(取石子)Alice和Bob两个人在玩取石子游戏。他们制定了nn条取石子的规则,第ii条规则为:如果剩余石子的个数大于等于a[i]a[i]且大于等于b[ilb[il, 那么他们可以取走b[i]b[i]个石子。他们轮流取石子。如果轮到某个人取石子, 而他无法按照任何规则取走石子,那么他就输了。一开始石子有mm个。请问先取石子的人是否有必胜的方法?
有两种做法
- 暴力dp:dpidp_idpi表示iii是否必胜,对于一个规则(a,b)(a<=i),dpi∣=(dpi−b==0)(a,b)(a<=i),dp_i|=(dp_{i-b}==0)(a,b)(a<=i),dpi∣=(dpi−b==0)
由于bbb最多是64,所以dpdpdp数组可以滚动在65位之内,复杂度是O(规则数∗石子数)O(规则数*石子数)O(规则数∗石子数) - 将转移优化成位运算,65位dp数组压成一个ullullull的数,每一位对应的是当前的iii减去bbb,这个bbb就是第bbb位,复杂度O(石子数)O(石子数)O(石子数)
Code:
暴力
#pragma GCC optmize("-Ofast")
#include <bits/stdc++.h>
#define maxn 1010
#define Ull unsigned long long
using namespace std;
int n, m, a[maxn], b[maxn], dp[1010];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
int main(){
freopen("stone.in", "r", stdin);
freopen("stone1.out", "w", stdout);
n = read(), m = read();
for (int i = 1; i <= n; ++i) a[i] = read(), b[i] = read();
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
if (a[i] > a[j]) swap(a[i], a[j]), swap(b[i], b[j]);
for (int i = 1; i <= m; ++i){
int now = i % 65;
dp[now] = 0;
for (int j = 1; j <= n; ++j)
if (i >= a[j]) dp[now] |= !dp[(i - b[j]) % 65]; else break;
}
puts(dp[m % 65] ? "Win" : "Loss");
return 0;
}
正解
#include <bits/stdc++.h>
#define maxn 1010
#define Ull unsigned long long
using namespace std;
int n, m, a[maxn], b[maxn];
Ull status, trans;
bool win;
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
int main(){
freopen("stone.in", "r", stdin);
freopen("stone.out", "w", stdout);
n = read(), m = read();
for (int i = 0; i < n; ++i) a[i] = read(), b[i] = read();
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
if (a[i] > a[j]) swap(a[i], a[j]), swap(b[i], b[j]);
status = ~0ull ^ 1, trans = 0;
for (int i = 1, j = 0; i <= m; ++i){
while (j < n && a[j] == i) trans |= 1ull << (b[j++] - 1);
win = ~status & trans, status = status << 1 | win;
}
puts(win ? "Win" : "Loss");
return 0;
}

这篇博客探讨了Alice和Bob玩的取石子游戏的策略问题。通过两种不同的算法实现,一种是暴力的动态规划方法,另一种是位运算优化后的解决方案,来判断先手玩家是否有必胜策略。文章提供了详细的代码实现,并分析了复杂度。
3883

被折叠的 条评论
为什么被折叠?



