1 牛顿法
\qquad 除了可以采用最速下降法求解“无约束最优化问题”,另一种常用的方法就是牛顿法。设 f ( x ) f(\boldsymbol{x}) f(x) 为二次可微的实函数,在第 k k k 次迭代点 x ( k ) \boldsymbol{x}^{(k)} x(k) 附近用二阶泰勒级数展开式 ϕ ( x ) \phi(\boldsymbol{x}) ϕ(x) 来近似,也就是
f ( x ) ≈ ϕ ( x ) = f ( x ( k ) ) + ∇ f ( x ( k ) ) T ( x − x ( k ) ) + 1 2 ( x − x ( k ) ) T ∇ 2 f ( x ( k ) ) ( x − x ( k ) ) 2 \qquad\qquad f(\boldsymbol{x})\approx\phi(\boldsymbol{x})=f(\boldsymbol{x}^{(k)})+\nabla f(\boldsymbol{x}^{(k)})^T(\boldsymbol{x}-\boldsymbol{x}^{(k)})+\dfrac{1}{2}(\boldsymbol{x}-\boldsymbol{x}^{(k)})^T\nabla^2f(\boldsymbol{x}^{(k)})(\boldsymbol{x}-\boldsymbol{x}^{(k)})^2 f(x)≈ϕ(x)=f(x(k))+∇f(x(k))T(x−x(k))+21(x−x(k))T∇2f(x(k))(x−x(k))2
\qquad 根据一阶必要条件,令 ϕ ′ ( x ) = 0 \phi^{\prime}(\boldsymbol{x})=0 ϕ′(x)=0,可得到
ϕ ′ ( x ) = ∇ f ( x ( k ) ) + ∇ 2 f ( x ( k ) ) ( x − x ( k ) ) = 0 \qquad\qquad\phi^{\prime}(\boldsymbol{x})=\nabla f(\boldsymbol{x}^{(k)})+\nabla^2f(\boldsymbol{x}^{(k)})(\boldsymbol{x}-\boldsymbol{x}^{(k)})=0 ϕ′(x)=∇f(x(k))+∇2f(x(k))(x−x(k))=0
\qquad 将 ϕ ( x ) \phi(\boldsymbol{x}) ϕ(x) 的驻点作为下一个迭代点 x ( k + 1 ) \boldsymbol{x}^{(k+1)} x(k+1) 就得到牛顿法的迭代公式
x ( k + 1 ) = x ( k ) − ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) \qquad\qquad\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)}) x(k+1)=x(k)−∇2f(x(k))−1∇f(x(k))
\qquad
通常,也将牛顿方向定义为:
−
∇
2
f
(
x
(
k
)
)
−
1
∇
f
(
x
(
k
)
)
-\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)})
−∇2f(x(k))−1∇f(x(k))
\qquad
∙
\bullet
∙ 实现代码
import numpy as np
import matplotlib.pyplot as plt
import time
def diffMat(f,x,h=0.001):
dx = np.array([h,0])
dy = np.array([0,h])
gx = (f(x+dx)-f(x-dx))/(2*h)
gy = (f(x+dy)-f(x-dy))/(2*h)
grad = np.asmatrix(np.array([gx,gy])).T
g2x = (f(x+dx) + f(x-dx) - 2*f(x))/(h*h)
g2y = (f(x+dy) + f(x-dy) - 2*f(x))/(h*h)
gx2 = (f(x+dy+dx)-f(x+dy-dx))/(2*h)
gx1 = (f(x-dy+dx)-f(x-dy-dx))/(2*h)
gy2 = (f(x+dx+dy)-f(x+dx-dy))/(2*h)
gy1 = (f(x-dx+dy)-f(x-dx-dy))/(2*h)
gxy1 = (gx2 - gx1)/(2*h)
gxy2 = (gy2 - gy1)/(2*h)
hesse = np.matrix([[g2x,gxy1],[gxy2,g2y]])
return grad,hesse
def newton(f,x0):
k=1
xk = x0
while True:
print('#',k)
k = k+1
grad, hesse = diffMat(f,xk)
d = np.asarray(hesse.I*grad).flatten()
print('grad:\n',np.round(grad,4),'\nhesse:\n',np.round(hesse,4))
xk = xk - d
print('d:',d/np.linalg.norm(d))
print('x[{}]:{}\n'.format(k,np.round(xk,4)))
if np.linalg.norm(grad)<0.00001:
break
return xk
if __name__ == "__main__":
f = lambda x: (x[0]-1)**4 + (x[1]-0)**2
x0 = np.array([0,1],dtype='float')
time0 = time.process_time()
minval = newton(f,x0)
time1 = time.process_time()
print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
print('time: %fs'%(time1-time0))
运行结果:
# 1
grad:
[[-4.]
[ 2.]]
hesse:
[[12. 0.]
[ 0. 2.]]
d: [-0.316228 0.94868322]
x[2]:[0.3333 0. ]
# 2
grad:
[[-1.1852]
[ 0. ]]
hesse:
[[5.3333 0. ]
[0. 2. ]]
d: [-1.00000000e+00 6.28995937e-10]
x[3]:[0.5556 0. ]
(略)
# 12
grad:
[[-0.]
