LeetCode650. 2 Keys Keyboard

本文探讨了如何通过动态规划(DP)方法找出将键盘上的“A”复制并粘贴到达到n个“A”的最少步骤数。文章首先介绍了递归解决方案,并分析了其时间复杂度,随后进一步优化为DP解决方案,最后还提供了一个数学解决方案。

Get the recursion relationship

Apparently, there is some kind of recurrence relationship between the minimum number of steps needed for numbers smaller than n and n. Thus in order to come up with a DP solution, first we need to do is to find out this recurrence relationship and write up the recursion solution. After that, we can analyze the repetitive work we did and optimize the solution to a DP one.

In order to find out the recurrence relationship, we need to clarify 2 part:

  1. What are the base cases?

  2. What is the relationship between previous state and current state? i.e. solution for numbers smaller than n and solution for n.

So for the first question, the answer is obvious, the base cases should be: 1, 0, 2, 2 and 3,3.

For the second question, it’s more tricky. Notice that in order to get n by copy and paste, the only previous conditions, say, i, we need to consider are divisor of n, i.e. n % i == 0. Thus for a recursion solution, we can loop through 2 to n - 1 and find out the minimum number of steps.

Given the number of steps needed for i, say, minSteps(i), the number of steps needed for n are minSteps(i) + n/i. This is because: if we already got i A, then we need to get another (n/i) - 1 A. Thus we need one copyAll operation and (n/i) -1 paste operation. This is a total of (n/i) - 1 + 1 steps in addition to minSteps(i).

Hence we get the following recursion solution.

Time Complexity: Between O(n^2) to O(n^3). Because we are not checking every number less than n, thus is less than 1 + 2^2 + ... + n^2.

Space Complexity: O(1). O(n) at most for recursion stack.

class Solution {
    public int minSteps(int n) {
        if (n == 1) {
            return 0;
        } else if (n <= 3) {
            return n;
        }
        int min = Integer.MAX_VALUE;
        for (int i = 2; i <= n; i++) {
            if (n % i == 0) {
                min = Math.min(min, minSteps(n / i) + i);
            }
        }

        return min;
    }
}

Optimize it to DP

In the above recursion solution, we are checking results for i again and again, i.e. checking minSteps(i) again and again. Thus we can use an array to memorize this information to make it more efficient, resulting in a DP solution.

Time Complexity: Less than O(n^2).

Space Complexity: O(n).

class Solution {
    public int minSteps(int n) {
        int[] dp = new int[n + 1];
        dp[1] = 0;
        for (int i = 2; i <= n; i++) {
            // worst case for each number, copy the first A and paste the A all the way to n.
            dp[i] = i;
            for (int j = i - 1; j > 1; j--) {
                if (i % j != 0) continue;
                dp[i] = Math.min(dp[i], dp[j] + i / j);
            }
        }

        return dp[n];
    }
}

Further optimization

Actually there is a fact that each time the solution path to get n A is a determinate one for any n. It is the one that we greedily find every maximum divisor for current n and so on. Thus give use the following solution.

class Solution {
    public int minSteps(int n) {
        int[] dp = new int[n + 1];
        dp[1] = 0;
        for (int i = 2; i <= n; i++) {
            // worst case for each number, copy the first A and paste the A all the way to n.
            dp[i] = i;
            for (int j = i - 1; j > 1; j--) {
                if (i % j == 0) {
                    dp[i] = dp[j] + i / j;
                    break;
                }
            }
        }

        return dp[n];
    }
}

A math solution

class Solution {
    public int minSteps(int n) {
        int ret = 0;
        for (int i = 2; i <= n; i++) {
            while (n % i == 0) {
                ret += i;
                n /= i;
            }
        }

        return ret;
    }
}
### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “commandleetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耀凯考前突击大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值