原题传送门
考虑到割点
如果一个点不是割点,那么答案就是
2
(
n
−
1
)
2(n-1)
2(n−1)
如果是割点,那么答案是
2
(
n
−
1
)
+
割
掉
后
个
联
通
块
s
i
z
e
之
积
2(n-1)+割掉后个联通块size之积
2(n−1)+割掉后个联通块size之积
问题是怎么求这个size之积
考虑割点求法,与之类似
tarjan割点同时求size
也不需要知道每个点到底是不是割点
如果一个儿子不能不通过自己到达比自己更浅的祖先,说明这个儿子在自己被割掉后会断开
参与答案统计,不是就不管
最终还要加上会断开的点个数*其余点个数
答案输出时不要忘了加上 ( n − 1 ) (n-1) (n−1),再 ∗ 2 *2 ∗2
Code:
#include <bits/stdc++.h>
#define maxn 500010
#define LL long long
using namespace std;
struct Edge{
int to, next;
}edge[maxn << 1];
int num, head[maxn], dfn[maxn], low[maxn], Index;
int size[maxn], n, m;
LL ans[maxn];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y){ edge[++num] = (Edge) { y, head[x] }; head[x] = num; }
void tarjan(int u){
dfn[u] = low[u] = ++Index;
size[u] = 1;
int flag = 0, sum = 0;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (!dfn[v]){
tarjan(v);
size[u] += size[v], low[u] = min(low[u], low[v]);
if (low[v] >= dfn[u])
ans[u] += 1LL * sum * size[v], sum += size[v];
}
low[u] = min(low[u], dfn[v]);
}
ans[u] += 1LL * sum * (n - sum - 1);
}
int main(){
n = read(), m = read();
for (int i = 1; i <= m; ++i){
int x = read(), y = read();
addedge(x, y); addedge(y, x);
}
for (int i = 1; i <= n; ++i)
if (!dfn[i]) tarjan(i);
for (int i = 1; i <= n; ++i) printf("%lld\n", ans[i] * 2 + (n - 1) * 2);
return 0;
}