla f(\boldsymbol x^{(k+1)})+\nabla^2f(\boldsymbol x^{(k+1)})(\boldsymbol x-\boldsymbol x^{(k+1)})} f(x)f(x(k+1))+2f(x(k+1))(xx(k+1))

\qquad x = x ( k ) \boldsymbol x = \boldsymbol x^{(k)} x=x(k) 带入上式:

∇ f ( x ( k ) ) ≈ ∇ f ( x ( k + 1 ) ) + ∇ 2 f ( x ( k + 1 ) ) ( x ( k ) − x ( k + 1 ) ) \qquad\qquad\textcolor{crimson}{\nabla f(\boldsymbol x^{(k)})}\approx\textcolor{royalblue}{\nabla f(\boldsymbol x^{(k+1)})}+\nabla^2f(\boldsymbol x^{(k+1)})(\textcolor{crimson}{\boldsymbol x^{(k)}}-\textcolor{royalblue}{\boldsymbol x^{(k+1)}}) f(x(k))f(x(k+1))+2f(x(k+1))(x(k)x(k+1))

\qquad
\qquad 在上式中,令 p ( k ) = x ( k + 1 ) − x ( k ) \textcolor{royalblue}{\boldsymbol p^{(k)}=\boldsymbol x^{(k+1)}-\boldsymbol x^{(k)}} p(k)=x(k+1)x(k) q ( k ) = ∇ f ( x ( k + 1 ) ) − ∇ f ( x ( k ) ) \textcolor{crimson}{\boldsymbol q^{(k)}=\nabla f(\boldsymbol x^{(k+1)})-\nabla f(\boldsymbol x^{(k)})} q(k)=f(x(k+1))f(x(k)),那么:

q ( k ) ≈ ∇ 2 f ( x ( k + 1 ) ) p ( k ) \qquad\qquad\textcolor{crimson}{\boldsymbol q^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})\textcolor{royalblue}{\boldsymbol p^{(k)}} q(k)2f(x(k+1))p(k)

\qquad
\qquad 若矩阵 ∇ 2 f ( x ( k + 1 ) ) \nabla^2f(\boldsymbol x^{(k+1)}) 2f(x(k+1)) 可逆,则: p ( k ) ≈ ∇ 2 f ( x ( k + 1 ) ) − 1 q ( k ) \textcolor{royalblue}{\boldsymbol p^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})^{-1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)2f(x(k+1))1q(k)

\qquad 若记 H k + 1 = ∇ 2 f ( x ( k + 1 ) ) − 1 H_{k+1}=\nabla^2f(\boldsymbol x^{(k+1)})^{-1} Hk+1=2f(x(k+1))1,那么

p ( k ) = H k + 1 q ( k ) \qquad\qquad\textcolor{royalblue}{\boldsymbol p^{(k)}}= H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)=Hk+1q(k)拟牛顿条件

\qquad 拟牛顿法就是为了构造拟牛顿法中的矩阵 H k + 1 H_{k+1} Hk+1 而提出的一类算法。
\qquad

2.2 秩1校正

\qquad ∇ 2 f ( x ( k + 1 ) ) − 1 \nabla^2f(\boldsymbol x^{(k+1)})^{-1} 2f(x(k+1))1 n n n 阶对称正定矩阵时,满足拟牛顿条件的近似矩阵 H k + 1 H_{k+1} Hk+1 也是 n n n 阶对称正定矩阵。构造这样的近似矩阵,可以通过不断修正 H k H_{k} Hk 来构造下一个 H k + 1 H_{k+1} Hk+1,通常令 H 1 = I H_{1}=\bold I H1=I,那么 H k + 1 H_{k+1} Hk+1 的修正过程为

H k + 1 = H k + Δ H k \qquad\qquad H_{k+1}=H_k+\textcolor{crimson}{\Delta H_k} Hk+1=Hk+ΔHk, 其中 Δ H k \textcolor{crimson}{\Delta H_k} ΔHk校正矩阵

