深度学习核心技术精讲100篇(五十六)- 自动驾驶感知技术的实践与探索

本文探讨了自动驾驶感知技术在高速重卡中的应用,重点介绍了车道线检测和障碍物检测。车道线检测从传统方法到深度学习方法的转变,利用深度学习的图像分割和Spatial CNN提高精度。障碍物检测中,通过Faster RNN、YOLO等方法解决不同大小物体的检测。文章还提及了激光雷达在物体检测和地面识别中的作用,并讨论了感知技术在重卡自动驾驶中面临的挑战,如成本、性能和可靠性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

自动驾驶中的感知技术如同驾驶员的"眼睛"和"耳朵",在高速重卡的场景中,感知技术将面临哪些挑战?在量产化道路中,如何让感知技术与产品相结合去看清和理解足够的场景?

这里,感知的定义就不多介绍了,感知是我们自动驾驶的"眼睛"和"耳朵",是自动驾驶信息获取的第一步,所以感知是非常基础和关键的一个环节。这需要在我们的自动驾驶车辆上布满传感器,这样才能360°无死角的知道周边的各种情况,而且不止包括我们的"眼睛"Camera,还包括我们的"耳朵"激光雷达和毫米波雷达等非视觉传感器,这些在我们的测试车辆上都是必备的,我们可以从上图中看到,我们的车辆上布满了传感器,车前、车尾、车顶都会存在传感器。

自动驾驶车辆除了能看到东西之外,关键还是需要理解它。只有理解它之后获得的信息,才对我们后续的处理有意义,所以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值