[ 0.]]
hesse:
[[1.6e-03 0.0e+00]
[0.0e+00 2.0e+00]]
d: [-1. 0.]
x[13]:[0.9923 0. ]
x: [0.9923 0. ] minval: 0.0
time: 0.000000s
阻尼牛顿法
\qquad
牛顿法只是通过在
x
(
k
)
\boldsymbol{x}^{(k)}
x(k) 附近用二阶泰勒级数来近似目标函数,牛顿方向
−
∇
2
f
(
x
(
k
)
)
−
1
∇
f
(
x
(
k
)
)
-\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)})
−∇2f(x(k))−1∇f(x(k)) 并不一定是下降方向,可能会使目标函数值增大。阻尼牛顿法,也称修正牛顿法,为了使目标函数值下降,增加了在牛顿方向上的一维搜索过程,其算法步骤为:
\qquad
步骤
(
1
)
:
(1):
(1): 给定初始点
x
(
1
)
∈
R
n
\boldsymbol x^{(1)}\in R^n
x(1)∈Rn,设置允许误差
ε
>
0
\varepsilon>0
ε>0,令
k
=
1
k=1
k=1
\qquad
步骤
(
2
)
:
(2):
(2): 计算搜索方向
d
(
k
)
=
−
∇
2
f
(
x
(
k
)
)
−
1
∇
f
(
x
(
k
)
)
\boldsymbol d^{(k)}=-\nabla^2f(\boldsymbol{x}^{(k)})^{-1}\nabla f(\boldsymbol{x}^{(k)})
d(k)=−∇2f(x(k))−1∇f(x(k))
\qquad
步骤
(
3
)
:
(3):
(3): 若
∥
∇
f
(
x
(
k
)
)
∥
≤
ε
\Vert\boldsymbol \nabla f(\boldsymbol{x}^{(k)})\Vert\le\varepsilon
∥∇f(x(k))∥≤ε,则停止计算;
\qquad\qquad\qquad
否则,沿着
d
(
k
)
\boldsymbol d^{(k)}
d(k) 进行一维搜索求出
λ
k
\lambda_k
λk,使
f
(
x
(
k
)
+
λ
k
d
(
k
)
)
=
min
λ
>
0
f
(
x
(
k
)
+
λ
d
(
k
)
)
f(\boldsymbol x^{(k)}+\lambda_k\boldsymbol d^{(k)})=\displaystyle\min_{\lambda>0} f(\boldsymbol x^{(k)}+\lambda\boldsymbol d^{(k)})
f(x(k)+λkd(k))=λ>0minf(x(k)+λd(k))
\qquad
步骤
(
4
)
:
(4):
(4): 令
x
(
k
+
1
)
=
x
(
k
)
+
λ
k
d
(
k
)
\boldsymbol x^{(k+1)}=\boldsymbol x^{(k)}+\lambda_k\boldsymbol d^{(k)}
x(k+1)=x(k)+λkd(k),且
k
=
k
+
1
k=k+1
k=k+1,转步骤
(
2
)
(2)
(2)
\qquad
∙
\bullet
∙ 实现代码
import numpy as np
import matplotlib.pyplot as plt
import time
def diffMat(f,x,h=0.001):
(略)
def newton1d(f,xk,d,h=0.001):
dif1 = (f(xk+h*d) - f(xk-h*d))/(2*h)
dif2 = (f(xk+h*d) + f(xk-h*d) - 2*f(xk))/(h*h)
deltax = dif1/dif2
xk1 = xk - deltax * d
return xk1
def dampednewton(f,x0):
k=0
xk = x0
while True:
k = k+1
print('#',k)
grad, hesse = diffMat(f,xk)
d = -np.asarray(hesse.I*grad).flatten()
if np.linalg.norm(grad)<0.00001:
break
print('grad:\n',np.round(grad,4),'\nhesse:\n',np.round(hesse,4))
print('d:',d/np.linalg.norm(d))
xk = newton1d(f,xk,d)
print('x[{}]:{}\n'.format(k,np.round(xk,4)))
return xk
if __name__ == "__main__":
f = lambda x: (x[0]-1)**4 + (x[1]-0)**2
x0 = np.array([0,1],dtype='float')
time0 = time.process_time()
minval = dampednewton(f,x0)
time1 = time.process_time()
print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
print('time: %fs'%(time1-time0))
运行结果:
# 1
grad:
[[-4.]
[ 2.]]
hesse:
[[12. 0.]
[ 0. 2.]]
d: [ 0.316228 -0.94868322]
x[2]:[0.3333 0. ]
# 2
grad:
[[-1.1852]
[ 0. ]]
hesse:
[[5.3333 0. ]
[0. 2. ]]
d: [ 1.00000000e+00 -1.33281943e-06]
x[3]:[0.5556 0. ]
# 3
grad:
[[-0.3512]
[ 0. ]]
hesse:
[[2.3704 0. ]
[0. 2. ]]
d: [ 1.00000e+00 -3.53622e-12]
x[4]:[0.7037 0. ]
# 4
grad:
[[-0.1041]
[ 0. ]]
hesse:
[[ 1.0535 -0. ]
[-0. 2. ]]
d: [1.00000000e+00 1.06224728e-13]
x[5]:[0.8025 0. ]
(略)
# 11
grad:
[[-0.]
