二分类逻辑回归模型 binomail model
模型
P
(
Y
=
1
∣
x
)
=
exp
(
w
⋅
x
+
b
)
1
+
exp
(
w
⋅
x
+
b
)
P
(
Y
=
0
∣
x
)
=
1
1
+
exp
(
w
⋅
x
+
b
)
\begin{aligned} P(Y=1|x) = \frac{\exp (w \cdot x + b)}{1 + \exp(w \cdot x + b)} \\ P(Y=0|x) = \frac{1}{1 + \exp(w \cdot x + b)} \end{aligned}
P(Y=1∣x)=1+exp(w⋅x+b)exp(w⋅x+b)P(Y=0∣x)=1+exp(w⋅x+b)1
x
∈
R
n
x \in R^n
x∈Rn是输入,分别计算
P
(
Y
=
1
∣
x
)
P(Y=1|x)
P(Y=1∣x)和
P
(
Y
=
0
∣
x
)
P(Y=0|x)
P(Y=0∣x),比较两个条件概率值的大小,将x分到概率较大的那一类。
模型参数评估
使用极大似然法估计模型参数,从而得到逻辑回归模型
假设w的极大似然估计值是
w
^
\hat w
w^,那么学到的逻辑回归模型是:
P
(
Y
=
1
∣
x
)
=
exp
(
w
^
⋅
x
)
1
+
exp
(
w
^
⋅
x
)
P
(
Y
=
0
∣
x
)
=
1
1
+
exp
(
w
^
⋅
x
)
\begin{aligned} P(Y=1|x) = \frac{\exp (\hat w \cdot x)}{1 + \exp(\hat w \cdot x)} \\ P(Y=0|x) = \frac{1}{1 + \exp(\hat w \cdot x)} \end{aligned}
P(Y=1∣x)=1+exp(w^⋅x)exp(w^⋅x)P(Y=0∣x)=1+exp(w^⋅x)1