NLP高频面试题(五十)——大模型(LLMs)分词(Tokenizer)详解

在自然语言处理(NLP)任务中,将文本转换为模型可处理的数字序列是必不可少的一步。这一步通常称为分词(tokenization),即把原始文本拆分成一个个词元(token)。对于**大型语言模型(LLM,Large Language Model,大型语言模型)**而言,选择合适的分词方案至关重要:分词的质量直接影响模型的词汇表大小、表示能力以及对未知词汇的处理能力。

早期的做法是以“单词”为基本单位进行分词,即通过空格或规则将文本切分成独立的单词。但是纯单词级分词存在明显缺陷:**词汇表(vocabulary)可能非常庞大(尤其对多语言或大量专业术语的场景),这会导致模型参数量增加(每个词元对应的嵌入向量)且无法覆盖所有可能出现的单词。当模型遇到未登录词(OOV,Out-Of-Vocabulary)**时(即不在词汇表中的新词),传统处理方式只能将其标记为一个特殊的“未知”符号,完全丢失该词的信息。

另一种极端是字符级分词,即将每个字符作为基本词元。字符级方法将词汇表缩小到字母表大小(例如英语26个字母再加标点、空格等),从而彻底避免了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值