//先对其进行下采样,再进行滤波,最后输出滤波后的结果及被滤掉的离群点。
#include <pcl/point_types.h>
#include <pcl/io/io.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/filters/radius_outlier_removal.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/statistical_outlier_removal.h>
typedef pcl::PointXYZRGB PointT;
int main(int argc, char** argv)
{
// 加载点云初始化
pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>);
pcl::PointCloud<PointT>::Ptr cloud_downSampled(new pcl::PointCloud<PointT>);
pcl::PointCloud<PointT>::Ptr cloud_filtered(new pcl::PointCloud<PointT>);
pcl::PointCloud<PointT>::Ptr noise(new pcl::PointCloud<PointT>);
if (pcl::io::loadPCDFile("/home/xiaohu/learn_SLAM/zuoye14/点云滤波练习题目/data/fusedCloud.pcd", *cloud) == -1)
{
cout << "点云数据读取失败!" << endl;
}
std::cout << "Points number after filtering: " << cloud->points.size() << std::endl;
// ----------- 开始你的代码,参考http://docs.pointclouds.org/trunk/group__filters.html --------
// 下采样,同时保持点云形状特征
pcl::VoxelGrid<PointT> downSampled; //创建滤波对象
downSampled.setInputCloud (cloud); //设置需要过滤的点云给滤波对象
downSampled.setLeafSize (0.005f, 0.005f, 0.005f); //设置滤波时创建的体素体积为1cm的立方体
downSampled.filter (*cloud_downSampled); //执行滤波处理,存储输出
//去除点云的离群点
// 1.统计滤波
pcl::StatisticalOutlierRemoval<PointT> sor; //创建滤波器对象
sor.setInputCloud (cloud_downSampled); //设置待滤波的点云
sor.setMeanK (50); //设置在进行统计时考虑的临近点个数
sor.setStddevMulThresh (1.0); //设置判断是否为离群点的阀值,用来倍乘标准差,也就是上面的std_mul
sor.filter (*cloud_filtered); //滤波结果存储到cloud_filtered
// 2.试试半径滤波效果
// pcl::RadiusOutlierRemoval<PointT> ROutlierRemoval; //创建滤波器对象
// ROutlierRemoval.setInputCloud(cloud_downSampled); //设置待滤波的点云
// ROutlierRemoval.setRadiusSearch(0.02); // 设置搜索半径
// ROutlierRemoval.setMinNeighborsInRadius(2); // 设置一个内点最少的邻居数目
// ROutlierRemoval.filter(*cloud_filtered); //滤波结果存储到cloud_filtered
std::cout << "Points number after filtering: " << cloud_filtered->points.size() << std::endl;
// 输出内点
pcl::PCDWriter writer;
writer.write<PointT> ("/home/xiaohu/learn_SLAM/zuoye14/点云滤波练习题目/data/cloud_inliers.pcd", *cloud_filtered, false);
// 输出离群点
sor.setNegative (true);
sor.filter (*noise);
// ROutlierRemoval.setNegative (true);
// ROutlierRemoval.filter (*noise);
writer.write<PointT> ("/home/xiaohu/learn_SLAM/zuoye14/点云滤波练习题目/data/cloud_outliers.pcd", *noise, false);
// ----------- 结束你的代码 --------
// 显示滤波结果,或者用pcl_viewer 命令查看
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));
viewer->setBackgroundColor(0, 0, 0);
pcl::visualization::PointCloudColorHandlerRGBField<PointT> rgb(cloud_filtered);
viewer->addPointCloud<PointT> (cloud_filtered, rgb, "sample cloud");
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
return (0);
}
参考:
PCL经典代码赏析四:点云滤波
PCL官网:http://docs.pointclouds.org/trunk/group__filters.html
本文介绍了一种点云数据预处理方法,通过下采样和统计滤波技术去除离群点,保持点云形状特征。使用PCL库的VoxelGrid和StatisticalOutlierRemoval滤波器,对点云数据进行有效滤波,并输出滤波后的点云及离群点。
2029