\qquad
\qquad 确定 Δ H k \textcolor{crimson}{\Delta H_k} ΔHk 的方法之一是,令 Δ H k = α k z ( k ) ( z ( k ) ) T \textcolor{SeaGreen}{\Delta H_k= \alpha_k \boldsymbol z^{(k)} (\boldsymbol z^{(k)})^T} ΔHk=αkz(k)(z(k))T,其中 α k \alpha_k αk 是一个常数, z ( k ) ∈ R n \boldsymbol z^{(k)}\in R^n z(k)Rn n n n 维列向量。显然,矩阵 Δ H k \textcolor{crimson}{\Delta H_k} ΔHk 的秩为 1 1 1,且 z ( k ) \boldsymbol z^{(k)} z(k) 应该满足拟牛顿条件 p ( k ) = H k + 1 q ( k ) \textcolor{royalblue}{\boldsymbol p^{(k)}}=H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)=Hk+1q(k),那么

p ( k ) = H k + 1 q ( k ) = H k q ( k ) + Δ H k q ( k ) = H k q ( k ) + α k z ( k ) ( z ( k ) ) T q ( k ) \qquad\qquad \begin{aligned}\textcolor{royalblue}{\boldsymbol p^{(k)}}&=H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}}\\ &=H_k\boldsymbol q^{(k)}+\Delta H_k\textcolor{crimson}{\boldsymbol q^{(k)}}\\ &=H_k\boldsymbol q^{(k)}+\alpha_k \boldsymbol z^{(k)} \textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}\end{aligned} p(k)=Hk+1q(k)=Hkq(k)+ΔHkq(k)=Hkq(k)+αkz(k)(z(k))Tq(k)

\qquad 由于 ( z ( k ) ) T q ( k ) \textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}} (z(k))Tq(k) 是两个 n n n 维列向量的内积,其值为常数,可得到:  z ( k ) = p ( k ) − H k q ( k ) α k ( z ( k ) ) T q ( k ) \boldsymbol z^{(k)} =\dfrac{\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}}{\alpha_k \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}} z(k)=αk(z(k))Tq(k)p(k)Hkq(k)

\qquad 两边都左乘 ( q ( k ) ) T (\boldsymbol q^{(k)})^T (q(k))T,可得到:

( q ( k ) ) T z ( k ) = ( z ( k ) ) T q ( k ) = ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) α k ( z ( k ) ) T q ( k ) \qquad\qquad (\boldsymbol q^{(k)})^T\boldsymbol z^{(k)}=\textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}} =\dfrac{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}{\alpha_k \textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}} (q(k))Tz(k)=(z(k))Tq(k)=αk(z(k))Tq(k)(q(k))T(p(k)Hkq(k))

⟹ ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) = α k ( ( z ( k ) ) T q ( k ) ) 2 \qquad\qquad \Longrightarrow\quad\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}=\alpha_k (\textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}})^2 (q(k))T(p(k)Hkq(k))=αk((z(k))Tq(k))2

x T y = y T x ,   ∀ x , y ∈ R n ⟹ ( z ( k ) ) T q ( k ) = ( q ( k ) ) T z ( k ) \boldsymbol x^T\boldsymbol y=\boldsymbol y^T\boldsymbol x,\ \forall\boldsymbol x,\boldsymbol y\in R^n\quad\Longrightarrow\quad(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}=(\boldsymbol q^{(k)})^T\boldsymbol z^{(k)} xTy=yTx, x,yRn(z(k))Tq(k)=(q(k))Tz(k)

\qquad 可得到:

Δ H k = α k z ( k ) ( z ( k ) ) T = α k p ( k ) − H k q ( k ) α k ( z ( k ) ) T q ( k ) ( p ( k ) − H k q ( k ) α k ( z ( k ) ) T q ( k ) ) T , ( z ( k ) ) T q ( k ) 为常量 = α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T α k ( ( z ( k ) ) T q ( k ) ) 2 = α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) \qquad\qquad \begin{aligned}\textcolor{DeepPink}{\Delta H_k}&=\alpha_k \boldsymbol z^{(k)} (\boldsymbol z^{(k)})^T\\ &=\alpha_k\dfrac{\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}}{\alpha_k \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}}\left(\dfrac{\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}}{\alpha_k \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}}\right)^T,\qquad\textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}为常量\\ &=\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\alpha_k\left( \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}\right)^2}\\ &=\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}}\end{aligned} ΔHk=αkz(k)(z(k))T=αkαk(z(k))Tq(k)p(k)Hkq(k)(αk(z(k))Tq(k)p(k)Hkq(k))T,(z(k))Tq(k)为常量=αkαk((z(k))Tq(k))2(p(k)Hkq(k))(p(k)Hkq(k))T=αk(q(k))T(p(k)Hkq(k))(p(k)Hkq(k))(p(k)Hkq(k))T