[ 0.]]
hesse:
[[0.0036 0. ]
[0. 2. ]]
d: [ 1. -0.]
x[12]:[0.9884 0. ]
# 12
x: [0.9884 0. ] minval: 0.0
time: 0.000000s
\qquad
2 拟牛顿法
\qquad 牛顿法的优点是收敛很快,但是牛顿法的每次迭代过程中都需要计算二阶偏导数、求 Hesse \text{Hesse} Hesse 矩阵的逆矩阵,而目标函数的 Hesse \text{Hesse} Hesse 矩阵可能是非正定的。
\qquad
拟牛顿法
(Quasi-Newton Method)
\text{(Quasi-Newton\ Method)}
(Quasi-Newton Method)是为了克服牛顿法的缺点而提出了“拟牛顿条件”,其基本思想是用“不包含二阶导数的矩阵”来近似牛顿法中
Hesse
\text{Hesse}
Hesse 矩阵的逆矩阵。
\qquad
2.1 拟牛顿条件
\qquad 拟牛顿法是构造近似矩阵 H k H_k Hk 替代 “ Hesse \text{Hesse} Hesse 矩阵的逆矩阵”件,即: H k ≈ ∇ 2 f ( x ( k ) ) − 1 H_k\approx\nabla^2f(\boldsymbol x^{(k)})^{-1} Hk≈∇2f(x(k))−1。拟牛顿条件是构造 H k H_k Hk 替代 ∇ 2 f ( x ( k ) ) − 1 \nabla^2f(\boldsymbol x^{(k)})^{-1} ∇2f(x(k))−1 执行牛顿法迭代运算时所需要满足的条件。
\qquad 使用一维搜索时,牛顿法的迭代公式为:
x ( k + 1 ) = x ( k ) − λ k ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) \qquad\qquad\boldsymbol x^{(k+1)}=\boldsymbol x^{(k)}-\lambda_k\nabla^2f(\boldsymbol x^{(k)})^{-1}\nabla f(\boldsymbol x^{(k)}) x(k+1)=x(k)−λk∇2f(x(k))−1∇f(x(k))
\qquad 在第 k k k 次迭代后得到了点 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1),将目标函数在点 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1) 进行二阶泰勒级数展开:
f ( x ) ≈ f ( x ( k + 1 ) ) + ∇ f ( x ( k + 1 ) ) T ( x − x ( k + 1 ) ) + 1 2 ( x − x ( k + 1 ) ) T ∇ 2 f ( x ( k + 1 ) ) ( x − x ( k + 1 ) ) \qquad\qquad\textcolor{brown}{f(\boldsymbol x)\approx f(\boldsymbol x^{(k+1)})+\nabla f(\boldsymbol x^{(k+1)})^T(\boldsymbol x-\boldsymbol x^{(k+1)})+\dfrac{1}{2}(\boldsymbol x-\boldsymbol x^{(k+1)})^T\nabla^2f(\boldsymbol x^{(k+1)})(\boldsymbol x-\boldsymbol x^{(k+1)})} f(x)≈f(x(k+1))+∇f(x(k+1))T(x−x(k+1))+21(x−x(k+1))T∇2f(x(k+1))(x−x(k+1))
\qquad 对上式两端取梯度,就得到:
∇ f ( x ) ≈ ∇ f ( x ( k + 1 ) ) + ∇ 2 f ( x ( k + 1 ) ) ( x − x ( k + 1 ) ) \qquad\qquad\textcolor{royalblue}{\nabla f(\boldsymbol x)\approx\nabla f(\boldsymbol x^{(k+1)})+\nabla^2f(\boldsymbol x^{(k+1)})(\boldsymbol x-\boldsymbol x^{(k+1)})} ∇f(x)≈∇f(x(k+1))+∇2f(x(k+1))(x−x(k+1))
\qquad 将 x = x ( k ) \boldsymbol x = \boldsymbol x^{(k)} x=x(k) 带入上式:
∇ f ( x ( k ) ) ≈ ∇ f ( x ( k + 1 ) ) + ∇ 2 f ( x ( k + 1 ) ) ( x ( k ) − x ( k + 1 ) ) \qquad\qquad\textcolor{crimson}{\nabla f(\boldsymbol x^{(k)})}\approx\textcolor{royalblue}{\nabla f(\boldsymbol x^{(k+1)})}+\nabla^2f(\boldsymbol x^{(k+1)})(\textcolor{crimson}{\boldsymbol x^{(k)}}-\textcolor{royalblue}{\boldsymbol x^{(k+1)}}) ∇f(x(k))≈∇f(x(k+1))+∇2f(x(k+1))(x(k)−x(k+1))
\qquad
\qquad
在上式中,令
p
(
k
)
=
x
(
k
+
1
)
−
x
(
k
)
\textcolor{royalblue}{\boldsymbol p^{(k)}=\boldsymbol x^{(k+1)}-\boldsymbol x^{(k)}}
p(k)=x(k+1)−x(k),
q
(
k
)
=
∇
f
(
x
(
k
+
1
)
)
−
∇
f
(
x
(
k
)
)
\textcolor{crimson}{\boldsymbol q^{(k)}=\nabla f(\boldsymbol x^{(k+1)})-\nabla f(\boldsymbol x^{(k)})}
q(k)=∇f(x(k+1))−∇f(x(k)),那么:
q ( k ) ≈ ∇ 2 f ( x ( k + 1 ) ) p ( k ) \qquad\qquad\textcolor{crimson}{\boldsymbol q^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})\textcolor{royalblue}{\boldsymbol p^{(k)}} q(k)≈∇2f(x(k+1))p(k)
\qquad
\qquad
若矩阵
∇
2
f
(
x
(
k
+
1
)
)
\nabla^2f(\boldsymbol x^{(k+1)})
