PanoNet3D:一个基于激光雷达点云语义和几何理解的3D目标检测方法

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

作者丨黄浴@知乎

来源丨https://zhuanlan.zhihu.com/p/344409383

编辑丨3D视觉工坊

2020年12月17日arXiv论文 “PanoNet3D: Combining Semantic and Geometric Understanding for LiDAR Point Cloud Detection“,作者来自CMU RI 研究所。

作者觉得大多数激光雷达检测方法只是利用目标几何结构,所以提出在一个多视角框架下学习目标的语义和结构特征,其利用激光雷达的特性,2D距离图像,以此提取语义特征。


该方法PanoNet3D结构如图:

上面分支,LiDAR点云作为输入,用几个简单的局部几何特征修饰原始点特征,包括全局位置、局部相对所在体素中心的位移。

体素化有两种:1)3D正常体素化;2)pillarization,类似PointPillars。

下面分支,点云转换为伪距图像,类似LaserNet,得到结果如下图:5个通道,range r, height h, elevation angle theta, reflectance i, occupancy mask m。

馈入2D Semantic FPN (SFPN),获取每个像素的深度语义特征。将两个分支输出特征汇总并传递到主检测器。最终的框头部在BEV平面生成检测建议。单步检测器,基于anchor,预测朝向框以及置信度得分。

文中提出了时域多帧融合和空域多帧融合,前者简单,后者需要选择关键帧,如图是一个例子

这里取两帧n=2做实验。

检测头设计如图:初始特征128维,整个场景大小限制为[-51.2, 51.2] [-51.2, 51.2] [-3, 3]米,分别在x-y-z方向。网络由ResNet基本块几层组成。S表示每层步幅,N表示块数。生成的SFPN特征图具有和该层同样分辨率的,标记为红色。可以是,3D voxelize输入或者pillarize再输入。

数据增强类似SECOND,cropped线下存储,做随机全局变换,如translation、scaling、rotation等。

该文实现是基于Det3D:CBGS开源库:https://link.zhihu.com/?target=https%3A//github.com/poodarchu/Det3D

结果:

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值