\qquad
\qquad 因此, H k + 1 H_{k+1} Hk+1 的修正过程称为秩1校正公式,也就是:

H k + 1 = H k + Δ H k = H k + α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) \qquad\qquad H_{k+1}=H_k+\textcolor{DeepPink}{\Delta H_k}=H_k+\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}} Hk+1=Hk+ΔHk=Hk+αk(q(k))T(p(k)Hkq(k))(p(k)Hkq(k))(p(k)Hkq(k))T

\qquad
\qquad 基于秩1校正公式拟牛顿法计算步骤为:

( 1 ) \qquad(1) (1) 搜索方向为 d ( k ) = − H k ∇ f ( x ( k ) ) , H 1 = I \boldsymbol d^{(k)}=-H_k\nabla f(\boldsymbol x^{(k)}),\quad H_1=\bold I d(k)=Hkf(x(k)),H1=I

( 2 ) \qquad(2) (2) 沿 d ( k ) \boldsymbol d^{(k)} d(k) 进行一维搜索求出 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1)

( 3 ) \qquad(3) (3) 求出 p ( k ) = x ( k + 1 ) − x ( k ) \boldsymbol p^{(k)}=\boldsymbol x^{(k+1)}-\boldsymbol x^{(k)} p(k)=x(k+1)x(k) 以及 q ( k ) = ∇ f ( x ( k + 1 ) ) − ∇ f ( x ( k ) ) \boldsymbol q^{(k)}=\nabla f(\boldsymbol x^{(k+1)})-\nabla f(\boldsymbol x^{(k)}) q(k)=f(x(k+1))f(x(k)),计算近似矩阵

H k + 1 = H k + α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) \qquad\qquad H_{k+1}=H_k+\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}} Hk+1=Hk+αk(q(k))T(p(k)Hkq(k))(p(k)Hkq(k))(p(k)Hkq(k))T

\qquad\quad 重新回到第 ( 1 ) (1) (1) 步开始下一轮的计算,直到 ∥ ∇ f ( x ( k ) ) ∥ < ε \Vert \nabla f(\boldsymbol x^{(k)})\Vert<\varepsilon ∥∇f(x(k))<ε
\qquad
∙ \bullet  实现代码

import numpy as np
import matplotlib.pyplot as plt
import time
def diff1(f,x,h=0.001):
    dx = np.array([h,0])
    dy = np.array([0,h])
    gx = (f(x+dx)-f(x-dx))/(2*h)
    gy = (f(x+dy)-f(x-dy))/(2*h)
    return np.array([gx,gy])
def newton1d(f,xk,d,h=0.001):
    dif1 = (f(xk+h*d) - f(xk-h*d))/(2*h)
    dif2 = (f(xk+h*d) + f(xk-h*d) - 2*f(xk))/(h*h)
    deltax = dif1/dif2
    xk1 = xk - deltax * d
    return xk1
def newton(f,x0):
    k=1
    xk = x0
    Hk = np.eye(x0.shape[0])
    while True:
        gk = diff1(f,xk)        
        dk = -np.dot(Hk,gk)
        xk1 = newton1d(f,xk,dk)	
        gk1 = diff1(f,xk1)
        if np.linalg.norm(gk)<0.0001:
            break
        pk = xk1 - xk
        qk = gk1 - gk
        t1 = (pk-Hk.dot(qk)).reshape(x0.shape[0],-1)
        deltHk = t1.dot(t1.T)/qk.dot(pk-Hk.dot(qk))
        Hk = Hk + deltHk
        xk = xk1
        print('#{} min:{}'.format(k,np.round(xk,4)))
        k = k + 1
    return xk
if __name__ == "__main__":       
    f = lambda x: (x[0]-1)**4 + (x[1]-0)**2 
    x0 = np.array([0,1],dtype='float')
    time0 = time.process_time()
    minval = newton(f,x0)
    time1 = time.process_time()
    print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
    print('time: %fs'%(time1-time0))