∇2f(x(k+1)) 可逆,则:
p
(
k
)
≈
∇
2
f
(
x
(
k
+
1
)
)
−
1
q
(
k
)
\textcolor{royalblue}{\boldsymbol p^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})^{-1}\textcolor{crimson}{\boldsymbol q^{(k)}}
p(k)≈∇2f(x(k+1))−1q(k)
\qquad 若记 H k + 1 = ∇ 2 f ( x ( k + 1 ) ) − 1 H_{k+1}=\nabla^2f(\boldsymbol x^{(k+1)})^{-1} Hk+1=∇2f(x(k+1))−1,那么
p ( k ) = H k + 1 q ( k ) \qquad\qquad\textcolor{royalblue}{\boldsymbol p^{(k)}}= H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}} p(k)=Hk+1q(k) (拟牛顿条件)
\qquad
拟牛顿法就是为了构造拟牛顿法中的矩阵
H
k
+
1
H_{k+1}
Hk+1 而提出的一类算法。
\qquad
2.2 秩1校正
\qquad 当 ∇ 2 f ( x ( k + 1 ) ) − 1 \nabla^2f(\boldsymbol x^{(k+1)})^{-1} ∇2f(x(k+1))−1 是 n n n 阶对称正定矩阵时,满足拟牛顿条件的近似矩阵 H k + 1 H_{k+1} Hk+1 也是 n n n 阶对称正定矩阵。构造这样的近似矩阵,可以通过不断修正 H k H_{k} Hk 来构造下一个 H k + 1 H_{k+1} Hk+1,通常令 H 1 = I H_{1}=\bold I H1=I,那么 H k + 1 H_{k+1} Hk+1 的修正过程为
H k + 1 = H k + Δ H k \qquad\qquad H_{k+1}=H_k+\textcolor{crimson}{\Delta H_k} Hk+1=Hk+ΔHk, 其中 Δ H k \textcolor{crimson}{\Delta H_k} ΔHk 为校正矩阵。
\qquad
\qquad
确定
Δ
H
k
\textcolor{crimson}{\Delta H_k}
ΔHk 的方法之一是,令
Δ
H
k
=
α
k
z
(
k
)
(
z
(
k
)
)
T
\textcolor{SeaGreen}{\Delta H_k= \alpha_k \boldsymbol z^{(k)} (\boldsymbol z^{(k)})^T}
ΔHk=αkz(k)(z(k))T,其中
α
k
\alpha_k
αk 是一个常数,
z
(
k
)
∈
R
n
\boldsymbol z^{(k)}\in R^n
z(k)∈Rn 是
n
n
n 维列向量。显然,矩阵
Δ
H
k
\textcolor{crimson}{\Delta H_k}
ΔHk 的秩为
1
1
1,且
z
(
k
)
\boldsymbol z^{(k)}
z(k) 应该满足拟牛顿条件
p
(
k
)
=
H
k
+
1
q
(
k
)
\textcolor{royalblue}{\boldsymbol p^{(k)}}=H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}}
p(k)=Hk+1q(k),那么
p ( k ) = H k + 1 q ( k ) = H k q ( k ) + Δ H k q ( k ) = H k q ( k ) + α k z ( k ) ( z ( k ) ) T q ( k ) \qquad\qquad \begin{aligned}\textcolor{royalblue}{\boldsymbol p^{(k)}}&=H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}}\\ &=H_k\boldsymbol q^{(k)}+\Delta H_k\textcolor{crimson}{\boldsymbol q^{(k)}}\\ &=H_k\boldsymbol q^{(k)}+\alpha_k \boldsymbol z^{(k)} \textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}\end{aligned} p(k)=Hk+1q(k)=Hkq(k)+ΔHkq(k)=Hkq(k)+αkz(k)(z(k))Tq(k)
\qquad 由于 ( z ( k ) ) T q ( k ) \textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}} (z(k))Tq(k) 是两个 n n n 维列向量的内积,其值为常数,可得到: z ( k ) = p ( k ) − H k q ( k ) α k ( z ( k ) ) T q ( k ) \boldsymbol z^{(k)} =\dfrac{\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}}{\alpha_k \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}} z(k)=αk(z(k))Tq(k)p(k)−Hkq(k)
\qquad 两边都左乘 ( q ( k ) ) T (\boldsymbol q^{(k)})^T (q(k))T,可得到:
( q ( k ) ) T z ( k ) = ( z ( k ) ) T q ( k ) = ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) α k ( z ( k ) ) T q ( k ) \qquad\qquad (\boldsymbol q^{(k)})^T\boldsymbol z^{(k)}=\textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}} =\dfrac{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}{\alpha_k \textcolor{SeaGreen}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}} (q(k))Tz(k)=(z(k))Tq(k)=αk(z(k))Tq(k)(q(k))T(p(k)−Hkq(k))
