1.5 INFINITESIMAL,  FINITE,  AND  INFINITE  NUMBERS

Letus summarize our intuitive description of the hyperreal numbers from Section 1.4. The real line is a subset of the hyperreal line; that is ,  each real number belongs to the set of hyperrealnumbers. Surrounding each real number r,we introduce a collection of hyperreal numbers infinitely close to r.The hyperreal numbers infinitely close to zero are calledinfinitesimals. The reciprocals of nonzero infinitesimals areinfinite hyperreal numbers. The collection of all hyperreal numberssatisfies the same algebraic laws as the real numbers. In thissection we describe the hyperreal numbers more precisely and developa facility for computation with them.

 Thisentire calculus course is developed from three basic principlesrelating the real and hyperrdal numbers: the Extension Principle, theTransfer Principle, and the Standard PartPrinciple. The first two principles are presented in this section,and the third principle is in the next section.

Webegin with the Extension Principle, which gives us new numbers calledhyperreal numbers and extends all real functions to these numbers.The Extension Principle will deal with hyperrealfunctions as well as real functions.Our discussion of real functions in Section 1.2 can readily becarried over to hyperreal functions. Recall that for each realnumber  α,a real function f ofone variable either associates another real number b = f(α)or is undefined. Now, for each hyperreal number H,a hyperrealfunction Fof onevariable either associates another hyperreal number K= F (H) oris undefined. For each pair of hyperreal numbers  H andJ,a hyperreal function Gof twovariables either associates another hyperreal number K= G (H, J)or is undefined. Hyperreal functions of three ormore variables are defined in a similar way.

I.  THE  EXTENSION  PRINCIPLE    

(a)    The real numbers form a subset of thehyperreal numbers, and the order relation   x< y forthe real numbers is a subset of the order relation for the hyperrealnumbers.

(b)   There is a hyperreal number that is greaterthan zero but less than every positive real number.

(c)   For every real function f of one or morevariables we are given a corre- sponding hyperreal function f* of thesame number of variables. f*is called the natural extension of f .

Part(a) of the Extension Principle says that the real line is a part ofthe hyperreal line. To explain part (b) of the Extension Principle,we give a careful definition of aninfinitesimal.

DEFINITION

               Ahyperreal number b is said to be:

               positiveinfinitesimal  if  bis positive but less than every positive real number. negativeinfinitesimal  if  bis negative but greater than every negative real number.

Infinitesimalif  b is either positiveinfinitesimal, negative infinitesimal. or zero.

Withthis definition, part (b) of the Extension Principle says that thereis at least one positive infinitesimal. We shall see later that thereare infinitely many positive infinitesimals. A positive infinitesimalis a hyperreal number but cannot be a real number, so part (b)ensures that there are hyperreal numbers that are not real numbers.

Part(c) of the Extension Principle allows us to apply real functions tohyperreal numbers. Since the addition function + is a real functionof two variables, its natural extension +* isa hyperreal function of two variables. If xand yare hyperreal numbers, the sum of xand yis the number x+* yformed by using the natural extension of +.Similarly, the product of xand yis the number x* yformed by using the natural extension of theproduct function. To make thingseasier to read, we shall drop the asterisks and write simply x+ y andxyfor the sum and product of two hyperreal numbersx andy.Using the natural extensions of the sum andproduct functions, we will be able to develop algebra for hyperrealnumbers. Part (c) of the Extension Principle also allows us to workwith expressions such as cos (x)or sin (x+ cos (y)),whichinvolve one or more real functions. We call such expressions realexpressions. These expressions can beused even when xand yare hyperreal numbers instead of real numbers.For example, when xand yare hyperreal, sin (x+cos (y))willmean sin* (x+ cos* (y)),wheresin* and cos* are the natural extensions of sin and cos. Theasterisks are dropped as before.

Wenow state the Transfer Principle, which allows us to carry outcompu-tations with the hyperreal numbers in the same way as we do forreal numbers. Intuitively, the Transfer Principle says that thenatural extension of  each real function has the same propertiesas the original function.

ll. TRANSFER  PRINCIPLE

Everyreal statement that holds for one or more particular real functionsholds for the hyperreal natural extensions of these functions.

Hereare seven examples that illustrate what we mean by a real statement.In general, by a real statement we mean a combination of equations orinequalities about teal expressions, and statements specifyingwhether a real expression is defined or undefined. A real statementwill involve real functions.

⑴ Closurelaw for addition : for any xand y,the sum x+ y isdefined.

⑵  Commutativelaw for addition : x+ y =y + x.

⑶  Arule for order: If 0 < x< y,then 0 < 1/y <1/x.

