基于点云方式的6D姿态识别

本文介绍了基于点云的6D姿态识别方法,包括Go-ICP的全局最优解决方案、Super 4PCS的快速全局点云注册、3DRegNet的深度学习配准网络以及3DMatch的局部几何描述符学习。这些算法在点云配准、注册和特征匹配方面具有显著优势,适用于大规模场景和多视图环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

前言

除了对应点方式,还可以将点云将与整个形状对齐,获得6D姿态。通常,首先进行粗配准以提供初始对准,然后进行密集配准方法,如迭代最近点(ICP),以获得最终的6D姿态。针对点云方式,挑选了一些相关的paper,在这里做下基本思想分享。

1、Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration

迭代最近点(ICP)算法是目前应用最广泛的点集配准方法之一。然而,基于局部迭代优化的ICP算法易受局部极小值的影响。它的性能严重依赖于初始化的质量,并且只保证局部最优性。本文提出了在ICP定义的L2误差度量下,两个三维点集欧氏(刚性)配准的第一个全局最优算法Go-ICP。Go-ICP方法基于搜索整个3D运动空间SE(3)的分枝定界(BnB)方案。利用SE(3)几何的特殊结构,推导了新的配准误差函数的上下界。在B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值