运行结果:

#1 min:[0.4 0.8]
#2 min:[ 0.4084 -0.0043]
#3 min:[6.056e-01 1.000e-04]
#4 min:[ 0.7371 -0.    ]
#5 min:[0.8247 0.    ]
#6 min:[ 0.8831 -0.    ]
#7 min:[0.9221 0.    ]
#8 min:[ 0.9481 -0.    ]
#9 min:[0.9654 0.    ]
#10 min:[ 0.9769 -0.    ]
x: [ 0.9769 -0.    ] minval: 0.0
time: 0.000000s

\quad

2.3 DFP算法(变尺度法)

\qquad 变尺度法,也就是 DFP \text{DFP} DFP法,其校正矩阵为:

Δ H k = p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − H k q ( k ) ( q ( k ) ) T H k ( q ( k ) ) T H k q ( k ) \qquad\qquad\Delta H_k=\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{H_k\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^TH_k}{(\boldsymbol q^{(k)})^TH_k\boldsymbol q^{(k)}} ΔHk=(p(k))Tq(k)p(k)(p(k))T(q(k))THkq(k)Hkq(k)(q(k))THk

\qquad 近似矩阵 H k + 1 H_{k+1} Hk+1 的修正过程为:

H k + 1 = H k + Δ H k = H k + p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − H k q ( k ) ( q ( k ) ) T H k ( q ( k ) ) T H k q ( k ) \qquad\qquad H_{k+1}=H_k+\textcolor{DeepPink}{\Delta H_k}=H_k+\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{H_k\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^TH_k}{(\boldsymbol q^{(k)})^TH_k\boldsymbol q^{(k)}} Hk+1=Hk+ΔHk=Hk+(p(k))Tq(k)p(k)(p(k))T(q(k))THkq(k)Hkq(k)(q(k))THk

DFP \qquad\text{DFP} DFP法具有二次终止性,对于正定二次函数的目标函数,经过有限次搜索可以达到极小点。

\qquad
DFP \qquad\text{DFP} DFP法的计算步骤为:

( 1 ) \qquad(1) (1) 搜索方向为 d ( k ) = − H k ∇ f ( x ( k ) ) , H 1 = I \boldsymbol d^{(k)}=-H_k\nabla f(\boldsymbol x^{(k)}),\quad H_1=\bold I d(k)=Hkf(x(k)),H1=I

( 2 ) \qquad(2) (2) 沿 d ( k ) \boldsymbol d^{(k)} d(k) 进行一维搜索求出 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1)

( 3 ) \qquad(3) (3) 求出 p ( k ) = x ( k + 1 ) − x ( k ) \boldsymbol p^{(k)}=\boldsymbol x^{(k+1)}-\boldsymbol x^{(k)} p(k)=x(k+1)x(k) 以及 q ( k ) = ∇ f ( x ( k + 1 ) ) − ∇ f ( x ( k ) ) \boldsymbol q^{(k)}=\nabla f(\boldsymbol x^{(k+1)})-\nabla f(\boldsymbol x^{(k)}) q(k)=f(x(k+1))f(x(k)),计算近似矩阵

H k + 1 = H k + p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − H k q ( k ) ( q ( k ) ) T H k ( q ( k ) ) T H k q ( k ) \qquad\qquad H_{k+1}=H_k+\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{H_k\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^TH_k}{(\boldsymbol q^{(k)})^TH_k\boldsymbol q^{(k)}} Hk+1=Hk+(p(k))Tq(k)p(k)(p(k))T(q(k))THkq(k)Hkq(k)(q(k))THk

\qquad\qquad 重新回到第 ( 1 ) (1) (1) 步开始下一轮的计算,直到 ∥ ∇ f ( x ( k ) ) ∥ < ε \Vert \nabla f(\boldsymbol x^{(k)})\Vert<\varepsilon ∥∇f(x(k))<ε
\qquad
∙ \bullet  实现代码