⟹ ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) = α k ( ( z ( k ) ) T q ( k ) ) 2 \qquad\qquad \Longrightarrow\quad\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}=\alpha_k (\textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}})^2 ⟹(q(k))T(p(k)−Hkq(k))=αk((z(k))Tq(k))2
x T y = y T x , ∀ x , y ∈ R n ⟹ ( z ( k ) ) T q ( k ) = ( q ( k ) ) T z ( k ) \boldsymbol x^T\boldsymbol y=\boldsymbol y^T\boldsymbol x,\ \forall\boldsymbol x,\boldsymbol y\in R^n\quad\Longrightarrow\quad(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}=(\boldsymbol q^{(k)})^T\boldsymbol z^{(k)} xTy=yTx, ∀x,y∈Rn⟹(z(k))Tq(k)=(q(k))Tz(k)
\qquad 可得到:
Δ H k = α k z ( k ) ( z ( k ) ) T = α k p ( k ) − H k q ( k ) α k ( z ( k ) ) T q ( k ) ( p ( k ) − H k q ( k ) α k ( z ( k ) ) T q ( k ) ) T , ( z ( k ) ) T q ( k ) 为常量 = α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T α k ( ( z ( k ) ) T q ( k ) ) 2 = α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) \qquad\qquad \begin{aligned}\textcolor{DeepPink}{\Delta H_k}&=\alpha_k \boldsymbol z^{(k)} (\boldsymbol z^{(k)})^T\\ &=\alpha_k\dfrac{\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}}{\alpha_k \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}}\left(\dfrac{\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}}{\alpha_k \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}}\right)^T,\qquad\textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}为常量\\ &=\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\alpha_k\left( \textcolor{crimson}{(\boldsymbol z^{(k)})^T\boldsymbol q^{(k)}}\right)^2}\\ &=\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}}\end{aligned} ΔHk=αkz(k)(z(k))T=αkαk(z(k))Tq(k)p(k)−Hkq(k)(αk(z(k))Tq(k)p(k)−Hkq(k))T,(z(k))Tq(k)为常量=αkαk((z(k))Tq(k))2(p(k)−Hkq(k))(p(k)−Hkq(k))T=αk(q(k))T(p(k)−Hkq(k))(p(k)−Hkq(k))(p(k)−Hkq(k))T
\qquad
\qquad
因此,
H
k
+
1
H_{k+1}
Hk+1 的修正过程称为秩1校正公式,也就是:
H k + 1 = H k + Δ H k = H k + α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) \qquad\qquad H_{k+1}=H_k+\textcolor{DeepPink}{\Delta H_k}=H_k+\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}} Hk+1=Hk+ΔHk=Hk+αk(q(k))T(p(k)−Hkq(k))(p(k)−Hkq(k))(p(k)−Hkq(k))T
\qquad
\qquad
基于秩1校正公式的拟牛顿法计算步骤为:
( 1 ) \qquad(1) (1) 搜索方向为 d ( k ) = − H k ∇ f ( x ( k ) ) , H 1 = I \boldsymbol d^{(k)}=-H_k\nabla f(\boldsymbol x^{(k)}),\quad H_1=\bold I d(k)=−Hk∇f(x(k)),H1=I
( 2 ) \qquad(2) (2) 沿 d ( k ) \boldsymbol d^{(k)} d(k) 进行一维搜索求出 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1)
( 3 ) \qquad(3) (3) 求出 p ( k ) = x ( k + 1 ) − x ( k ) \boldsymbol p^{(k)}=\boldsymbol x^{(k+1)}-\boldsymbol x^{(k)} p(k)=x(k+1)−x(k) 以及 q ( k ) = ∇ f ( x ( k + 1 ) ) − ∇ f ( x ( k ) ) \boldsymbol q^{(k)}=\nabla f(\boldsymbol x^{(k+1)})-\nabla f(\boldsymbol x^{(k)}) q(k)=∇f(x(k+1))−∇f(x(k)),计算近似矩阵
H k + 1 = H k + α k ( p ( k ) − H k q ( k ) ) ( p ( k ) − H k q ( k ) ) T ( q ( k ) ) T ( p ( k ) − H k q ( k ) ) \qquad\qquad H_{k+1}=H_k+\alpha_k\dfrac{\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)\left(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)}\right)^T}{\textcolor{blue}{(\boldsymbol q^{(k)})^T(\boldsymbol p^{(k)}-H_k\boldsymbol q^{(k)})}} Hk+1=Hk+αk(q(k))T(p(k)−Hkq(k))(p(k)−Hkq(k))(p(k)−Hkq(k))T
