- 记 l l l为 w ( u , v ) w(u,v) w(u,v)
-
f
u
f_u
fu表示,从
u
u
u出发回到
u
u
u,走以
u
u
u为根的子树的答案
f u + = m a x ( 0 , f v − 2 l ) f_u+=max(0,f_v-2l) fu+=max(0,fv−2l) - f a u , i fa_{u,i} fau,i表示,从 u u u,往上的第 2 i 2^i 2i个祖先
-
d
p
u
,
i
dp_{u,i}
dpu,i表示,从
u
u
u跑到
f
a
u
,
i
fa_{u,i}
fau,i,中途可以跑子树的答案
d p u , i = d p u , i − 1 + d p f a u , i − 1 , i − 1 − f f a u , i − 1 dp_{u,i}=dp_{u,i-1}+dp_{fa_{u,i-1},i-1}-f_{fa_{u,i-1}} dpu,i=dpu,i−1+dpfau,i−1,i−1−ffau,i−1因为中点会被计算两次,所以要减掉 -
g
u
g_u
gu表示从
u
u
u出发往祖先走,再回到
u
u
u的答案
g u = m a x ( 0 , g f a u , 0 + d p u , 0 − f u − l ) g_u=max(0,g_{fa_{u,0}}+dp_{u,0}-f_u-l) gu=max(0,gfau,0+dpu,0−fu−l)
对于一个询问
(
u
,
v
)
(u,v)
(u,v),倍增合并
先假设
d
u
>
=
d
v
d_u>=d_v
du>=dv,两种情况
如果
v
v
v是
u
u
u的祖先
每次往上跳
2
k
2^k
2k步,
a
n
s
+
=
d
p
u
,
k
−
f
u
ans+=dp_{u,k}-f_u
ans+=dpu,k−fu
如果不是
跳到同一深度后,两个点一起往上跳,跳到
l
c
a
lca
lca的时候
a
n
s
+
=
d
p
u
,
0
+
d
p
v
,
0
−
f
u
−
f
v
−
f
l
c
a
+
g
l
c
a
ans+=dp_{u,0}+dp_{v,0}-f_u-f_v-f_{lca}+g_{lca}
ans+=dpu,0+dpv,0−fu−fv−flca+glca,只有转折点
l
c
a
lca
lca有机会往组先走
Code:
#include <bits/stdc++.h>
#define maxn 300010
#define LL long long
using namespace std;
struct Edge{
int to, next;
LL len;
}edge[maxn << 1];
int num, head[maxn], fa[maxn][25], n, m, d[maxn], val[maxn];
LL f[maxn], g[maxn], dp[maxn][25];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y, int z){ edge[++num] = (Edge){y, head[x], z}, head[x] = num; }
void calc(int u, int pre){
f[u] = val[u];
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != pre){
calc(v, u);
if (f[v] - 2LL * edge[i].len > 0LL) f[u] += f[v] - 2LL * edge[i].len;
}
}
}
void build(int u, int pre){
d[u] = d[pre] + 1, fa[u][0] = pre;
for (int i = 0; fa[u][i]; ++i){
fa[u][i + 1] = fa[fa[u][i]][i];
dp[u][i + 1] = dp[u][i] + dp[fa[u][i]][i] - f[fa[u][i]];
}
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != pre){
dp[v][0] = f[v] + f[u] - edge[i].len;
// printf("i : %d len : %lld %lld\n", i, edge[i].len, edge[i ^ 1].len);
if (f[v] - 2LL * edge[i].len > 0LL) dp[v][0] -= f[v] - 2LL * edge[i].len;
// printf("modest dp[%d][0]=%lld\n", v, dp[v][0]);
g[v] = max(g[v], g[u] + dp[v][0] - f[v] - edge[i].len);
build(v, u);
}
}
}
LL lca(int u, int v){
int x = u, y = v;
if (d[u] < d[v]) swap(u, v);
LL ans = 0;
for (int i = 20; i >= 0; --i)
if (d[u] - (1 << i) >= d[v]){
ans += dp[u][i] - f[u], u = fa[u][i];
}
if (u == v) return ans + g[u] + (d[x] > d[y] ? f[x] : f[y]);
for (int i = 20; i >= 0; --i)
if (fa[u][i] != fa[v][i]){
ans += dp[u][i] + dp[v][i] - f[u] - f[v];
u = fa[u][i], v = fa[v][i];
}
return ans + dp[u][0] + dp[v][0] - f[u] - f[v] - f[fa[u][0]] + g[fa[u][0]] + f[x] + f[y];
}
int main(){
n = read(), m = read();
for (int i = 1; i <= n; ++i) val[i] = read();
for (int i = 1; i < n; ++i){
int x = read(), y = read();
LL z = read();
addedge(x, y, z), addedge(y, x, z);
}
calc(1, 0);
build(1, 0);
/* for (int i = 1; i <= n; ++i){
printf("g[%d]=%d\n", i, g[i]);
printf("f[%d]=%d\n", i, f[i]);
printf("dp[%d][0]=%d\n", i, dp[i][0]);
printf("dp[%d][1]=%d\n", i, dp[i][1]);
printf("dp[%d][2]=%d\n", i, dp[i][2]);
}*/
while (m--){
int x = read(), y = read();
printf("%lld\n", lca(x, y));
}
return 0;
}