import numpy as np
import matplotlib.pyplot as plt
import time
def diff1(f,x,h=0.001):
    dx = np.array([h,0])
    dy = np.array([0,h])
    gx = (f(x+dx)-f(x-dx))/(2*h)
    gy = (f(x+dy)-f(x-dy))/(2*h)
    return np.array([gx,gy])
def newton1d(f,xk,d,h=0.001):
    dif1 = (f(xk+h*d) - f(xk-h*d))/(2*h)
    dif2 = (f(xk+h*d) + f(xk-h*d) - 2*f(xk))/(h*h)
    deltax = dif1/dif2
    xk1 = xk - deltax * d
    return xk1
def newton(f,x0):
    k=1
    xk = x0
    Hk = np.eye(x0.shape[0])
    while True:
        gk = diff1(f,xk)        
        dk = -np.dot(Hk,gk)
        xk1 = newton1d(f,xk,dk)	
        gk1 = diff1(f,xk1)
        if np.linalg.norm(gk)<0.0001:
            break
        pk = xk1 - xk
        qk = gk1 - gk
        pkm = (xk1 - xk).reshape(x0.shape[0],-1)
        qkm = (gk1 - gk).reshape(x0.shape[0],-1)
        deltHk = pkm.dot(pkm.T)/pk.dot(qk) - Hk.dot(qkm.dot(qkm.T)).dot(Hk)/qk.dot(Hk.dot(qk))
        Hk = Hk + deltHk
        xk = xk1
        print('#{} min:{}'.format(k,np.round(xk,4)))
        k = k + 1
    return xk
if __name__ == "__main__":       
    f = lambda x: (x[0]-1)**4 + (x[1]-0)**2 
    # f = lambda x: 2*(x[0]-0)**2 + (x[1]-0)**2 - 4*x[0] + 2
    x0 = np.array([0,1],dtype='float')
    time0 = time.process_time()
    minval = newton(f,x0)
    time1 = time.process_time()
    print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
    print('time: %fs'%(time1-time0))

运行结果:

#1 min:[0.4 0.8]
#2 min:[ 0.4064 -0.0033]
#3 min:[0.6043 0.    ]
#4 min:[ 0.7362 -0.    ]
#5 min:[0.8241 0.    ]
#6 min:[ 0.8828 -0.    ]
#7 min:[0.9218 0.    ]
#8 min:[ 0.9479 -0.    ]
#9 min:[0.9653 0.    ]
#10 min:[ 0.9768 -0.    ]
x: [ 0.9768 -0.    ] minval: 0.0
time: 0.000000s

\qquad

2.4 BFGS公式

\qquad 在讨论拟牛顿条件时,首先构造出 q ( k ) ≈ ∇ 2 f ( x ( k + 1 ) ) p ( k ) \textcolor{crimson}{\boldsymbol q^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})\textcolor{royalblue}{\boldsymbol p^{(k)}} q(k)2f(x(k+1))p(k) 的关系,然后记 H k + 1 = ∇ 2 f ( x ( k + 1 ) ) − 1 H_{k+1}=\nabla^2f(\boldsymbol x^{(k+1)})^{-1} Hk+1=2f(x(k+1))1,得到了 p ( k ) = H k + 1 q ( k ) \textcolor{royalblue}{\boldsymbol p^{(k)}}= H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)=Hk+1q(k)拟牛顿条件,前文中的秩 1 1 1校正和 DFP \text{DFP} DFP公式都是基于 p ( k ) = H k + 1 q ( k ) \textcolor{royalblue}{\boldsymbol p^{(k)}}= H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)=Hk+1q(k)拟牛顿条件
\qquad
\qquad BFGS \text{BFGS} BFGS公式直接基于 q ( k ) ≈ ∇ 2 f ( x ( k + 1 ) ) p ( k ) \textcolor{crimson}{\boldsymbol q^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})\textcolor{royalblue}{\boldsymbol p^{(k)}} q(k)2f(x(k+1))p(k) 的关系,用不含二阶导数的矩阵 B k + 1 B_{k+1} Bk+1 近似 ∇ 2 f ( x ( k + 1 ) ) \nabla^2f(\boldsymbol x^{(k+1)}) 2f(x(k+1)),从而有 q ( k ) = B k + 1 p ( k ) \textcolor{crimson}{\boldsymbol q^{(k)}}=B_{k+1}\textcolor{royalblue}{\boldsymbol p^{(k)}} q(k)=Bk+1p(k),关于 B k B_{k} Bk 的修正公式为:

