超高速计算n以内素数个数(百亿内3毫秒解决)

博客介绍了MEISSEL-LEHMER算法,这是一种用于超高速计算素数个数的方法,能在百亿范围内实现3毫秒内的计算。尽管筛选法在一般情况下效率较高,但在ACM等对时间要求严格的场景下仍不足,而MEISSEL-LEHMER算法提供了解决这一问题的优化方案,使得计算速度大幅提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     判断n以内素数个数有很多算法,最简单的是循环直接判断,这个效率不用说,n稍大就不行了。最流行的是筛选法,原理就是定义一个素数标志位表,初始为1,遇到一个数如果对应标志位为1判断这个数是不是素数,是将该为置1,不是放0,然后将他的倍数位置全部置0,然后继续。。这个效率还是比较快的,但是计算到10^8时候需要3s左右了,对于一般要求基本够了,但是对于ACM里面对时间要求很严还是不够。可以对帅选法进行优化,不如偶数直接跳过,以后直接加偶数倍,甚至加入移位运算判断是不是3的倍数,5的倍数等等,最后基本勉强在ACM要求的时间之内。下来介绍一种逆天的算法:MEISSEL-LEHMER,布吉岛的可以百度下。不容易看懂。。。。。。

先看下效果绝对碉堡!!!!

代码如下:

#
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值