原题传送门
令
s
u
m
i
sum_i
sumi表示第一个短语到第
i
i
i个短语组成的句子长度
s
u
m
i
=
i
−
1
+
∑
j
=
1
i
s
t
r
l
e
n
(
s
j
)
sum_i=i-1+\sum_{j=1}^{i}strlen(s_j)
sumi=i−1+∑j=1istrlen(sj)
轻松得到一个暴力
d
p
dp
dp:
d
p
i
=
m
i
n
(
d
p
j
+
(
s
u
m
i
−
s
u
m
j
−
L
−
1
)
P
)
dp_i=min(dp_j+(sum_i-sum_j-L-1)^P)
dpi=min(dpj+(sumi−sumj−L−1)P)
令
w
(
i
,
j
)
=
(
s
u
m
i
−
s
u
m
j
−
L
−
1
)
P
w(i,j)=(sum_i-sum_j-L-1)^P
w(i,j)=(sumi−sumj−L−1)P
则
d
p
i
=
m
i
n
(
d
p
j
+
w
(
i
,
j
)
)
dp_i=min(dp_j+w(i,j))
dpi=min(dpj+w(i,j)),发现存在决策单调性
然后就是决策单调性的做法
- 单调队列维护,记录决策、临界值,这边临界值的意义是第一个下一个决策比这一个决策优的整点
- 队首决策是相对于当前状态最优的决策,更新
- 二分找到当前决策和前面的临界值,更新单调队列
Code:
#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
char s[maxn][31];
long double dp[maxn];
int h, t, n, L, P, q[maxn], pre[maxn], k[maxn], sum[maxn];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48) ;
return s * w;
}
long double ksm(long double n, int k){
if (!k) return 1.0;
long double sum = ksm(n, k >> 1);
sum *= sum;
if (k & 1) sum *= n;
return sum;
}
long double calc(int i, int j){ return dp[j] + ksm((long double)abs(sum[i] - sum[j] - L - 1), P); }
int find(int j, int i){
int l = j, r = n + 1, sum = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (calc(mid, j) >= calc(mid, i)) r = mid - 1; else l = mid + 1;
}
return l;
}
int main(){
int M = read();
while (M--){
n = read(), L = read(), P = read();
for (int i = 1; i <= n; ++i) scanf("%s", s[i]), sum[i] = strlen(s[i]) + sum[i - 1] + 1;
q[h = t = 1] = 0;
for (int i = 1; i <= n; ++i){
while (h < t && k[h] <= i) ++h;
pre[i] = q[h], dp[i] = calc(i, q[h]);
while (h < t && k[t - 1] >= find(q[t], i)) --t;
k[t] = find(q[t], i);
q[++t] = i;
}
if (dp[n] > 1e18) puts("Too hard to arrange"); else{
printf("%lld\n", (long long)dp[n]);
int cnt = 0;
for (int i = n; i; i = pre[i]) q[++cnt] = pre[i]; q[0] = n;
while (cnt--){
for (int i = q[cnt + 1] + 1; i < q[cnt]; ++i) printf("%s ", s[i]);
printf("%s\n", s[q[cnt]]);
}
}
puts("--------------------");
}
return 0;
}