B k + 1 = B k + q ( k ) ( q ( k ) ) T ( q ( k ) ) T p ( k ) − B k p ( k ) ( p ( k ) ) T B k ( p ( k ) ) T B k p ( k ) \qquad\qquad B_{k+1}=B_k+\dfrac{\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^T}{(\boldsymbol q^{(k)})^T\boldsymbol p^{(k)}}-\dfrac{B_k\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^TB_k}{(\boldsymbol p^{(k)})^TB_k\boldsymbol p^{(k)}} Bk+1=Bk+(q(k))Tp(k)q(k)(q(k))T(p(k))TBkp(k)Bkp(k)(p(k))TBk

\qquad 上式即为关于矩阵 B \text{B} B BFGS \text{BFGS} BFGS 修正公式。
 
\qquad 由于 q ( k ) = B k + 1 p ( k ) \textcolor{crimson}{\boldsymbol q^{(k)}}=B_{k+1}\textcolor{royalblue}{\boldsymbol p^{(k)}} q(k)=Bk+1p(k),因此 p ( k ) = B k + 1 − 1 q ( k ) \textcolor{royalblue}{\boldsymbol p^{(k)}}= B_{k+1}^{-1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)=Bk+11q(k),也就相当于令 H k + 1 = B k + 1 − 1 H_{k+1}=B_{k+1}^{-1} Hk+1=Bk+11 时的拟牛顿法。
 
\qquad 利用 Sherman-Morrison \text{Sherman-Morrison} Sherman-Morrison公式:

( M + u v T ) − 1 = M − 1 − M − 1 u v T M − 1 1 + v T M − 1 u \qquad\qquad(\boldsymbol{M}+\boldsymbol{u}\boldsymbol{v}^T)^{-1}=\boldsymbol{M}^{-1}-\dfrac{\boldsymbol{M}^{-1} \boldsymbol{u}\boldsymbol{v}^T \boldsymbol{M}^{-1}}{1+\boldsymbol{v}^T \boldsymbol{M}^{-1}\boldsymbol{u}} (M+uvT)1=M11+vTM1uM1uvTM1

\qquad 可以求出 B k + 1 − 1 B_{k+1}^{-1} Bk+11,从而得到关于 H \boldsymbol{H} H BFGS \text{BFGS} BFGS公式:

H k + 1 BFGS = H k + ( 1 + ( q ( k ) ) T H k q ( k ) ( p ( k ) ) T q ( k ) ) p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − p ( k ) ( q ( k ) ) T H k + H k q ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) \qquad\qquad H_{k+1}^{\text{BFGS}}=H_k+\left(1+\dfrac{(\boldsymbol q^{(k)})^TH_k \boldsymbol q^{(k)} }{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}} \right)\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{\boldsymbol p^{(k)}(\boldsymbol q^{(k)})^TH_k + H_k\boldsymbol q^{(k)}(\boldsymbol p^{(k)})^T }{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}} Hk+1BFGS=Hk+(1+(p(k))Tq(k)(q(k))THkq(k))(p(k))Tq(k)p(k)(p(k))T(p(k))Tq(k)p(k)(q(k))THk+Hkq(k)(p(k))T

\qquad
DFP \qquad\text{DFP} DFP公式和 BFGS \text{BFGS} BFGS公式都是由 p ( k ) \boldsymbol p^{(k)} p(k) H k q ( k ) H_k\boldsymbol q^{(k)} Hkq(k) 构成的对称秩 2 2 2校正,因此两个公式的加权组合具有相同的形式,所有这类修正公式的集合可以表示为:

H k + 1 ϕ = ( 1 − ϕ ) H k + 1 DFP + ϕ H k + 1 BFGS \qquad\qquad H_{k+1}^{\phi}=(1-\phi)H_{k+1}^{\text{DFP}}+\phi H_{k+1}^{\text{BFGS}} Hk+1ϕ=(1ϕ)Hk+1DFP+ϕHk+1BFGS

\qquad 这类修正公式的全体,称为 Broyden \text{Broyden} Broyden族。当 ϕ = 0 \phi=0 ϕ=0 时为 DFP \text{DFP} DFP公式,当 ϕ = 1 \phi=1 ϕ=1 时为 BFGS \text{BFGS} BFGS公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值