论文题目:6D Pose Estimation using an Improved Method based on Point Pair Features
作者:Joel Vidal, Chyi-Yeu Lin
译者:仲夏夜之星
文献下载:在公众号「3D视觉工坊」后台,回复「改进的点对特征」,即可获取论文。
摘要:点对特征是基于模型的6D位姿估计方法中最成功的一种,作为传统的局部和全局管道的一种高效、综合和折衷的替代方法。在过去的几年里,已经提出了几种不同的算法。Hinterstoisser等人提出的解决方案是一个主要贡献。在2017年ICCV第三届关于恢复6D物体姿态的国际研讨会上,本研究提出了一种适用于SIXD挑战数据集的PPF方法的变体,所有数据集的平均召回率为0.77,而对hinterstoisser、tless、tudlight、rutgers、tejani和doumanoglou数据集的总体召回率分别为0.82、0.67、0.85、0.37、0.97和0.96。
一 引言
三维目标识别,特别是6D位姿估计问题是目标处理中的关键步骤。在过去的几十年里,3D数据和基于特征的方法已经在基于模型的方法获得广泛的声誉。一般来说,基于模型的方法分为两大类:全局方法和局部方法。全局方法使用一个全局描述描述整个对象