⑷  Divisionby zero is never allowed: x/0is undefined.

⑸  Analgebraic identity: x-y2= x2-2xy+y2

⑹  Atrigonometric identitysin2+cos2x=1.

⑺  Arule for logarithms: If x> 0 and y> 0, then log10(xy)=log10 x+                      log10 y.

Eachexample has two variables, xand y,and holds true whenever x andy arereal numbers. The Transfer Principle tells us that each example also holds whenever xand yare hyperreal numbers. For instance, by Example(4), x/0is undefined, even for hyperreal x.By Example (6), sin2 x+cos2x=1,even lon hyperreal x.

Noticethat the first five examples involve only the sum, difference,product, and quotient functions. However, the last two examples arereal statements involving the transcendental functions sin, cos, andlog10 .The Transfer Principle extends all the familiarrules of trigonometry, exponents, and logarithms to the hyperrealnumbers.

Incalculus wefrequently make a computationinvolving one or moreunknown real numbers. The TransferPrinciple allows usto compute inexactly the same way with hyperreal numbers. It “transfers” factsabout the real numbers to facts about the hyperreal numbers. Inparticular, the Transfer Principle implies that a real function andits natural extension always give the same value when applied to areal number. This is why we are usually able to drop the asteriskswhen computing with hyperreal numbers.

A real statement is often used to define a new real function from oldreal runctions. By the Transfer Principle, whenever a real statementdefines a real function, the same real statement also defines thehyperreal natural extension function. Here are three more examples.

Thesquare root function is defined by the real statement y=xif, and only if, y2= x andy0.

Theabsolute value function is defined by the real statement y=x if, and onlyif,  y=x2.

Thecommon logarithm function is defined by the real statement y = log10x if, and onlyif, 10y=x.

Ineach case, the hyperreal natural extension is the function defined bythe given real statement when xand yvary over the hyperreal numbers. Forexample, the hyperreal natural extension of the square root function,*, is defined by Example ⑻ when xand yare hyperreal.

Animportant use of the Transfer Principle is to carry out computationswith infinitesimals. For example, acomputation with infinitesimals was used in the slope calculation inSection 1.4. The Extension Principle tells us that there is at leastone positive infinitesimal hyperreal number, say ε.  Starting from ε,we can use the Transfer Principle to constructinfinitely many other positive infinitesimals.For example, ε2 isa positive infinitesimal that is smaller than ε,0 < ε2<ε. (Thisfollows from the Transfer Principle because 0 < x2<x forall real xbetween 0 and 1.) Here are several positiveinfinitesimals, listde in increasing order:

                          ε3,ε2ε/100,ε,75ε,ε + ε.

Wecan also construct negative infinitesimals, such as -εand -ε2, and otherhyper-real numbers such as 1+ε,10-ε2,and 1/ε.

Weshall now give a list of rules for deciding whether a given hyperrealnumber is infinitesimal, finite, or infinite. All these rules followfrom the Transfer Principle alone. First, look at Figure 1.5.1,illustrating the hyperreal line. 

 

DEFINITION

Ahyperrdal number b is said to be:

Finiteif b is between two real number.

positiveinfinite if b is greater thanevery real number.

negativeinfinite if b is less thanevery real number.

Noticethat each infinitesimal number is finite. Beforegoing through the whole list of rules, let us take a close look attwo lf them.

If ε isinfinitesimal and a is finite, then the product a ∙εis infinitesimal.For example, 12ε, -6ε,1000ε,(5-ε)εare infinitesimal. This can be seen intuitivelyfrom Figure 1.5.2; an infinitely thinrectangle of length a has infinitesimal area.

Ifε ispositive infinitesimal, then 1/εis positive infinite. Fromexperience we know that reciprocals of small numbers are large, so weintuitively expect 1/ε to be positive infinite. We can use the TransferPrinciple to prove 1/εis positive infinite. Let rbe any positive real number. Sinceε ispositive infinitesimal, 0 < ε< 1/r.Applying the Transfer Principle, 1/ε> r>0. Therefore, 1/εis positive infinite.

RULESFOR INFINITESIMAL, FINITE, AND INFINITE  NUMBERS     Assume that   ε,δ  areinfinitesimals; b, c are hyperreal numbers that are finite but notinfinitesimal; and H, K are infinite hyperreal nubers.

(i)Realnumbers:

        Theonly infinitesimal real number is 0.

Everyreal number is finite.

(ii)Negatives:

                -εis infinitesimal.

bis finite but not infinitesimal.

His infinite

(iii)Reciprocals:

If ε0, 1/εis infinite.

1/bis finite but not infinitesimal.