\qquad\quad
重新回到第
(
1
)
(1)
(1) 步开始下一轮的计算,直到
∥
∇
f
(
x
(
k
)
)
∥
<
ε
\Vert \nabla f(\boldsymbol x^{(k)})\Vert<\varepsilon
∥∇f(x(k))∥<ε。
\qquad
∙
\bullet
∙ 实现代码
import numpy as np
import matplotlib.pyplot as plt
import time
def diff1(f,x,h=0.001):
dx = np.array([h,0])
dy = np.array([0,h])
gx = (f(x+dx)-f(x-dx))/(2*h)
gy = (f(x+dy)-f(x-dy))/(2*h)
return np.array([gx,gy])
def newton1d(f,xk,d,h=0.001):
dif1 = (f(xk+h*d) - f(xk-h*d))/(2*h)
dif2 = (f(xk+h*d) + f(xk-h*d) - 2*f(xk))/(h*h)
deltax = dif1/dif2
xk1 = xk - deltax * d
return xk1
def newton(f,x0):
k=1
xk = x0
Hk = np.eye(x0.shape[0])
while True:
gk = diff1(f,xk)
dk = -np.dot(Hk,gk)
xk1 = newton1d(f,xk,dk)
gk1 = diff1(f,xk1)
if np.linalg.norm(gk)<0.0001:
break
pk = xk1 - xk
qk = gk1 - gk
t1 = (pk-Hk.dot(qk)).reshape(x0.shape[0],-1)
deltHk = t1.dot(t1.T)/qk.dot(pk-Hk.dot(qk))
Hk = Hk + deltHk
xk = xk1
print('#{} min:{}'.format(k,np.round(xk,4)))
k = k + 1
return xk
if __name__ == "__main__":
f = lambda x: (x[0]-1)**4 + (x[1]-0)**2
x0 = np.array([0,1],dtype='float')
time0 = time.process_time()
minval = newton(f,x0)
time1 = time.process_time()
print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
print('time: %fs'%(time1-time0))
运行结果:
#1 min:[0.4 0.8]
#2 min:[ 0.4084 -0.0043]
#3 min:[6.056e-01 1.000e-04]
#4 min:[ 0.7371 -0. ]
#5 min:[0.8247 0. ]
#6 min:[ 0.8831 -0. ]
#7 min:[0.9221 0. ]
#8 min:[ 0.9481 -0. ]
#9 min:[0.9654 0. ]
#10 min:[ 0.9769 -0. ]
x: [ 0.9769 -0. ] minval: 0.0
time: 0.000000s
\quad
2.3 DFP算法(变尺度法)
\qquad 变尺度法,也就是 DFP \text{DFP} DFP法,其校正矩阵为:
Δ H k = p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − H k q ( k ) ( q ( k ) ) T H k ( q ( k ) ) T H k q ( k ) \qquad\qquad\Delta H_k=\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{H_k\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^TH_k}{(\boldsymbol q^{(k)})^TH_k\boldsymbol q^{(k)}} ΔHk=(p(k))Tq(k)p(k)(p(k))T−(q(k))THkq(k)Hkq(k)(q(k))THk
\qquad 近似矩阵 H k + 1 H_{k+1} Hk+1 的修正过程为:
H k + 1 = H k + Δ H k = H k + p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − H k q ( k ) ( q ( k ) ) T H k ( q ( k ) ) T H k q ( k ) \qquad\qquad H_{k+1}=H_k+\textcolor{DeepPink}{\Delta H_k}=H_k+\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{H_k\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^TH_k}{(\boldsymbol q^{(k)})^TH_k\boldsymbol q^{(k)}} Hk+1=Hk+ΔHk=Hk+(p(k))Tq(k)p(k)(p(k))T−(q(k))THkq(k)Hkq(k)(q(k))THk
DFP \qquad\text{DFP} DFP法具有二次终止性,对于正定二次函数的目标函数,经过有限次搜索可以达到极小点。
\qquad
DFP
\qquad\text{DFP}
DFP法的计算步骤为:
( 1 ) \qquad(1) (1) 搜索方向为 d ( k ) = − H k ∇ f ( x ( k ) ) , H 1 = I \boldsymbol d^{(k)}=-H_k\nabla f(\boldsymbol x^{(k)}),\quad H_1=\bold I d(k)=−Hk∇f(x(k)),H1=I
( 2 ) \qquad(2) (2) 沿 d ( k ) \boldsymbol d^{(k)} d(k) 进行一维搜索求出 x ( k + 1 ) \boldsymbol x^{(k+1)} x(k+1)
