Pattern Recognition course 笔记- combiing, bagging and boosting

仅为个人笔记使用


The basic question

  • how to design a combiner?
  • how to generate base classifiers?

combination

在这里插入图片描述

combiner types
  • fixed rules based on crisp labels or confidences[estimated posterior probabilities]
  • special trained rules based on classifier condidences
  • general trained rules interpreting based-classifier outputs as features
    p ( f , ϕ ∣ ω ) = p ( f ∣ ω ) p ( ϕ ∣ ω ) p(f,\phi| \omega) = p(f|\omega)p(\phi|\omega) p(f,ϕω)=p(fω)p(ϕω)

don not need to measure the full parameters in one go,
reduce the calculation在这里插入图片描述

combination —> regularization

combining classifier offen leads to regularization effect

Bagging[ Bootstrap Aggregating]

  1. select a training set size m ′ &lt; m m&#x27;&lt;m m<m
  2. select at random n n n subsets of s ′ s&#x27; s training objects[originally: bootstrap]
  3. train a classifier[originally : decision three]
  4. combine [orgina: majority vote]
  5. stabilize volatile classifiers

boosting

  1. initialize all objects with an euqal weight
  2. select a training set size m ′ &lt; m m&#x27;&lt;m m<m according to the object weights
  3. train a weak classifier
  4. increase the weights of the erroneously classified objects
  5. repeat as long as needed
  6. combine
  7. inprove performance of weak classifiers

Adaboost

  1. sample training set accoring to set of object weights[initialy equal]
  2. use it for training imple [weak] classifier ω i \omega_{i} ωi
  3. classify entire data set, using weights, to get error estimate ξ i \xi_{i} ξi
  4. store classifier weights a i = 0.5 l o g ( ( 1 − ξ i ) / ξ i ) a_{i}= 0.5 log((1-\xi_{i})/\xi_{i}) ai=0.5log((1ξi)/ξi)
  5. multiply weights of erroneously classified objects with e x p ( a i ) exp(a_{i}) exp(ai) and correctly classified objects with e x p ( − a i ) exp(-a_{i}) exp(ai)
  6. goto 1 as long as needed
  7. Final classifier: weighted voting with weights a i a_{i} ai
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值