1/His infinitesimal.

(iv)Sums:

ε+ δis infinitesimal.

b+ε is finite but notinfinitesimal.

b+ c is finite (possiblyinfinitesimal).

H+ ε and H + b are infinite

(v)Products:

δ·ε andb ·ε areinfinitesimal.

b·c isfinite but not infinitesimal.

H·b and H·K are infinite

(vi)Quotients:

ε/b,ε/H, and b/Hare infinitesimal.

b/cis finite but not infinitesimal.

b/ε,H/ε, and H/b are infinite,provided that ε0.

(vii)Roots:

If ε,>0, is infinitesimal.

If b > 0, nbis finite but not infinitesimal.

IfH >0, nHis infinite

Noticethat we have given no rule for the following combinations:

                 ε/δ, thequotient of two infinitesimals.

  H/K,the quotient of two infinite numbers.

                 Hε,the product of an infinite number and aninfinitesimal.

                 H+ K, the sum of two infinite numbers.

Eachof these canbe eitherinfinitesimal, finitebut notinfinitesimal, orinfinite, depending on what ε,δ,, H,and Kare. For this reason, they are calledindeterminate forms.

Hereare three very different quotients of infinitesimals.

                  ε2εis infinitesimal(equal to ε ).

                  εε is finite but not infinitesimal(equal to 1).

                 εε2 is infinite equalto1ε  .

Table1.5.1 on the following page shows thethree possibilities for each indeterminate form. Here are someexamples which show how to use our rules.

EXAMPLE1    Considerb-3ε/c+2δ. ε isinfinitesimal, so- is infinitesimal, and                                      b-is finite but not infinitesimal.Similarly, c+2δ  isfinite but not infinitesimal.      Therefore the quotient

b-3εc+2δ

Isfinite but not infinitesimal.

Thenext three examples are quotients of infinitesimals.

 

EXAMPLE  The quotient

5ε4-8ε3+ε23ε

isinfinitesimal, provided  ε0.

Thegiven number is equal to

⑴                   
53ε3-83ε2+13ε.

We see  in turn that ε,  ε2,ε3,  13ε,- 83ε2,53ε3 are infinitesimal; hence the sum⑴ isinfinitesimal.

EXAMPLE 3   If ε 0, the quotient

3ε3+ε2-6ε2ε2+ε

Is finite but not infinitesimal.

Cancellingan ε  fromnumerator and denominator, we get


3ε2+ε-62ε+1

Since3ε2   is infinitesimal while -6is finite but not infinitesimal, the numerator

3ε2+ε-6

Is finite but not infinitesimal. Similarly, the denominator 2ε+1,and hence the quotient ⑵  is finite but not infinitesimal.

EXAMPLE 4  If ε0  , the quotient

ε4-ε3+2ε25ε4+ε3

isinfinite.

We first note that the denominator  5ε4+ε3is not zero because it can be written as aproduct  of  nonzero factors,

5ε4+ε3=ε·ε·ε·(5ε+1).

When we cancel ε2  fromthe numerator and denominator we get

ε2-ε+25ε2+ε

Wesee in turn that:

ε2-ε+2 is finite but not infinitesimal,

5ε2+ε is infinitesimal,

ε2-ε+25ε2+ε is infinite.

EXAMPLE 5    2H2+HH2-H+2 is finite but not infinitesimal.

Inthis example the trick is to multiply both numerator and denominatorby  1/ H2.We get

2+1/H1-1/H+2/H2

Now 1/H  and 1/H2  areinfinitesimal. Therefore both the numerator and denominator arefinite but not infinitesimal, and so is the quotient.

In the next theorem we list facts about the ordering of the hyperreals.

 

THEOREM 1

(i)Everyhyperreal number which is between two infinitesimals isinfinitesi-mal.

(ii)Everyhyperreal number which is between two finite hyperreal numbers isfinite.

(iii)Everyhyperreal number which is greater than some positive infinite numberis positive infinite.

(iv)Everyhyperreal number which is less than some negative infinite number isnegative infinite .

Allthe proofs are easy. We prove(iii), which is especially useful. Assume H ispositive infinite and H < K.Then for any real number  r , r <H < K. Therefore, r< K and Kis positive  infinite.

 

EXAMPLE 6   If Hand are positive infinite hyperrealnumbers, then H + K ispositive infinite. This is true because H+ K is greater than H.

Ourlast example concerns square roots.

