基于改进的点对特征的6D位姿估计

本文提出一种改进的点对特征(PPF)方法用于6D位姿估计,针对SIXD挑战数据集进行实验,平均召回率达到0.77。方法包括全局建模和局部匹配阶段,考虑传感器噪声并引入了新的下采样和邻居对滤波步骤,提高了在多种场景下的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

论文题目:6D Pose Estimation using an Improved Method based on Point Pair Features

作者:Joel Vidal, Chyi-Yeu Lin

译者:仲夏夜之星

文献下载:在公众号「3D视觉工坊」后台,回复「改进的点对特征」,即可获取论文。

摘要:点对特征是基于模型的6D位姿估计方法中最成功的一种,作为传统的局部和全局管道的一种高效、综合和折衷的替代方法。在过去的几年里,已经提出了几种不同的算法。Hinterstoisser等人提出的解决方案是一个主要贡献。在2017年ICCV第三届关于恢复6D物体姿态的国际研讨会上,本研究提出了一种适用于SIXD挑战数据集的PPF方法的变体,所有数据集的平均召回率为0.77,而对hinterstoisser、tless、tudlight、rutgers、tejani和doumanoglou数据集的总体召回率分别为0.82、0.67、0.85、0.37、0.97和0.96。

一 引言

三维目标识别,特别是6D位姿估计问题是目标处理中的关键步骤。在过去的几十年里,3D数据和基于特征的方法已经在基于模型的方法获得广泛的声誉。一般来说,基于模型的方法分为两大类:全局方法和局部方法。全局方法使用一个全局描述描述整个对象

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值