原题传送门
小思维难度
核心思想:奇偶性
注意到要么无解,要么有且仅有一解(人数为奇)
想到二分
用一个
c
a
l
c
(
i
)
calc(i)
calc(i)函数计算“前缀和”,就是点1到点i人数之和,可以
O
(
n
)
O(n)
O(n)得到
然后就是针对这个前缀和的分类讨论
- c a l c ( m a x r ) calc(maxr) calc(maxr) m o d mod mod 2 = = 0 2==0 2==0,无解
- c a l c ( m i d ) calc(mid) calc(mid) m o d mod mod 2 = = 0 2==0 2==0,答案在 [ m i d + 1 , r ] 中 [mid+1,r]中 [mid+1,r]中,所以 l = m i d + 1 l=mid+1 l=mid+1
- c a l c ( m i d ) calc(mid) calc(mid) m o d mod mod 2 = = 1 2==1 2==1,答案在 [ l , m i d ] 中 [l,mid]中 [l,mid]中,所以 r = m i d r=mid r=mid
最终的答案即为 l l l,至于 l l l上的人数,为 c a l c ( l ) − c a l c ( l − 1 ) calc(l)-calc(l-1) calc(l)−calc(l−1)
Code:
#include <bits/stdc++.h>
#define maxn 200010
#define inf 2147483647
#define LL long long
using namespace std;
LL n, s[maxn], e[maxn], d[maxn];
inline LL read(){
LL s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
LL calc(LL x){
LL sum = 0;
for (int i = 1; i <= n; ++i)
if (s[i] <= x) sum += (min(e[i], x) - s[i]) / d[i] + 1;
return sum;
}
int main(){
int M = read();
while (M--){
n = read();
LL l = inf, r = -inf;
for (int i = 1; i <= n; ++i){
s[i] = read(), e[i] = read(), d[i] = read();
l = min(l, s[i]), r = max(r, e[i]);
}
if (calc(r) % 2 == 0){
printf("Poor QIN Teng:(\n");
continue;
}
while (l < r){
LL mid = (l + r) >> 1;
if (calc(mid) & 1) r = mid; else l = mid + 1;
}
printf("%lld %lld\n", l, calc(l) - calc(l - 1));
}
return 0;
}