正题
题目大意
给出n,求 ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^ngcd(i,j) i=1∑nj=1∑ngcd(i,j)
解题思路
考虑先枚举gcd,那么有
∑ d = 1 n d ∑ i = 1 n / d ∑ j = 1 n / d [ g c d ( i , j ) = 1 ] \sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}[gcd(i,j)=1] d=1∑ndi=1∑n/dj=1∑n/d[gcd(i,j)=1]
φ ( n ) = ∑ i = 1 n [ g c d ( i , n ] = 1 ] ∑ k = 1 n φ ( k ) = ∑ i = 1 n ∑ j = 1 i [ g c d ( i , j ) = 1 ] \varphi(n)=\sum_{i=1}^n[gcd(i,n]=1]\\ \sum_{k=1}^n\varphi(k)=\sum_{i=1}^n\sum_{j=1}^i[gcd(i,j)=1] φ(n)=i=1∑n[gcd(i,n]=1]k=1∑nφ(k)=i=1∑nj=1∑i[gcd(i,j)=1]
原式后面一段比上面多了 j > i j>i j>i 的情况,这种情况的方案数和 j ≤ i j\leq i j≤i 的方案数是相等的,可以直接乘2,不过要把 φ ( 1 ) \varphi(1) φ(1) 重复计算的减去
那么原式为
∑ d = 1 n d ( 2 × ∑ i = 1 n / d φ ( i ) + 1 ) \sum_{d=1}^nd(2\times \sum_{i=1}^{n/d}\varphi(i)+1) d=1∑nd(2×i=1∑n/dφ(i)+1)
后面一段可以用前缀和做,然后可以直接整除分块
时间复杂度 O ( n ) O(\sqrt{n}) O(n)
code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define N 100100
using namespace std;
ll n,w,ans,p[N],phi[N],prime[N];
const ll MX=100000;
void work()
{
phi[1]=1;
for(ll i=2;i<=MX;++i){
if(!p[i]){
prime[++w]=i;
phi[i]=i-1;
}
for(ll j=1;j<=w&&i*prime[j]<=MX;++j){
p[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(ll i=2;i<=n;++i)
phi[i]+=phi[i-1];
return;
}
int main()
{
scanf("%lld",&n);
work();
for(ll l=1,r=0;l<=n;l=r+1){
r=n/(n/l);
ans+=(phi[n/l]*2-1)*(r+l)*(r-l+1)/2;
}
printf("%lld",ans);
return 0;
}