Python用状态空间求解RLC电路

问题提出

对于如图所示的电路而言,包括一个电阻 R R R,电感 L L L和电容 C C C,以及电压源 v ( t ) v(t) v(t)

在这里插入图片描述

根据基尔霍夫电压定律(Kirchhoff’s Voltage Law, KVL),串联电路中各元件的电压与电压源的电压相等,电流则处处相等

v ( t ) = R ⋅ i ( t ) + L d i ( t ) d t + v C ( t ) d i ( t ) d t = − R L i ( t ) − 1 L v C ( t ) + 1 L v ( t ) \begin{aligned} v(t)&=R\cdot i(t)+L\frac{\text di(t)}{\text dt}+v_C(t)\\ \frac{\text di(t)}{\text dt}&=-\frac{R}{L}i(t)-\frac{1}{L}v_C(t)+\frac{1}{L}v(t) \end{aligned} v(t)dtdi(t)=Ri(t)+Ldtdi(t)+vC(t)=LRi(t)L1vC(t)+L1v(t)

其中,电容中的电压由充放电过程决定,可以记作

v C ( t ) = 1 C ∫ i ( t ) d t d v C ( t ) d t = d v C ( t ) d t = i ( t ) C \begin{aligned} v_C(t)&=\frac{1}{C}\int i(t)\text dt\\ \frac{\text dv_C(t)}{\text dt}&=\frac{\text dv_C(t)}{\text dt}=\frac{i(t)}{C} \end{aligned} vC(t)dtdvC(t)=C1i(t)dt=dtdvC(t)=Ci(t)

状态空间表示

状态空间可用于表示线性控制系统,其形式为

X ′ ( t ) = A X ( t ) + B ∗ u ( t ) Y ( t ) = C X ( t ) + D ∗ u ( t ) X'(t)=AX(t)+B*u(t)\\ Y(t)=CX(t)+D*u(t) X(t)=AX(t)+Bu(t)Y(t)=CX(t)+Du(t)

其中, A , B , C , D A,B,C,D A,B,C,D均为状态空间矩阵。接下来,将RLC电路的方程改写为状态空间的形式。

由于此前已经构造了关于电流 i i i和电容中的电压 v C v_C vC的微分方程组,故而可将二者记作

X ( t ) = [ i ( t ) v C ( t ) ] X(t)=\begin{bmatrix}i(t)\\v_C(t)\end{bmatrix} X(t)=[i(t)vC(t)]

则微分方程组可以改写为

X ˙ ( t ) = [ − R L − 1 L 1 C 0 ] X ( t ) + [ 1 L 0 ] v ( t ) \dot X(t)=\begin{bmatrix} -\frac{R}{L}&-\frac{1}{L}\\ \frac{1}{C}&0\end{bmatrix} X(t)+ \begin{bmatrix}\frac{1}{L}\\0\end{bmatrix}v(t) X˙(t)=[LRC1L10]X(t)+[L10]v(t)

从而 A = [ − R L − 1 L 1 C 0 ] , B = [ 1 L 0 ] A=\begin{bmatrix}-\frac{R}{L}&-\frac{1}{L}\\\frac{1}{C}&0\end{bmatrix}, B=\begin{bmatrix}\frac{1}{L}\\0\end{bmatrix} A=[LRC1L10],B=[L10],令 C = [ 0 1 ] , D = [ 0 ] C=\begin{bmatrix}0&1\end{bmatrix}, D=[0] C=[01],D=[0],则 Y ( t ) Y(t) Y(t)可构造为

Y ( t ) = [ 0 1 ] X ( t ) + [ 0 ] v ( t ) Y(t)=\begin{bmatrix}0&1\end{bmatrix}X(t)+[0]v(t) Y(t)=[01]X(t)+[0]v(t)

sympy代码

【sympy】的【control】模块提供了状态空间类【StateSpace】,RLC电路的状态空间为

StateSpace ⁡ ( [ − R L − 1 L 1 C 0 ] , [ 1 L 0 ] , [ 0 1 ] , [ 0 ] ) \operatorname{StateSpace}\left(\left[\begin{matrix}- \frac{R}{L} & - \frac{1}{L}\\\frac{1}{C} & 0\end{matrix}\right], \left[\begin{matrix}\frac{1}{L}\\0\end{matrix}\right], \left[\begin{matrix}0 & 1\end{matrix}\right], \left[\begin{matrix}0\end{matrix}\right]\right) StateSpace([LRC1L10],[L10],[01],[0])