( 3 ) \qquad(3) (3) 求出 p ( k ) = x ( k + 1 ) − x ( k ) \boldsymbol p^{(k)}=\boldsymbol x^{(k+1)}-\boldsymbol x^{(k)} p(k)=x(k+1)−x(k) 以及 q ( k ) = ∇ f ( x ( k + 1 ) ) − ∇ f ( x ( k ) ) \boldsymbol q^{(k)}=\nabla f(\boldsymbol x^{(k+1)})-\nabla f(\boldsymbol x^{(k)}) q(k)=∇f(x(k+1))−∇f(x(k)),计算近似矩阵
H k + 1 = H k + p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − H k q ( k ) ( q ( k ) ) T H k ( q ( k ) ) T H k q ( k ) \qquad\qquad H_{k+1}=H_k+\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{H_k\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^TH_k}{(\boldsymbol q^{(k)})^TH_k\boldsymbol q^{(k)}} Hk+1=Hk+(p(k))Tq(k)p(k)(p(k))T−(q(k))THkq(k)Hkq(k)(q(k))THk
\qquad\qquad
重新回到第
(
1
)
(1)
(1) 步开始下一轮的计算,直到
∥
∇
f
(
x
(
k
)
)
∥
<
ε
\Vert \nabla f(\boldsymbol x^{(k)})\Vert<\varepsilon
∥∇f(x(k))∥<ε。
\qquad
∙
\bullet
∙ 实现代码
import numpy as np
import matplotlib.pyplot as plt
import time
def diff1(f,x,h=0.001):
dx = np.array([h,0])
dy = np.array([0,h])
gx = (f(x+dx)-f(x-dx))/(2*h)
gy = (f(x+dy)-f(x-dy))/(2*h)
return np.array([gx,gy])
def newton1d(f,xk,d,h=0.001):
dif1 = (f(xk+h*d) - f(xk-h*d))/(2*h)
dif2 = (f(xk+h*d) + f(xk-h*d) - 2*f(xk))/(h*h)
deltax = dif1/dif2
xk1 = xk - deltax * d
return xk1
def newton(f,x0):
k=1
xk = x0
Hk = np.eye(x0.shape[0])
while True:
gk = diff1(f,xk)
dk = -np.dot(Hk,gk)
xk1 = newton1d(f,xk,dk)
gk1 = diff1(f,xk1)
if np.linalg.norm(gk)<0.0001:
break
pk = xk1 - xk
qk = gk1 - gk
pkm = (xk1 - xk).reshape(x0.shape[0],-1)
qkm = (gk1 - gk).reshape(x0.shape[0],-1)
deltHk = pkm.dot(pkm.T)/pk.dot(qk) - Hk.dot(qkm.dot(qkm.T)).dot(Hk)/qk.dot(Hk.dot(qk))
Hk = Hk + deltHk
xk = xk1
print('#{} min:{}'.format(k,np.round(xk,4)))
k = k + 1
return xk
if __name__ == "__main__":
f = lambda x: (x[0]-1)**4 + (x[1]-0)**2
# f = lambda x: 2*(x[0]-0)**2 + (x[1]-0)**2 - 4*x[0] + 2
x0 = np.array([0,1],dtype='float')
time0 = time.process_time()
minval = newton(f,x0)
time1 = time.process_time()
print('x:',np.round(minval,4),'minval:',np.round(f(minval),4))
print('time: %fs'%(time1-time0))
运行结果:
#1 min:[0.4 0.8]
#2 min:[ 0.4064 -0.0033]
#3 min:[0.6043 0. ]
#4 min:[ 0.7362 -0. ]
#5 min:[0.8241 0. ]
#6 min:[ 0.8828 -0. ]
#7 min:[0.9218 0. ]
#8 min:[ 0.9479 -0. ]
#9 min:[0.9653 0. ]
#10 min:[ 0.9768 -0. ]
x: [ 0.9768 -0. ] minval: 0.0
time: 0.000000s
\qquad
2.4 BFGS公式
\qquad
在讨论拟牛顿条件时,首先构造出
q
(
k
)
≈
∇
2
f
(
x
(
k
+
1
)
)
p
(
k
)
\textcolor{crimson}{\boldsymbol q^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})\textcolor{royalblue}{\boldsymbol p^{(k)}}
q(k)≈∇2f(x(k+1))p(k) 的关系,然后记
H
k
+
1
=
∇
2
f
(
x
(
k
+
1
)
)
−
1
H_{k+1}=\nabla^2f(\boldsymbol x^{(k+1)})^{-1}
Hk+1=∇2f(x(k+1))−1,得到了
p
(
k
)
=
H
k
+
1
q
(
k
)
\textcolor{royalblue}{\boldsymbol p^{(k)}}= H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}}
p(k)=Hk+1q(k) 的拟牛顿条件,前文中的秩
1
1
1校正和
DFP
\text{DFP}
DFP公式都是基于
p
(
k
)
=
H
k
+
1
q
(
k
)
\textcolor{royalblue}{\boldsymbol p^{(k)}}= H_{k+1}\textcolor{crimson}{\boldsymbol q^{(k)}}
p(k)=Hk+1q(k) 的拟牛顿条件。
\qquad
\qquad
而
BFGS
\text{BFGS}
BFGS公式直接基于
q
(
k
)
≈
∇
