深度学习核心技术精讲100篇(三十六)-EdgeRec:边缘计算在淘宝推荐系统中的大规模应用

文章探讨了推荐系统中的延迟问题,介绍了EdgeRec如何结合边缘计算解决这些问题,通过端上实时用户感知和重排提高推荐系统的响应速度。EdgeRec在淘宝信息流推荐中应用,实现了用户行为的秒级感知和推荐内容的即时调整,提高了点击率和转化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在全面进入无线的时代,为了解决信息负载的问题,越来越多的推荐场景得到兴起,尤其是以列表推荐形式为主的信息流推荐。以手淘信息流为例,进入猜你喜欢场景的用户,兴趣常常是不明确的,用户浏览时往往没有明确的商品需求,而是在逛的过程中逐渐去发现想买的商品。而推荐系统在用户逛的过程中,会向客户端下发并呈现不同类型的商品让用户从中挑选,推荐系统这个过程中会去捕捉用户的兴趣变化,从而推荐出更符合用户兴趣的商品。然而推荐系统能不能做到用户兴趣变化时立刻给出响应呢?

01

推荐系统中的痛点

推荐系统以往的做法都是通过客户端请求 ( 分页请求 ) 后触发云端服务器的商品排序,然后将排序好的商品下发给用户,端侧再依此做商品呈现。这样存在下面两个问题:

  • 推荐系统决策的延迟:由于云端服务器的QPS压力限制,信息流推荐会采用分页请求的方式,这样就会导致云端推荐系统对终端用户推荐内容调整机会少,无法及时响应用户的兴趣变化。如下图所示,用户在第4个商品的交互表明不喜欢“摩托车”,但是由于分页请求只能在50个商品后,那么当页后面其他“摩托车”商品无法被及时调整。

  • 对用户行为的实时感知的延迟:目前推荐系统的个性化都是通过把用户与商品交互的行为作为特征来表达的,但是用户的行为其

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值