原题传送门
基环树,不是特别的复杂
如果先把一条多余的边拿掉,然后对于每个询问
- 最短路径不经过多余边,直接树上求两点间距离
- 最短路径经过多余边,树上求多余边两端点分别到两个询问点的距离,加上多余边长度
两种情况比大小即可
至于如何求得树上两点间距离,因为有修改操作无法直接倍增解决
所以用上树剖,然后距离可以用常数更小的树状数组维护一下
注意这里用以点代边,细节处理需注意
Code:
#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
struct Edge{
int to, next, len;
}edge[maxn << 1];
struct Line{
int x, y, z;
}line[maxn << 1];
int num, head[maxn], size[maxn], son[maxn], fa[maxn], d[maxn], val[maxn], id[maxn], top[maxn];
int Index, U, V, Len, n, m, tree[maxn];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y, int z){ edge[++num] = (Edge) {y, head[x], z}; head[x] = num; }
void dfs(int u){
size[u] = 1, son[u] = -1;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (!size[v]){
fa[v] = u, d[v] = d[u] + 1, val[v] = edge[i].len;
dfs(v);
size[u] += size[v];
if (son[u] == -1 || son[u] != -1 && size[son[u]] < size[v]) son[u] = v;
} else
if (v != fa[u]) U = u, V = v, Len = edge[i].len;
}
}
void dfs(int u, int x){
top[u] = x, id[u] = ++Index;
if (son[u] == -1) return;
dfs(son[u], x);
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != son[u] && v != fa[u] && !(u == U && v == V) && !(u == V && v == U)) dfs(v, v);
}
}
void add(int x, int y){ for (; x <= n; x += x & -x) tree[x] += y; }
int query(int x){ int sum = 0; for (; x; x -= x & -x) sum += tree[x]; return sum; }
int qrylen(int u, int v){
int sum = 0;
while (top[u] != top[v]){
if (d[top[u]] < d[top[v]]) swap(u, v);
sum += query(id[u]) - query(id[top[u]] - 1);
u = fa[top[u]];
}
if (u == v) return sum;
if (d[u] < d[v]) swap(u, v);
return sum + query(id[u]) - query(id[v]);
}
int main(){
n = read(), m = read();
for (int i = 1; i <= n; ++i){
line[i] = (Line){read(), read(), read()};
addedge(line[i].x, line[i].y, line[i].z);
addedge(line[i].y, line[i].x, line[i].z);
}
dfs(1); dfs(1, 1);
for (int i = 1; i <= n; ++i) add(id[i], val[i]);
while (m--){
int opt = read(), x = read(), y = read();
if (opt == 1){
int u = line[x].x, v = line[x].y;
if (u == U && v == V || u == V && v == U) Len = y; else{
if (d[u] < d[v]) swap(u, v);
add(id[u], y - line[x].z);
line[x].z = y;
}
} else{
int sum = qrylen(x, y),
sum1 = qrylen(x, U) + qrylen(y, V) + Len,
sum2 = qrylen(x, V) + qrylen(y, U) + Len;
printf("%d\n", min(sum, min(sum1, sum2)));
}
}
return 0;
}