目录
1、LRU 算法描述
LRU 算法就是一种缓存淘汰策略,原理不难,但是面试中写出没有 bug 的算法比较有技巧,需要对数据结构进行层层抽象和拆解。
计算机的缓存容量有限,如果缓存满了就要删除一些内容,给新内容腾位置。但问题是,删除哪些内容呢?我们肯定希望删掉哪些没什么用的缓存,而把有用的数据继续留在缓存里,方便之后继续使用。那么,什么样的数据,我们判定为「有用的」的数据呢?
LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。当然还有其他缓存淘汰策略,比如不要按访问的时序来淘汰,而是按访问频率(LFU 策略)来淘汰等等,各有应用场景。本文讲解 LRU 算法策略。
2、LeetCode146. LRU缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。获取数据 get(key) - 如果关键字 (key) 存在于缓存中,则获取关键字的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果关键字已经存在,则变更其数据值,注意:此时也算是对的数据的操作,需要将数据变为最新操作;如果关键字不存在,则插入该组「关键字/值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得关键字 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得关键字 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
2.1、算法设计
分析上面的操作过程,要让 put
和 get
方法的时间复杂度为 O(1),我们可以总结出 cache
这个数据结构必要的条件:
1、显然 cache
中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。
2、我们要在 cache
中快速找某个 key
是否已存在并得到对应的 val
;
3、每次访问 cache
中的某个 key
,需要将这个元素变为最近使用的,也就是说 cache
要支持在任意位置快速插入和删除元素。
那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap
。
LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构 HashLinkedList 长这样:
借助这个结构,我们来逐一分析上面的 3 个条件:
1、如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。
2、对于某一个 key
,我们可以通过哈希表快速定位到链表中的节点,从而取得对应 val
。
3、链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过 key
快速映射到任意一个链表节点,然后进行插入和删除。
也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key
,为什么链表中还要存 key
和 val
呢,只存 val
不就行了?
想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~
2.2、代码实现
很多编程语言都有内置的哈希链表或者类似 LRU 功能的库函数,但是为了帮大家理解算法的细节,我们先自己造轮子实现一遍 LRU 算法,然后再使用 Java 内置的 LinkedHashMap
来实现一遍。
首先,我们把双链表的节点类写出来,为了简化,key
和 val
都认为是 int 类型:
class Node{
private int key, val;
private Node prev,next;
public Node(int key,int val){
this.key = key;
this.val = val;
prev = null;
next = null;
}
public int getKey(){
return key;
}
public int getVal(){
return val;
}
public void setVal(int value){
this.val = value;
}
}
class DoubleList{
private Node head,tail;
private int size = 0;
public DoubleList(){
head = new Node(0,0);
tail = new Node(0,0);
head.next = tail;
tail.prev = head;
size = 0;
}
public void addLast(Node node){
tail.prev.next = node;
node.next = tail;
node.prev = tail.prev;
tail.prev = node;
size++;
}
public void remove(Node node){
node.prev.next = node.next;
node.next.prev = node.prev;
size--;
}
public Node removeFirst(){
if(size == 0 || head.next == tail){
return null;
}
Node node = head.next;
remove(node);
return node;
}
public int size(){
return size;
}
}
到这里就能回答刚才「为什么必须要用双向链表」的问题了,因为我们需要删除操作。删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。
注意我们实现的双链表 API 只能从尾部插入,也就是说靠尾部的数据是最近使用的,靠头部的数据是最久为使用的。
有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可,
get方法:判断键值 key 是否在map中,不存在:直接返回-1;存在:获取节点node,并更新节点 node 为最近使用
put方法:判断键值key 是否在map中,存在:更新节点值并将该节点修改为最近使用;不存在:1、判断缓存容量(超出则删除头节点),添加新节点为最近使用,流程图如下:
代码具体如下:
private Map <Integer,Node> map = null;
private DoubleList list = null;
private int cap = 0,cnt = 0;
public LRUCache(int capacity) {
map = new HashMap<Integer,Node>();
list = new DoubleList();
this.cap = capacity;
}
public int get(int key) {
if(map.containsKey(key)){
Node node = map.get(key);
list.remove(node);
list.addLast(node);
return node.getVal();
}else{
return -1;
}
}
public void put(int key, int value) {
if(map.containsKey(key)){
Node node = map.get(key);
list.remove(node);//put更新操作例子11
list.addLast(node);
node.setVal(value);
return;
}
if(cnt == cap){
Node node = list.removeFirst();
map.remove(node.getKey());
cnt--;
}
Node node = new Node(key,value);
map.put(key,node);
list.addLast(node);
cnt++;
}