2
f
(
x
(
k
+
1
)
)
p
(
k
)
\textcolor{crimson}{\boldsymbol q^{(k)}}\approx\nabla^2f(\boldsymbol x^{(k+1)})\textcolor{royalblue}{\boldsymbol p^{(k)}}
q(k)≈∇2f(x(k+1))p(k) 的关系,用不含二阶导数的矩阵
B
k
+
1
B_{k+1}
Bk+1 近似
∇
2
f
(
x
(
k
+
1
)
)
\nabla^2f(\boldsymbol x^{(k+1)})
∇2f(x(k+1)),从而有
q
(
k
)
=
B
k
+
1
p
(
k
)
\textcolor{crimson}{\boldsymbol q^{(k)}}=B_{k+1}\textcolor{royalblue}{\boldsymbol p^{(k)}}
q(k)=Bk+1p(k),关于
B
k
B_{k}
Bk 的修正公式为:
B k + 1 = B k + q ( k ) ( q ( k ) ) T ( q ( k ) ) T p ( k ) − B k p ( k ) ( p ( k ) ) T B k ( p ( k ) ) T B k p ( k ) \qquad\qquad B_{k+1}=B_k+\dfrac{\boldsymbol q^{(k)}(\boldsymbol q^{(k)})^T}{(\boldsymbol q^{(k)})^T\boldsymbol p^{(k)}}-\dfrac{B_k\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^TB_k}{(\boldsymbol p^{(k)})^TB_k\boldsymbol p^{(k)}} Bk+1=Bk+(q(k))Tp(k)q(k)(q(k))T−(p(k))TBkp(k)Bkp(k)(p(k))TBk
\qquad
上式即为关于矩阵
B
\text{B}
B 的
BFGS
\text{BFGS}
BFGS 修正公式。
\qquad
由于
q
(
k
)
=
B
k
+
1
p
(
k
)
\textcolor{crimson}{\boldsymbol q^{(k)}}=B_{k+1}\textcolor{royalblue}{\boldsymbol p^{(k)}}
q(k)=Bk+1p(k),因此
p
(
k
)
=
B
k
+
1
−
1
q
(
k
)
\textcolor{royalblue}{\boldsymbol p^{(k)}}= B_{k+1}^{-1}\textcolor{crimson}{\boldsymbol q^{(k)}}
p(k)=Bk+1−1q(k),也就相当于令
H
k
+
1
=
B
k
+
1
−
1
H_{k+1}=B_{k+1}^{-1}
Hk+1=Bk+1−1 时的拟牛顿法。
\qquad
利用
Sherman-Morrison
\text{Sherman-Morrison}
Sherman-Morrison公式:
( M + u v T ) − 1 = M − 1 − M − 1 u v T M − 1 1 + v T M − 1 u \qquad\qquad(\boldsymbol{M}+\boldsymbol{u}\boldsymbol{v}^T)^{-1}=\boldsymbol{M}^{-1}-\dfrac{\boldsymbol{M}^{-1} \boldsymbol{u}\boldsymbol{v}^T \boldsymbol{M}^{-1}}{1+\boldsymbol{v}^T \boldsymbol{M}^{-1}\boldsymbol{u}} (M+uvT)−1=M−1−1+vTM−1uM−1uvTM−1
\qquad 可以求出 B k + 1 − 1 B_{k+1}^{-1} Bk+1−1,从而得到关于 H \boldsymbol{H} H 的 BFGS \text{BFGS} BFGS公式:
H k + 1 BFGS = H k + ( 1 + ( q ( k ) ) T H k q ( k ) ( p ( k ) ) T q ( k ) ) p ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) − p ( k ) ( q ( k ) ) T H k + H k q ( k ) ( p ( k ) ) T ( p ( k ) ) T q ( k ) \qquad\qquad H_{k+1}^{\text{BFGS}}=H_k+\left(1+\dfrac{(\boldsymbol q^{(k)})^TH_k \boldsymbol q^{(k)} }{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}} \right)\dfrac{\boldsymbol p^{(k)}(\boldsymbol p^{(k)})^T}{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}}-\dfrac{\boldsymbol p^{(k)}(\boldsymbol q^{(k)})^TH_k + H_k\boldsymbol q^{(k)}(\boldsymbol p^{(k)})^T }{(\boldsymbol p^{(k)})^T\boldsymbol q^{(k)}} Hk+1BFGS=Hk+(1+(p(k))Tq(k)(q(k))THkq(k))(p(k))Tq(k)p(k)(p(k))T−(p(k))Tq(k)p(k)(q(k))THk+Hkq(k)(p(k))T
\qquad
DFP
\qquad\text{DFP}
DFP公式和
BFGS
\text{BFGS}
BFGS公式都是由
p
(
k
)
\boldsymbol p^{(k)}
p(k) 和
H
k
q
(
k
)
H_k\boldsymbol q^{(k)}
Hkq(k) 构成的对称秩
2
2
2校正,因此两个公式的加权组合具有相同的形式,所有这类修正公式的集合可以表示为:
H k + 1 ϕ = ( 1 − ϕ ) H k + 1 DFP + ϕ H k + 1 BFGS \qquad\qquad H_{k+1}^{\phi}=(1-\phi)H_{k+1}^{\text{DFP}}+\phi H_{k+1}^{\text{BFGS}} Hk+1ϕ=(1−ϕ)Hk+1DFP+ϕHk+1BFGS
\qquad 这类修正公式的全体,称为 Broyden \text{Broyden} Broyden族。当 ϕ = 0 \phi=0 ϕ=0 时为 DFP \text{DFP} DFP公式,当 ϕ = 1 \phi=1 ϕ=1 时为 BFGS \text{BFGS} BFGS公式。