构造过程如下

from sympy import Matrix, symbols, print_latex
from sympy.physics.control import *
R, L, C = symbols('R L C')
A = Matrix([[-R/L, -1/L], [1/C, 0]])
B = Matrix([[1/L], [0]])
C,D = Matrix([[0, 1]]), Matrix([[0]])
ss = StateSpace(A, B, C, D)
print_latex(ss)

【dsolve】是状态空间的求解方法,若想求出RLC电路的状态方程,则需给出 X ( t ) , v ( t ) X(t), v(t) X(t),v(t)的初值,

U = symbols('U')
i = Matrix([0, 0])
u0 = Matrix([U])
res = ss.dsolve(i, u0).simplify()
print_latex(res)

结果如下,非常抽象

[ { U ( − C 4 R 7 e t ( R 2 + C ( C R 2 − 4 L ) C ) L + C 4 R 7 e t ( R + C ( C R 2 − 4 L ) 2 C ) L + C 3 L R 5 e R t 2 L + 8 C 3 L R 5 e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 9 C 3 L R 5 e t ( R + C ( C R 2 − 4 L ) 2 C ) L − C 3 R 6 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L + C 3 R 6 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L − 6 C 2 L 2 R 3 e R t 2 L − 19 C 2 L 2 R 3 e t ( R 2 + C ( C R 2 − 4 L ) C ) L + 25 C 2 L 2 R 3 e t ( R + C ( C R 2 − 4 L ) 2 C ) L + C 2 L R 4 C ( C R 2 − 4 L ) e R t 2 L + 6 C 2 L R 4 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 7 C 2 L R 4 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L + 8 C L 3 R e R t 2 L + 12 C L 3 R e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 20 C L 3 R e t ( R + C ( C R 2 − 4 L ) 2 C ) L − 4 C L 2 R 2 C ( C R 2 − 4 L ) e R t 2 L − 9 C L 2 R 2 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L + 13 C L 2 R 2 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L + 2 L 3 C ( C R 2 − 4 L ) e R t 2 L + 2 L 3 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 4 L 3 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L ) e − t ( R + C ( C R 2 − 4 L ) 2 C ) L C 4 R 7 − 9 C 3 L R 5 + C 3 R 6 C ( C R 2 − 4 L ) + 25 C 2 L 2 R 3 − 7 C 2 L R 4 C ( C R 2 − 4 L ) − 20 C L 3 R + 13 C L 2 R 2 C ( C R 2 − 4 L ) − 4 L 3 C ( C R 2 − 4 L ) for   − C R 2 + 4 L + R C ( C R 2 − 4 L ) ≠ 0 ∧ C R 2 − 4 L + R C ( C R 2 − 4 L ) ≠ 0 U ( C L R e t ( R + C ( C R 2 − 4 L ) 2 C ) L − C L R e t ( 3 R 2 + C ( C R 2 − 4 L ) C ) L + C R 2 t e t ( R + 3 C ( C R 2 − 4 L ) 2 C ) L − 2 L t e t ( R + 3 C ( C R 2 − 4 L ) 2 C ) L + L C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L − L C ( C R 2 − 4 L ) e t ( 3 R 2 + C ( C R 2 − 4 L ) C ) L + R t C ( C R 2 − 4 L ) e t ( R + 3 C ( C R 2 − 4 L ) 2 C ) L ) e − t ( 3 R 2 + C ( C R 2 − 4 L ) C ) L C 2 R 3 − 4 C L R + C R 2 C ( C R 2 − 4 L ) − 2 L C ( C R 2 − 4 L ) for   C R 2 − 4 L + R C ( C R 2 − 4 L ) ≠ 0 U ( − C 4 R 7 e t ( R 2 + C ( C R 2 − 4 L ) C ) L + C 4 R 7 e t ( R + C ( C R 2 − 4 L ) 2 C ) L + 8 C 3 L R 5 e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 8 C 3 L R 5 e t ( R + C ( C R 2 − 4 L ) 2 C ) L − C 3 R 6 t e R t 2 L − C 3 R 6 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L + C 3 R 6 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L − 19 C 2 L 2 R 3 e t ( R 2 + C ( C R 2 − 4 L ) C ) L + 19 C 2 L 2 R 3 e t ( R + C ( C R 2 − 4 L ) 2 C ) L + 7 C 2 L R 4 t e R t 2 L + 6 C 2 L R 4 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 6 C 2 L R 4 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L − C 2 R 5 t C ( C R 2 − 4 L ) e R t 2 L + 12 C L 3 R e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 12 C L 3 R e t ( R + C ( C R 2 − 4 L ) 2 C ) L − 13 C L 2 R 2 t e R t 2 L − 9 C L 2 R 2 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L + 9 C L 2 R 2 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L + 5 C L R 3 t C ( C R 2 − 4 L ) e R t 2 L + 4 L 3 t e R t 2 L + 2 L 3 C ( C R 2 − 4 L ) e t ( R 2 + C ( C R 2 − 4 L ) C ) L − 2 L 3 C ( C R 2 − 4 L ) e t ( R + C ( C R 2 − 4 L ) 2 C ) L − 5 L 2 R t C ( C R 