 

管理后台HTML页面是Web开发中一种常见的实践,主要用于构建企业或组织内部的管理界面,具备数据监控、用户管理、内容编辑等功能。本文将探讨一套美观易用的二级菜单目录设计,帮助开发者创建高效且直观的后台管理系统。 HTML5:作为超文本标记语言的最新版本,HTML5增强了网页的互动性和可访问性,提供了更多语义元素,如<header>、<nav>、<section>、<article>等,有助于清晰地定义网页结构。在管理后台中,HTML5可用于构建页面布局,划分功能区域,并集成多媒体内容,如图像、音频和视频。 界面设计:良好的管理后台界面应具备清晰的导航、一致的布局和易于理解的图标。二级菜单目录设计能够有效组织信息,主菜单涵盖大类功能,次级菜单则提供更具体的操作选项,通过展开和折叠实现层次感,降低用户认知负担。 CSS:CSS是用于控制网页外观和布局的语言,可对HTML元素进行样式设置,包括颜色、字体、布局等。在管理后台中,CSS能够实现响应式设计,使页面在不同设备上具有良好的显示效果。借助CSS预处理器(如Sass或Less),可以编写更高效、模块化的样式代码,便于维护。 文件结构: guanli.html:可能是管理页面的主入口,包含后台的主要功能和布局。 xitong.html:可能是系统设置或配置页面,用于管理员调整系统参数。 denglu.html:登录页面,通常包含用户名和密码输入框、登录按钮,以及注册或忘记密码的链接。 image文件夹:存放页面使用的图片资源,如图标、背景图等。 css文件夹:包含后台系统的样式文件,如全局样式表style.css或按模块划分的样式文件。 响应式设计:在移动设备普及的背景下,管理后台需要支持多种屏幕尺寸。通过媒体查询(Media Queries)和流式布局(Fluid Grids),可以确保后台在桌面、平板和手机上都能良好展示。
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环和电流环两个闭环,系统能够对电机的转速和电流进行精准控制,从而提升动态响应能力和稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性和效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路和脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)和电流调节器(ACR),分别对转速和电流进行调控。检测电路用于采集实际转速和电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性和性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路和脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路和稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性和有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路和控制器设计等多个环节,通过仿
电池管理系统(Battery Management System,简称BMS)是电动汽车及储能系统的关键部件,主要负责监控、保护、控制和优化电池组性能。本文重点探讨基于Simulink构建的BMS模型。Simulink是Matlab环境下一款强大的数学建模工具,广泛应用于工程仿真与控制设计,其可视化平台让复杂系统如电池BMS的设计和测试更加直观。 电池均衡是BMS的核心功能之一,旨在确保电池组中各单体电池电压和容量一致,避免因个别电池过充或过放影响系统性能。在Simulink模型中,电池均衡可通过电流注入或能量转移实现,涉及电流控制电路和算法的建模,例如电阻分压、电感平衡或开关电容等方法。 SOC计算(State of Charge,即电池荷电状态)也是BMS的重要功能,它是评估电池剩余能量的关键指标。在BMS模型中,SOC估算通常基于电池的电压、电流、温度数据以及特定电池模型,如阶跃响应模型、等效电路模型或基于物理的模型。这些模型能够精准跟踪电池状态,为充电策略和故障检测提供依据。 在相关文件中,“license.txt”可能包含Simulink模型的使用许可信息,这对于模型的商业应用和合规性至关重要。“batteryBalancing”文件可能是电池均衡模块的具体实现,详细描述了Simulink构建的均衡算法,包括均衡触发条件、控制逻辑及电路模型等。 一个完整的BMS Simulink模型还应涵盖电池健康状态(SOH,State of Health)估计、热管理、安全保护(如过压、欠压、过流保护等)以及通信接口(用于与车辆其他系统交互)等功能模块。这些模块需要精心设计和参数校准,以确保BMS在各种工况下保持稳定性和准确性。 在开发BMS模型时,用户可以借助Matlab的Simulink库,如控制库、信号处理库和电力电子库,并结合电池特性的实验数据进行模型搭建和仿真验证。
