原题传送门
这题挺简单
首先,任意三个点可以有一个通式,看下图
假设我们现在询问1 2 3三点
发现它们走到4这个点是最优的,而4又是1与2的lca
找找4这个点有什么性质
l
c
a
(
1
,
2
)
=
4
,
l
c
a
(
1
,
3
)
=
5
,
l
c
a
(
2
,
3
)
=
5
lca(1,2)=4,lca(1,3)=5,lca(2,3)=5
lca(1,2)=4,lca(1,3)=5,lca(2,3)=5
发现三点任意两点的lca有两个是重复的,而那个不重复的lca正是它们的集合地点
问题1已经解决,现在让我们算算总路程
lca用倍增解决,然后我们可以得到每个点的深度
来一波推导:
A
N
S
=
d
1
−
d
4
+
d
2
−
d
4
+
d
3
−
d
5
+
d
4
−
d
5
=
d
1
+
d
2
+
d
3
−
d
4
−
d
5
−
d
5
ANS=d_1-d_4+d_2-d_4+d_3-d_5+d_4-d_5=d_1+d_2+d_3-d_4-d_5-d_5
ANS=d1−d4+d2−d4+d3−d5+d4−d5=d1+d2+d3−d4−d5−d5
可以看成三个点深度之和减去三个lca深度之和
这道题就这么愉快地被我们解决啦
Code:
#include <bits/stdc++.h>
#define maxn 500010
using namespace std;
struct Edge{
int to, next;
}edge[maxn << 1];
int num, head[maxn], d[maxn], fa[maxn][25], n, m;
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y){ edge[++num] = (Edge){ y, head[x] }; head[x] = num; }
void dfs(int u, int pre){
d[u] = d[pre] + 1, fa[u][0] = pre;
for (int i = 0; fa[u][i]; ++i) fa[u][i + 1] = fa[fa[u][i]][i];
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != pre) dfs(v, u);
}
}
int lca(int u, int v){
if (d[u] > d[v]) swap(u, v);
for (int i = 20; i >= 0; --i) if (d[u] <= d[fa[v][i]]) v = fa[v][i];
if (u == v) return u;
for (int i = 20; i >= 0; --i) if (fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
int main(){
n = read(), m = read();
for (int i = 1; i < n; ++i) {
int x = read(), y = read();
addedge(x, y); addedge(y, x);
}
dfs(1, 0);
while (m--){
int x = read(), y = read(), z = read(), ans = d[x] + d[y] + d[z];
int lca1 = lca(x, y), lca2 = lca(x, z), lca3 = lca(y, z);
ans -= d[lca1] + d[lca2] + d[lca3];
if (lca1 == lca2) printf("%d %d\n", lca3, ans); else
if (lca1 == lca3) printf("%d %d\n", lca2, ans); else printf("%d %d\n", lca1, ans);
}
return 0;
}