2 − 4 L ) e R t 2 L ) e − t ( R + C ( C R 2 − 4 L ) 2 C ) L C 4 R 7 − 9 C 3 L R 5 + C 3 R 6 C ( C R 2 − 4 L ) + 25 C 2 L 2 R 3 − 7 C 2 L R 4 C ( C R 2 − 4 L ) − 20 C L 3 R + 13 C L 2 R 2 C ( C R 2 − 4 L ) − 4 L 3 C ( C R 2 − 4 L ) for   − C R 2 + 4 L + R C ( C R 2 − 4 L ) ≠ 0 U t C ( C R 2 − 4 L ) ( e t C ( C R 2 − 4 L ) C L − 1 ) e − t ( R + C ( C R 2 − 4 L ) C ) 2 L C ( C R 2 − 4 L ) otherwise ] \left[\begin{matrix}\begin{cases} \frac{U \left(- C^{4} R^{7} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + C^{4} R^{7} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + C^{3} L R^{5} e^{\frac{R t}{2 L}} + 8 C^{3} L R^{5} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 9 C^{3} L R^{5} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - C^{3} R^{6} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + C^{3} R^{6} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - 6 C^{2} L^{2} R^{3} e^{\frac{R t}{2 L}} - 19 C^{2} L^{2} R^{3} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + 25 C^{2} L^{2} R^{3} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{R t}{2 L}} + 6 C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 7 C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + 8 C L^{3} R e^{\frac{R t}{2 L}} + 12 C L^{3} R e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 20 C L^{3} R e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - 4 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{R t}{2 L}} - 9 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + 13 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + 2 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{R t}{2 L}} + 2 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 4 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}}\right) e^{- \frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}}}{C^{4} R^{7} - 9 C^{3} L R^{5} + C^{3} R^{6} \sqrt{C \left(C R^{2} - 4 L\right)} + 25 C^{2} L^{2} R^{3} - 7 C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} - 20 C L^{3} R + 13 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} - 4 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)}} & \text{for}\: - C R^{2} + 4 L + R \sqrt{C \left(C R^{2} - 4 L\right)} \neq 0 \wedge C R^{2} - 4 L + R \sqrt{C \left(C R^{2} - 4 L\right)} \neq 0 \\\frac{U \left(C L R e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - C L R e^{\frac{t \left(\frac{3 R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + C R^{2} t e^{\frac{t \left(R + \frac{3 \sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - 2 L t e^{\frac{t \left(R + \frac{3 \sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + L \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - L \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{3 R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + R t \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{3 \sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}}\right) e^{- \frac{t \left(\frac{3 R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}}}{C^{2} R^{3} - 4 C L R + C R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} - 2 L \sqrt{C \left(C R^{2} - 4 L\right)}} & \text{for}\: C R^{2} - 4 L + R \sqrt{C \left(C R^{2} - 4 L\right)} \neq 0 \\\frac{U \left(- C^{4} R^{7} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + C^{4} R^{7} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + 8 C^{3} L R^{5} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 8 C^{3} L R^{5} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - C^{3} R^{6} t e^{\frac{R t}{2 L}} - C^{3} R^{6} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + C^{3} R^{6} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - 19 C^{2} L^{2} R^{3} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + 19 C^{2} L^{2} R^{3} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + 7 C^{2} L R^{4} t e^{\frac{R t}{2 L}} + 6 C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 6 C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - C^{2} R^{5} t \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{R t}{2 L}} + 12 C L^{3} R e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 12 C L^{3} R e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - 13 C L^{2} R^{2} t e^{\frac{R t}{2 L}} - 9 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} + 9 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} + 5 C L R^{3} t \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{R t}{2 L}} + 4 L^{3} t e^{\frac{R t}{2 L}} + 2 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(\frac{R}{2} + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{L}} - 2 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}} - 5 L^{2} R t \sqrt{C \left(C R^{2} - 4 L\right)} e^{\frac{R t}{2 L}}\right) e^{- \frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{2 C}\right)}{L}}}{C^{4} R^{7} - 9 C^{3} L R^{5} + C^{3} R^{6} \sqrt{C \left(C R^{2} - 4 L\right)} + 25 C^{2} L^{2} R^{3} - 7 C^{2} L R^{4} \sqrt{C \left(C R^{2} - 4 L\right)} - 20 C L^{3} R + 13 C L^{2} R^{2} \sqrt{C \left(C R^{2} - 4 L\right)} - 4 L^{3} \sqrt{C \left(C R^{2} - 4 L\right)}} & \text{for}\: - C R^{2} + 4 L + R \sqrt{C \left(C R^{2} - 4 L\right)} \neq 0 \\\frac{U t \sqrt{C \left(C R^{2} - 4 L\right)} \left(e^{\frac{t \sqrt{C \left(C R^{2} - 4 L\right)}}{C L}} - 1\right) e^{- \frac{t \left(R + \frac{\sqrt{C \left(C R^{2} - 4 L\right)}}{C}\right)}{2 L}}}{C \left(C R^{2} - 4 L\right)} & \text{otherwise} \end{cases}\end{matrix}\right] C4R79C3LR5+C3R6C(CR24L) +25C2L2R37C2LR4C(CR24L) 20CL3R+13CL2R2C(CR24L) 4L3C(CR24L) U C4R7eLt(2R+CC(CR24L) )+C4R7eLt(R+2CC(CR24L) )+C3LR5e2LRt+8C3LR5eLt(2R+CC(CR24L) )9C3LR5eLt(R+2CC(CR24L) )C3R6C(CR24L) eLt(2R+CC(CR24L) )+C3R6C(CR24L) eLt(R+2CC(CR24L) )6C2L2R3e2LRt19C2L2R3eLt(2R+CC(CR24L) )+25C2L2R3eLt(R+2CC(CR24L) )+C2LR4C(CR24L) e2LRt+6C2LR4C(CR24L) eLt(2R+CC(CR24L) )7C2LR4C(CR24L) eLt(R+2CC(CR24L) )+8CL3Re2LRt+12CL3ReLt(2R+CC(CR24L) )20CL3ReLt(R+2CC(CR24L) )4CL2R2C(CR24L) e2LRt9CL2R2C(CR24L) eLt(2R+CC(CR24L) )+13CL2R2C(CR24L) eLt(R+2CC(CR24L) )+2L3C(CR24L) e2LRt+2L3C(CR24L) eLt(2R+CC(CR24L) )4L3C(CR24L) eLt(R+2CC(CR24L) ) eLt(R+2CC(CR24L) )C2R34CLR+CR2C(CR24L) 2LC(CR24L) U CLReLt(R+2CC(CR24L) )CLReLt(23R+CC(CR24L) )+CR2teLt(R+2C3C(CR24L) )2LteLt(R+2C3C(CR24L) )+LC(CR24L) eLt(R+2CC(CR24L) )LC(CR24L) eLt(23R+CC(CR24L) )+RtC(CR24L) eLt(R+2C3C(CR24L) ) eLt(23R+CC(CR24L) )C4R79C3LR5+C3R6C(CR24L) +25C2L2R37C2LR4C(CR24L) 20CL3R+13CL2R2C(CR24L) 4L3C(CR24L) U C4R7eLt(2R+CC(CR24L) )+C4R7eLt(R+2CC(CR24L) )+8C3LR5eLt(2R+CC(CR24L) )8C3LR5eLt(R+2CC(CR24L) )C3R6te2LRtC3R6C(CR24L) eLt(2R+CC(CR24L) )+C3R6C(CR24L) eLt(R+2CC(CR24L) )19C2L2R3eLt(2R+CC(CR24L) )+19C2L2R3eLt(R+2CC(CR24L) )+7C2LR4te2LRt+6C2LR4C(CR24L) eLt(2R+CC(CR24L) )6C2LR4C(CR24L) eLt(R+2CC(CR24L) )C2R5tC(CR24L) e2LRt+12CL3ReLt(2R+CC(CR24L) )12CL3ReLt(R+2CC(CR24L) )13CL2R2te2LRt9CL2R2C(CR24L) eLt(2R+CC(CR24L) )+9CL2R2C(CR24L) eLt(R+2CC(CR24L) )+5CLR3tC(CR24L) e2LRt+4L3te2LRt+2L3C(CR24L) eLt(2R+CC(CR24L) )2L3C(CR24L) eLt(R+2CC(CR24L) )5L2RtC(CR24L) e2LRt eLt(R+2CC(CR24L) )C(CR24L)UtC(CR24L) (eCLtC(CR24L) 1)e2Lt(R+CC(CR24L) )forCR2+4L+RC(CR24L) =0CR24L+RC(CR24L) =0forCR24L+RC(CR24L) =0forCR2+4L+RC(CR24L) =0otherwise

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值