YOLOv10-PyQt5-GUI识别扑克牌的花色和点数-检测游戏开发和娱乐应用+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1285张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:poker-cards(扑克牌),包括 10_Diamonds(方块10)、10_Hearts(红心10)、10_Spades(黑桃10)、10_Trefoils(梅花10)、2_Diamonds(方块2)、2_Hearts(红心2)、2_Spades(黑桃2)、2_Trefoils(梅花2)、3_Diamonds(方块3)、3_Hearts(红心3)、3_Spades(黑桃3)、3_Trefoils(梅花3)、4_Diamonds(方块4)、4_Hearts(红心4)、4_Spades(黑桃4)、4_Trefoils(梅花4)、5_Diamonds(方块5)、5_Hearts(红心5)、5_Spades(黑桃5)、5_Trefoils(梅花5)、6_Diamonds(方块6)、6_Hearts(红心6)、6_Spades(黑桃6)、6_Trefoils(梅花6)、7_Diamonds(方块7)、7_Hearts(红心7)、7_Spades(黑桃7)、7_Trefoils(梅花7)、8_Diamonds(方块8)、8_Hearts(红心8)、8_Spades(黑桃8)、8_Trefoils(梅花8)、9_Diamonds(方块9)、9_Hearts(红心9)、9_Spades(黑桃9)、9_Trefoils(梅花9)、A_Diamonds(方块A)、A_Hearts(红心A)、A_Spades(黑桃A)、A_Trefoils(梅花A)、J_Diamonds(方块J)、J_Hearts(红心J)、J_Spades(黑桃J)、J_Trefoils(梅花J)、K_Diamonds(方块K)、K_Hearts(红心K)、K_Spades(黑桃K)、K_Trefoils(梅花K)、Q_Diamonds(方块Q)、Q_Hearts(红心Q)、Q_Spades(黑桃Q)、Q_Trefoils(梅花Q)等 3. yolo项目用途:识别扑克牌的花色和点数,用于游戏开发和娱乐应用 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502
数字调制技术是现代通信系统中的关键技术,ASK、FSK、PSK和DPSK是其中最基本的四种方式。以下将分别介绍它们的原理及MATLAB实现。 ASK(振幅键控) 是通过改变载波信号的幅度来传输数字信息。在二进制ASK中,数据“1”对应正常幅度的载波,数据“0”则对应幅度为零或较低值的载波。MATLAB实现时,首先定义时间轴,随机生成比特数据,再通过形状函数和载波信号生成ASK信号,并绘制原始数据和调制信号的波形。 FSK(频移键控) 是利用不同频率的载波来表示不同的数据状态。二进制FSK中,两个不同的频率分别代表“0”和“1”。在MATLAB中,同样先定义时间轴和随机生成比特数据,然后根据数据生成不同频率的载波信号,最后绘制原始数据、FSK信号及其频谱。 PSK(相移键控) 是通过改变载波信号的相位来传输数据。在二进制PSK中,通常采用π的相位变化来区分“0”和“1”。MATLAB实现时,定义时间轴和随机生成比特数据后,根据数据生成相位变化的PSK信号,并绘制原始数据、PSK信号及其频谱。 DPSK(差分相移键控) 是PSK的一种改进方式,通过当前信号与前一信号的相位变化来表示数据。在MATLAB实现中,需要根据前一符号的状态来决定当前符号的相位变化。例如,如果前一符号为“1”,当前符号为“0”时,相位变化180度。虽然代码片段未完全给出,但其核心思想是利用相位的相对变化来传输信息。 这四种调制技术各有特点,ASK实现简单但抗干扰能力弱;FSK抗干扰能力强但频带利用率较低;PSK频带利用率高但对相位同步要求高;DPSK则通过差分编码降低了对相位同步的要求。它们在不同的通信场景中发挥着重要作用,是学习更高级调制技术的基础。
内容概要:本文探讨了云原生浪潮下Jenkins在CI/CD中的重要作用。云原生时代,微服务架构和容器化技术的应用使CI/CD变得尤为重要,它通过自动化构建、测试和部署流程,大幅缩短了软件发布周期,提高了交付速度。Jenkins作为CI/CD领域的老牌工具,不仅历史悠久,而且功能强大,支持多种构建工具和触发方式,并能与云原生技术栈(如Docker和Kubernetes)深度融合。文章还介绍了Jenkins在云原生环境中的独特优势,包括丰富的插件生态系统、灵活的构建与部署流程支持以及与云原生技术栈的深度融合。此外,文中提供了搭建Jenkins服务、配置项目任务、编写流水线脚本的具体步骤,并针对常见问题提出了解决方案。最后,展望了Jenkins在云原生领域的发展趋势,包括性能优化、自动化与智能化提升以及与新技术的融合。 适合人群:具备一定云计算和CI/CD基础知识的开发人员、运维人员和技术管理者。 使用场景及目标:①理解云原生环境下CI/CD的重要性;②掌握Jenkins的基本配置和使用方法;③解决Jenkins在云原生环境中遇到的常见问题;④了解Jenkins未来的发展方向。 阅读建议:本文内容详实,既包含理论阐述又涵盖实践指导,读者应结合自身实际需求,重点学习Jenkins的配置和使用技巧,并关注其与云原生技术的结合点。对于技术管理者而言,还需思考如何利用Jenkins提升团队的开发效率和软件质量。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值